blob: 00a9e458f05b4120663eb62ebd2d418272326cdf [file] [log] [blame]
# Parses derivatives.yaml into autograd functions
#
# Each autograd function is represented by `DifferentiabilityInfo` containing
# a list of `Derivative`. See `tools.codegen.api.autograd` for the data models.
from collections import defaultdict, Counter
import re
from typing import Sequence, Any, Tuple, List, Set, Dict, Match, Optional
import yaml
from tools.codegen.api.autograd import (Derivative, DifferentiabilityInfo,
SavedAttribute, ForwardDerivative)
from tools.codegen.api.types import Binding, CppSignatureGroup
from tools.codegen.api import cpp
from tools.codegen.gen import parse_native_yaml
from tools.codegen.context import with_native_function
from tools.codegen.model import FunctionSchema, NativeFunction, Variant, Type, SchemaKind
from tools.codegen.utils import IDENT_REGEX, split_name_params
try:
# use faster C loader if available
from yaml import CSafeLoader as Loader
except ImportError:
from yaml import SafeLoader as Loader # type: ignore
def load_derivatives(derivatives_yaml_path: str, native_yaml_path: str) -> Sequence[DifferentiabilityInfo]:
with open(derivatives_yaml_path, 'r') as f:
definitions = yaml.load(f, Loader=Loader)
functions = parse_native_yaml(native_yaml_path)
# What's the difference between function schema v.s. signature?
# function schema is the complete declaration including mutability annotation / default value and etc.
# signature is the canonical schema for a group of functions (in-place/out/functional variants)
# that are semantically related.
functions_by_signature: Dict[FunctionSchema, List[NativeFunction]] = defaultdict(list)
functions_by_schema: Dict[str, NativeFunction] = dict()
for function in functions:
functions_by_signature[function.func.signature()].append(function)
assert str(function.func) not in functions_by_schema
functions_by_schema[str(function.func)] = function
infos = [
create_differentiability_info(defn, functions_by_signature, functions_by_schema)
for defn in definitions]
# To keep it byte-for-byte compatible with the old codegen, we assign op names as a separate
# step. We only assign op names to those with differentiable args, and only append suffix to
# duplicated op names. This can be simplified if the first of the duplicates can be named
# 'XyzBackward' instead of 'XyzBackward0' or unconditionally append '0' to singletons.
op_names = create_op_names(infos)
return [
DifferentiabilityInfo(
name=info.name,
func=info.func,
op=op_name,
derivatives=info.derivatives,
forward_derivatives=info.forward_derivatives,
all_saved_inputs=info.all_saved_inputs,
all_saved_outputs=info.all_saved_outputs,
args_with_derivatives=info.args_with_derivatives,
non_differentiable_arg_names=info.non_differentiable_arg_names,
output_differentiability=info.output_differentiability,
)
for info, op_name in zip(infos, op_names)]
@with_native_function
def cpp_arguments(f: NativeFunction) -> Sequence[Binding]:
return CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
def create_derivative(f: NativeFunction, formula: str, var_names: Tuple[str, ...]) -> Derivative:
original_formula = formula
arguments = cpp_arguments(f)
argument_names = tuple(a.name for a in arguments)
argument_types = tuple(a.type for a in arguments)
return_names = tuple(n if n != 'self' else 'result' for n in cpp.return_names(f))
return_types = tuple(cpp.return_type(r).cpp_type() for r in f.func.returns)
formula, saved_inputs = saved_variables(formula, argument_names, argument_types, var_names)
formula, saved_outputs = saved_variables(formula, return_names, return_types, var_names)
# Check that the referenced derivatives in the formula are in bounds
for i in used_gradient_indices(formula):
if i >= len(f.func.returns):
raise RuntimeError(
f'Out of bounds grads access: derivative formula for {cpp.name(f.func)} '
f'used grads[{i}], but the forward only returns {len(f.func.returns)} outputs.'
