| from .module import Module |
| from .utils import _pair, _quadruple, _ntuple |
| from .. import functional as F |
| |
| |
| # TODO: grad_output size asserts in THNN |
| |
| |
| class _ConstantPadNd(Module): |
| |
| def __init__(self, value): |
| super(_ConstantPadNd, self).__init__() |
| self.value = value |
| |
| def forward(self, input): |
| return F.pad(input, self.padding, 'constant', self.value) |
| |
| def extra_repr(self): |
| return 'padding={}, value={}'.format(self.padding, self.value) |
| |
| |
| class ConstantPad1d(_ConstantPadNd): |
| r"""Pads the input tensor boundaries with a constant value. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in both boundaries. If a 2-`tuple`, uses (`paddingLeft`, `paddingRight`) |
| |
| Shape: |
| - Input: :math:`(N, C, W_{in})` |
| - Output: :math:`(N, C, W_{out})` where |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ConstantPad1d(2, 3.5) |
| >>> input = torch.randn(1, 2, 4) |
| >>> input |
| |
| (0 ,.,.) = |
| 0.1875 0.5046 -1.0074 2.0005 |
| -0.3540 -1.8645 1.1530 0.0632 |
| [torch.FloatTensor of size (1,2,4)] |
| |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 3.5000 3.5000 0.1875 0.5046 -1.0074 2.0005 3.5000 3.5000 |
| 3.5000 3.5000 -0.3540 -1.8645 1.1530 0.0632 3.5000 3.5000 |
| [torch.FloatTensor of size (1,2,8)] |
| |
| >>> # using different paddings |
| >>> m = nn.ConstantPad1d((3, 1), 3.5) |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 3.5000 3.5000 3.5000 0.1875 0.5046 -1.0074 2.0005 3.5000 |
| 3.5000 3.5000 3.5000 -0.3540 -1.8645 1.1530 0.0632 3.5000 |
| [torch.FloatTensor of size (1,2,8)] |
| |
| """ |
| |
| def __init__(self, padding, value): |
| super(ConstantPad1d, self).__init__(value) |
| self.padding = _pair(padding) |
| |
| |
| class ConstantPad2d(_ConstantPadNd): |
| r"""Pads the input tensor boundaries with a constant value. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, |
| `paddingTop`, `paddingBottom`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ConstantPad2d(2, 3.5) |
| >>> input = torch.randn(1, 2, 2) |
| >>> input |
| |
| (0 ,.,.) = |
| -0.2295 -0.9774 |
| -0.3335 -1.4178 |
| [torch.FloatTensor of size (1,2,2)] |
| |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 |
| 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 |
| 3.5000 3.5000 -0.2295 -0.9774 3.5000 3.5000 |
| 3.5000 3.5000 -0.3335 -1.4178 3.5000 3.5000 |
| 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 |
| 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 |
| [torch.FloatTensor of size (1,6,6)] |
| |
| >>> # using different paddings |
| >>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5) |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 3.5000 3.5000 3.5000 3.5000 3.5000 |
| 3.5000 3.5000 3.5000 3.5000 3.5000 |
| 3.5000 3.5000 3.5000 -0.2295 -0.9774 |
| 3.5000 3.5000 3.5000 -0.3335 -1.4178 |
| 3.5000 3.5000 3.5000 3.5000 3.5000 |
| [torch.FloatTensor of size (1,5,5)] |
| |
| """ |
| |
| def __init__(self, padding, value): |
| super(ConstantPad2d, self).__init__(value) |
| self.padding = _quadruple(padding) |
| |
| |
| class ConstantPad3d(_ConstantPadNd): |
| r"""Pads the input tensor boundaries with a constant value. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 6-`tuple`, uses |
| (`paddingLeft`, `paddingRight`, `paddingTop`, `paddingBottom`, `paddingFront`, `paddingBack`) |
| |
| Shape: |
| - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` |
| - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` where |
| :math:`D_{out} = D_{in} + \textit{paddingFront} + \textit{paddingBack}` |
| :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ConstantPad3d(3, 3.5) |