)
return Derivative(
formula=formula,
original_formula=original_formula,
var_names=var_names,
saved_inputs=saved_inputs,
saved_outputs=saved_outputs,
)
def create_forward_derivative(f: NativeFunction, formula: str, names: Tuple[str, ...]) -> ForwardDerivative:
assert len(names) == 1, "Forward derivatives can define gradients for only one output at a time"
var_name = names[0]
var_type: Optional[Type] = None
for r in f.func.returns:
if r.name == var_name:
var_type = r.type
break
# Handle default return names
if var_type is None:
if var_name == "result":
assert len(f.func.returns) == 1
var_type = f.func.returns[0].type
else:
res = re.findall(r"^result(\d+)$", var_name)
if len(res) == 1:
arg_idx = int(res[0])
var_type = f.func.returns[arg_idx].type
assert var_type is not None, "No matching output for forward derivative definition"
return ForwardDerivative(
formula=formula,
var_name=var_name,
var_type=var_type,
required_inputs_fw_grad=None,
required_inputs_primal=None)
def postprocess_forward_derivatives(
f: NativeFunction,
defn_name: str,
all_arg_names: List[str],
derivatives: List[Derivative],
forward_derivatives: List[ForwardDerivative],
args_with_derivatives: Sequence[Binding]
) -> List[ForwardDerivative]:
def find_required_inputs(formula: str, postfix: str) -> Tuple[str, ...]:
required_inputs = set()
for arg in args_with_derivatives:
if arg.type == 'TensorList':
# The functions taking TensorList handle everything internally
continue
arg_name = arg.name
found = re.search(IDENT_REGEX.format(arg_name), formula)
if found:
raise RuntimeError(f"The forward formula for {defn_name} is using the base name of the {arg_name} "
f"argument which is ambiguous. You should use {arg_name}_p to access the primal "
f"value and {arg_name}_t to access the tangent.")
found = re.search(IDENT_REGEX.format(arg_name + postfix), formula)
if found:
required_inputs.add(arg_name)
return tuple(required_inputs)
updated_derivatives: List[ForwardDerivative] = []
for defn in forward_derivatives:
formula = defn.formula
required_inputs_tangent = find_required_inputs(formula, "_t")
if formula == "auto_element_wise":
if (not len(args_with_derivatives) == 1) or len(forward_derivatives) > 1:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as element_wise but this only "
"works for functions with a single differentiable input and a "
"single differentiable output.")
if not len(derivatives) == 1:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as element_wise but it does not "
"defines the gradient formula for its argument which is required.")
# This transformation is based on the observation that for element-wise functions, the Jacobian
# matrix is diagonal and thus doing J * v or v * J gives the same result.
# So here we are going to re-use the backward formula and replace two things:
# 1) all occurrences of "grad" with "foo_t", where foo is the name of the unique differentiable input.
# 2) all usage of an original input "foo" with its primal value "foo_p".
# For example, for abs, the backward formula is:
# grad * self.sgn()
# And this function generates a forward formula that is:
# self_t * self_p.sgn()
backward_formula = derivatives[0].original_formula
input_name = args_with_derivatives[0].name
# Do replacement 1) of the grad
def repl(m: Any) -> str:
return f"{m.group(1)}{input_name}_t{m.group(2)}"
fw_formula = re.sub(IDENT_REGEX.format("grad"), repl, backward_formula)
# Do replacement 2) of the input variables
for arg in args_with_derivatives:
arg_name = arg.name
def repl(m: Any) -> str:
return f"{m.group(1)}{arg_name}_p{m.group(2)}"
fw_formula = re.sub(IDENT_REGEX.format(arg_name), repl, fw_formula)
# Since there is a single differentiable inputs and we necessarily need its tangent we can
# simply require all differentiable input's tangent.
required_inputs_tangent = tuple(all_arg_names)
formula = fw_formula
elif formula == "auto_linear":
if len(forward_derivatives) > 1:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as linear but this only works "
"for functions with a single differentiable output.")
# This transformation is based on the observation that linear functions can be written as:
# y = f(x) = A * x
# For some matrix A and the Jacobian of the function f is also A.
# So doing J * v = A * v = f(v).
# Hence to do the jvp, we simply need to evaluate the function at the point v instead of x.
# We do this by calling the forward again by replacing any occurrence of the differentiable
# input "foo" by it's tangent "foo_t".
# Note that multiple inputs are not a problem as long as the function is truly linear wrt to
# the vector where all the differentiable inputs are stacked.
diff_arg_names = [arg.name for arg in args_with_derivatives]
assert len(diff_arg_names) > 0
# Do replacement of input variables
new_args = []
for arg_name in all_arg_names:
if arg_name in diff_arg_names:
arg_name = arg_name + "_t"
new_args.append(arg_name)
# Call into the forward again. We need two cases here to handle both Tensor methods and at:: functions.
if Variant.function in f.variants:
fw_formula = "at::{}({})".format(defn_name, ", ".join(new_args))
else:
assert f.func.kind() is not SchemaKind.inplace
assert Variant.method in f.variants
fw_formula = "{}.{}({})".format(new_args[0], defn_name, ", ".join(new_args[1:]))
# All of the input tangents are always used so all of them are required here.
required_inputs_tangent = tuple(diff_arg_names)
formula = fw_formula
# At this point, the formula is final and is not modified anymore.
# During forward formula, we use the primal instead of the input Tensors.
# This call inspects the formula to find for which input's primal are used.
required_inputs_primal = find_required_inputs(formula, "_p")
updated_derivatives.append(ForwardDerivative(
formula=formula,
var_name=defn.var_name,
var_type=defn.var_type,
required_inputs_fw_grad=required_inputs_tangent,
required_inputs_primal=required_inputs_primal))
return updated_derivatives
def is_forward_derivative_definition(all_arg_names: List[str], names: Tuple[str, ...]) -> bool:
if len(names) > 1:
# Forward definition are always for a single output at a time
return False
name = names[0]
if name not in all_arg_names:
return True
else:
return False
def create_differentiability_info(
defn: Dict[Any, Any],
functions_by_signature: Dict[FunctionSchema, List[NativeFunction]],
functions_by_schema: Dict[str, NativeFunction],
) -> DifferentiabilityInfo:
"""Processes a single entry `defn` in derivatives.yaml"""
def canonical_function(functions: Sequence[NativeFunction], name: str) -> NativeFunction:
for f in functions:
if cpp.name(f.func) == name:
return f
# some functions only have in-place variants
assert name + '_' == cpp.name(functions[0].func)
return functions[0]
def split_names(raw_names: str) -> Tuple[str, ...]:
"""Given "foo, bar", return ["foo", "bar"]."""
return tuple(x.strip() for x in raw_names.split(','))
def check_grad_usage(defn_name: str, derivatives: Sequence[Derivative]) -> None:
"""
Check for some subtle mistakes one might make when writing derivatives.
These mistakes will compile, but will be latent until a function is
used with double backwards.
"""
used_grad = 0
used_grads = 0
fully_implemented = True
used_grads_indices: List[int] = []
for d in derivatives:
formula = d.formula
used_grad += len(re.findall(IDENT_REGEX.format('grad'), formula))
used_grads += len(re.findall(IDENT_REGEX.format('grads'), formula))
fully_implemented = \
fully_implemented and \
not re.search(IDENT_REGEX.format('not_implemented'), formula)
used_grads_indices.extend(used_gradient_indices(formula))
assert used_grads >= len(used_grads_indices)
only_used_grads_indices = used_grads == len(used_grads_indices)
if used_grad and used_grads:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml illegally "
"mixes use of 'grad' and 'grads'. Consider replacing "
"occurrences of 'grad' with 'grads[0]'")
if only_used_grads_indices and set(used_grads_indices) == {0}:
raise RuntimeError(f"Derivative definition of {defn_name} in derivatives.yaml solely "
"refers to 'grads[0]'. If the first output is indeed the "
"only differentiable output, replace 'grads[0]' with 'grad'; "
"otherwise, there is a likely error in your derivatives "
"declaration.")
@with_native_function
def set_up_derivatives(f: NativeFunction) -> Tuple[
Sequence[Derivative],
Sequence[ForwardDerivative],
Sequence[Binding],
Sequence[str],
]:
# Set up the derivative information
derivatives: List[Derivative] = []
forward_derivatives: List[ForwardDerivative] = []
non_differentiable_arg_names: List[str] = []
args_with_derivatives_set: Set[str] = set()
all_arg_names = [a.name for a in cpp_arguments(f)]
for raw_names in sorted(defn.keys()):
formula = defn[raw_names]
names = split_names(raw_names)
if is_forward_derivative_definition(all_arg_names, names):
forward_derivatives.append(create_forward_derivative(f, formula, names))
else:
if formula.lower().strip() == 'non_differentiable':
non_differentiable_arg_names += names
else:
derivative = create_derivative(f, formula, names)
derivatives.append(derivative)
args_with_derivatives_set |= set(names)
overlap = args_with_derivatives_set.intersection(non_differentiable_arg_names)
if overlap:
raise RuntimeError(f'derivatives definition for {defn} have overlapped non_differentiable '
f'and differentiable variables: {overlap}')