| >>> input = torch.randn(16, 3, 10, 20, 30) |
| >>> output = m(input) |
| >>> # using different paddings |
| >>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5) |
| >>> output = m(input) |
| |
| """ |
| |
| def __init__(self, padding, value): |
| super(ConstantPad3d, self).__init__(value) |
| self.padding = _ntuple(6)(padding) |
| |
| |
| class _ReflectionPadNd(Module): |
| |
| def forward(self, input): |
| return F.pad(input, self.padding, 'reflect') |
| |
| def extra_repr(self): |
| return '{}'.format(self.padding) |
| |
| |
| class ReflectionPad1d(_ReflectionPadNd): |
| r"""Pads the input tensor using the reflection of the input boundary. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 2-`tuple`, uses (`paddingLeft`, `paddingRight`) |
| |
| Shape: |
| - Input: :math:`(N, C, W_{in})` |
| - Output: :math:`(N, C, W_{out})` where |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ReflectionPad1d(2) |
| >>> input = torch.arange(8).reshape(1, 2, 4) |
| >>> input |
| |
| (0 ,.,.) = |
| 0 1 2 3 |
| 4 5 6 7 |
| [torch.FloatTensor of size (1,2,4)] |
| |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 2 1 0 1 2 3 2 1 |
| 6 5 4 5 6 7 6 5 |
| [torch.FloatTensor of size (1,2,8)] |
| |
| >>> # using different paddings |
| >>> m = nn.ReflectionPad1d((3, 1)) |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 3 2 1 0 1 2 3 2 |
| 7 6 5 4 5 6 7 6 |
| [torch.FloatTensor of size (1,2,8)] |
| |
| """ |
| |
| def __init__(self, padding): |
| super(ReflectionPad1d, self).__init__() |
| self.padding = _pair(padding) |
| |
| |
| class ReflectionPad2d(_ReflectionPadNd): |
| r"""Pads the input tensor using the reflection of the input boundary. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, |
| `paddingTop`, `paddingBottom`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ReflectionPad2d(2) |
| >>> input = torch.arange(9).reshape(1, 1, 3, 3) |
| >>> input |
| |
| (0 ,0 ,.,.) = |
| 0 1 2 |
| 3 4 5 |
| 6 7 8 |
| [torch.FloatTensor of size (1,1,3,3)] |
| |
| >>> m(input) |
| |
| (0 ,0 ,.,.) = |
| 8 7 6 7 8 7 6 |
| 5 4 3 4 5 4 3 |
| 2 1 0 1 2 1 0 |
| 5 4 3 4 5 4 3 |
| 8 7 6 7 8 7 6 |
| 5 4 3 4 5 4 3 |
| 2 1 0 1 2 1 0 |
| [torch.FloatTensor of size (1,1,7,7)] |
| |
| >>> # using different paddings |
| >>> m = nn.ReflectionPad2d((1, 1, 2, 0)) |
| >>> m(input) |
| |
| (0 ,0 ,.,.) = |
| 7 6 7 8 7 |
| 4 3 4 5 4 |
| 1 0 1 2 1 |
| 4 3 4 5 4 |
| 7 6 7 8 7 |
| [torch.FloatTensor of size (1,1,5,5)] |
| |
| """ |
| |
| def __init__(self, padding): |
| super(ReflectionPad2d, self).__init__() |
| self.padding = _quadruple(padding) |
| |
| |
| class _ReplicationPadNd(Module): |
| |
| def forward(self, input): |
| return F.pad(input, self.padding, 'replicate') |
| |
| def extra_repr(self): |
| return '{}'.format(self.padding) |
| |
| |
| class ReplicationPad1d(_ReplicationPadNd): |
| r"""Pads the input tensor using replication of the input boundary. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 2-`tuple`, uses (`paddingLeft`, `paddingRight`) |
| |
| Shape: |
| - Input: :math:`(N, C, W_{in})` |
| - Output: :math:`(N, C, W_{out})` where |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ReplicationPad1d(2) |
| >>> input = torch.arange(8).reshape(1, 2, 4) |
| >>> input |
| |
| (0 ,.,.) = |
| 0 1 2 3 |
| 4 5 6 7 |
| [torch.FloatTensor of size (1,2,4)] |
| |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 0 0 0 1 2 3 3 3 |
| 4 4 4 5 6 7 7 7 |
| [torch.FloatTensor of size (1,2,8)] |
| |
| >>> # using different paddings |
| >>> m = nn.ReplicationPad1d((3, 1)) |
| >>> m(input) |
| |
| (0 ,.,.) = |
| 0 0 0 0 1 2 3 3 |
| 4 4 4 4 5 6 7 7 |