# Next, let us determine the list of inputs in order.
# TODO: do we need eagerly calculate and save it here? Can it be derived
# from NativeFunction and `derivatives` on callsites instead?
args_with_derivatives = [a for a in cpp_arguments(f) if a.name in args_with_derivatives_set]
# Postprocess forward derivatives definitions now that we know the differentiable arguments
forward_derivatives = postprocess_forward_derivatives(f, defn_name, all_arg_names, derivatives,
forward_derivatives, args_with_derivatives)
# Test to see if the use of 'grads' makes sense.
check_grad_usage(defn_name, derivatives)
return derivatives, forward_derivatives, args_with_derivatives, non_differentiable_arg_names
# NB: Removes 'name' from defn dictionary
specification = defn.pop('name')
defn_name, _ = split_name_params(specification)
# NB: Removes 'output_differentiability' from defn dictionary
# `None` means all differentiable.
output_differentiability = defn.pop('output_differentiability', None)
schema_function = functions_by_schema.get(specification)
if not schema_function:
avail = '\n'.join(k for k, v in functions_by_schema.items() if cpp.name(v.func) == defn_name)
raise RuntimeError(f'could not find ATen function for schema: {specification} '
f'. Available signatures:\n{avail}')
# now map this to the legacy schema; this isn't technically necessary, but we'd need some logic here
# to map in-place schemas to the out-of-place variants.
# TODO: maybe the logic to handle the legacy schema is no longer necessary?
signature = schema_function.func.signature()
functions = functions_by_signature[signature]
if len(functions) == 0:
avail = '\n'.join(str(k) for k, v in functions_by_signature.items() if cpp.name(k) == defn_name)
raise RuntimeError(f'could not find ATen function for legacy signature: {signature} '
f'corresponding to schema {specification}. Please report a bug to PyTorch. '
f'Available signatures:\n{avail}')
canonical = canonical_function(functions, defn_name)
if 'grad_input_mask' in (a.name for a in cpp_arguments(canonical)):
raise RuntimeError(f"Schema for {defn_name} has an argument named grad_input_mask, "
"but this name would be shadowed by our codegen. "
"Please use a different name in native_functions.yaml.")
if 'result' in (a.name for a in cpp_arguments(canonical)):
raise RuntimeError(f"Schema for {defn_name} has an argument named result, "
"but this is only allowed for outputs."
"Please use a different name in native_functions.yaml.")
derivatives, forward_derivatives, args_with_derivatives, non_differentiable_arg_names = set_up_derivatives(canonical)
return DifferentiabilityInfo(
name=defn_name,
func=canonical,
op=None,
derivatives=derivatives,
forward_derivatives=forward_derivatives,
all_saved_inputs=dedup_vars([v for d in derivatives for v in d.saved_inputs]),
all_saved_outputs=dedup_vars([v for d in derivatives for v in d.saved_outputs]),
args_with_derivatives=args_with_derivatives,
non_differentiable_arg_names=non_differentiable_arg_names,
output_differentiability=output_differentiability,
)
GRAD_INDEX_REGEX = r'(?:^|\W)grads\[(\d+)\]'
def used_gradient_indices(formula: str) -> List[int]:
"""Determine a list of gradient indices (the i in grads[i]) that
are used by the formula.
>>> used_gradient_indices("foo(grads[0], grads[1])")
[0, 1]
"""
return [int(i) for i in re.findall(GRAD_INDEX_REGEX, formula)]
def saved_variables(
formula: str,
arg_names: Tuple[str, ...],
arg_types: Tuple[str, ...],
var_names: Tuple[str, ...],
) -> Tuple[str, Tuple[SavedAttribute, ...]]:
def stride_expr(name: str) -> str:
assert var_names == (name,), (
'Replacement for ".strides()" is currently only supported for single derivatives of the same tensor '
'that ".strides()" is being called on.')
return f'strides_or_error({name}, "{name}")'
REPLACEMENTS: List[Tuple[str, Dict[str, Any]]] = [
# replace self.sizes() with self_sizes
(r'{}.sizes\(\)', {
'suffix': '_sizes',
'type': 'at::IntArrayRef',
}),
# replace self.options() with self_options
(r'{}.options\(\)', {
'suffix': '_options',
'type': 'at::TensorOptions',
}),
# replace zeros_like(self) with self_info
(r'zeros_like\({}\)', {
'suffix': '_info',
'type': 'torch::autograd::generated::TypeAndSize',
'expr': lambda name: name, # at save-time
'res': lambda name: name + '_info.zeros()', # at eval-time
}),
# replace self.size(2) with self_size_2
(r'{}.size\((\w+)\)', {
'suffix': lambda m: '_argsize_{}'.format(*m.groups()),
'type': 'int64_t',
}),
# replace self.numel() with self_numel
(r'{}.numel\(\)', {
'suffix': '_numel',
'type': 'int64_t',
}),
# replace to_args_sizes(self) with self_args_sizes
(r'to_args_sizes\({}\)', {
'suffix': '_args_sizes',
'type': 'std::vector<std::vector<int64_t>>',
}),
# replace to_args_scalartypes(self) with self_args_scalartypes
(r'to_args_scalartypes\({}\)', {
'suffix': '_args_scalartypes',
'type': 'std::vector<at::ScalarType>',
}),
# replace TensorGeometry(self) with self_geometry
(r'TensorGeometry\({}\)', {
'suffix': '_geometry',
'type': 'at::TensorGeometry',
}),
(r'{}.scalar_type\(\)', {
'suffix': '_scalar_type',
'type': 'at::ScalarType',
}),
# replace self.dim() with self_dim
(r'{}.dim\(\)', {
'suffix': '_dim',
'type': 'int64_t',
}),
# replace self.strides() with self_strides
(r'{}.strides\(\)', {
'suffix': '_strides',
'type': 'at::IntArrayRef',
'expr': stride_expr,
}),
]
# find which arguments need to be saved
saved: List[SavedAttribute] = []
for name, type in zip(arg_names, arg_types):
# First search the formula for expressions which can be evaluated
# when the autograd Function is created to avoid saving variables
for regex, info in REPLACEMENTS:
def repl(m: Match[str]) -> str:
suffix: str = info['suffix'](m) if callable(info['suffix']) else info['suffix']
expr: str = info['expr'](name) if 'expr' in info else m.group(0)
saved.append(SavedAttribute(
name=name + suffix,
type=info['type'],
expr=expr,
))
if 'res' in info:
replacement: str = info['res'](name)
return replacement
return name + suffix
formula = re.sub(regex.format(name), repl, formula)
# Find any variables which remain in the formula and save them
if re.search(IDENT_REGEX.format(name), formula):
saved.append(SavedAttribute(
name=name,
# TODO: change from string to type data model
type=type.replace('const ', '').replace(' &', ''),
expr=name,
))
return formula, tuple(saved)
def create_op_name(info: DifferentiabilityInfo) -> Optional[str]:
# only assign an op name if we are actually going to calculate a derivative
if not info.args_with_derivatives:
return None
name = info.name
camel_case = ''.join([p.title() for p in name.split('_')])
return (camel_case + 'Backward').replace('ForwardBackward', 'Backward')
def create_op_names(infos: Sequence[DifferentiabilityInfo]) -> Sequence[Optional[str]]:
names = list(map(create_op_name, infos))
dups = set(item for item, count in Counter(names).items() if count > 1)
# de-duplicate operation names
# you end up with something like:
# AddBackward0
# AddBackward1
# one for each overload
counter: Dict[str, int] = Counter()
dedup: List[Optional[str]] = []
for name in names:
if name is None:
# Keep a placeholder
dedup.append(None)
elif name in dups:
dedup.append(f'{name}{counter[name]}')
counter[name] += 1
else:
dedup.append(name)
return dedup
def dedup_vars(vars: Sequence[SavedAttribute]) -> Sequence[SavedAttribute]:
seen: Set[str] = set()
saved: List[SavedAttribute] = []
for var in vars:
if var.name in seen:
continue
seen.add(var.name)
saved.append(var)
return saved