| [torch.FloatTensor of size (1,2,8)] |
| |
| """ |
| |
| def __init__(self, padding): |
| super(ReplicationPad1d, self).__init__() |
| self.padding = _pair(padding) |
| |
| |
| class ReplicationPad2d(_ReplicationPadNd): |
| r"""Pads the input tensor using replication of the input boundary. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, |
| `paddingTop`, `paddingBottom`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ReplicationPad2d(2) |
| >>> input = torch.arange(9).reshape(1, 1, 3, 3) |
| >>> input |
| |
| (0 ,0 ,.,.) = |
| 0 1 2 |
| 3 4 5 |
| 6 7 8 |
| [torch.FloatTensor of size (1,1,3,3)] |
| |
| >>> m(input) |
| |
| (0 ,0 ,.,.) = |
| 0 0 0 1 2 2 2 |
| 0 0 0 1 2 2 2 |
| 0 0 0 1 2 2 2 |
| 3 3 3 4 5 5 5 |
| 6 6 6 7 8 8 8 |
| 6 6 6 7 8 8 8 |
| 6 6 6 7 8 8 8 |
| [torch.FloatTensor of size (1,1,7,7)] |
| |
| >>> # using different paddings |
| >>> m = nn.ReplicationPad2d((1, 1, 2, 0)) |
| >>> m(input) |
| |
| (0 ,0 ,.,.) = |
| 0 0 1 2 2 |
| 0 0 1 2 2 |
| 0 0 1 2 2 |
| 3 3 4 5 5 |
| 6 6 7 8 8 |
| [torch.FloatTensor of size (1,1,5,5)] |
| |
| """ |
| |
| def __init__(self, padding): |
| super(ReplicationPad2d, self).__init__() |
| self.padding = _quadruple(padding) |
| |
| |
| class ReplicationPad3d(_ReplicationPadNd): |
| r"""Pads the input tensor using replication of the input boundary. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 6-`tuple`, uses (`paddingLeft`, `paddingRight`, |
| `paddingTop`, `paddingBottom`, `paddingFront`, `paddingBack`) |
| |
| Shape: |
| - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` |
| - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` where |
| :math:`D_{out} = D_{in} + \textit{paddingFront} + \textit{paddingBack}` |
| :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ReplicationPad3d(3) |
| >>> input = torch.randn(16, 3, 8, 320, 480) |
| >>> output = m(input) |
| >>> # using different paddings |
| >>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1)) |
| >>> output = m(input) |
| |
| """ |
| |
| def __init__(self, padding): |
| super(ReplicationPad3d, self).__init__() |
| self.padding = _ntuple(6)(padding) |
| |
| |
| class ZeroPad2d(ConstantPad2d): |
| r"""Pads the input tensor boundaries with zero. |
| |
| For `N`d-padding, use :func:`torch.nn.functional.pad()`. |
| |
| Args: |
| padding (int, tuple): the size of the padding. If is `int`, uses the same |
| padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, |
| `paddingTop`, `paddingBottom`) |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` |
| :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` |
| |
| Examples:: |
| |
| >>> m = nn.ZeroPad2d(2) |
| >>> input = torch.randn(1, 1, 3, 3) |
| >>> input |
| |
| (0 ,0 ,.,.) = |
| 1.4418 -1.9812 -0.3815 |
| -0.3828 -0.6833 -0.2376 |
| 0.1433 0.0211 0.4311 |
| [torch.FloatTensor of size (1,1,3,3)] |
| |
| >>> m(input) |
| |
| (0 ,0 ,.,.) = |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 1.4418 -1.9812 -0.3815 0.0000 0.0000 |
| 0.0000 0.0000 -0.3828 -0.6833 -0.2376 0.0000 0.0000 |
| 0.0000 0.0000 0.1433 0.0211 0.4311 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
| [torch.FloatTensor of size (1,1,7,7)] |
| |
| >>> # using different paddings |
| >>> m = nn.ZeroPad2d((1, 1, 2, 0)) |
| >>> m(input) |
| |
| (0 ,0 ,.,.) = |
| 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 0.0000 0.0000 0.0000 0.0000 |
| 0.0000 1.4418 -1.9812 -0.3815 0.0000 |
| 0.0000 -0.3828 -0.6833 -0.2376 0.0000 |
| 0.0000 0.1433 0.0211 0.4311 0.0000 |
| [torch.FloatTensor of size (1,1,5,5)] |
| |
| """ |
| |
| def __init__(self, padding): |
| super(ZeroPad2d, self).__init__(padding, 0) |