blob: 9a7bcddd81be1ec45258ddf983e7231b243eccdd [file] [log] [blame]
#ifndef TH_TENSOR_APPLY_INC
#define TH_TENSOR_APPLY_INC
/*
* The basic strategy for apply is as follows:
*
* 1. Starting with the outermost index, loop until we reach a dimension where the
* data is no longer contiguous, i.e. the stride at that dimension is not equal to
* the size of the tensor defined by the outer dimensions. Let's call this outer
* (contiguous) tensor A. Note that if the Tensor is contiguous, then A is equal
* to the entire Tensor. Let's call the inner tensor B.
*
* 2. We loop through the indices in B, starting at its outermost dimension. For
* example, if B is a 2x2 matrix, then we do:
*
* B[0][0]
* B[0][1]
* B[1][0]
* B[1][1]
*
* We set the offset into the underlying storage as (storageOffset + stride_B * index_B),
* i.e. basically we compute the offset into the storage as we would normally for a
* Tensor. But because we are guaranteed the subsequent data is contiguous in memory, we
* can simply loop for sizeof(A) iterations and perform the operation, without having to
* follow the order described by the strides of A.
*
* 3. As an optimization, we merge dimensions of A that are contiguous in memory. For
* example, if A is a 3x3x3x3 tensor narrowed from a 3x3x4x3 tensor, then the first two
* dimensions can be merged for the purposes of APPLY, reducing the number of nested
* loops.
*/
#define __TH_TENSOR_APPLYX_PREAMBLE(TYPE, TENSOR, DIM, ALLOW_CONTIGUOUS) \
TYPE *TENSOR##_data = NULL; \
int64_t *TENSOR##_counter = NULL, *TENSOR##_sizes = NULL, *TENSOR##_strides = NULL, *TENSOR##_dimOffset = NULL; \
int64_t TENSOR##_stride = 0, TENSOR##_size = 0, TENSOR##_dim = 0, TENSOR##_i, TENSOR##_n; \
int TENSOR##_contiguous = ALLOW_CONTIGUOUS && DIM < 0; \
TENSOR##_n = (TENSOR->nDimension ? 1 : 0); \
for(TENSOR##_i = 0; TENSOR##_i < TENSOR->nDimension; TENSOR##_i++) \
TENSOR##_n *= TENSOR->size[TENSOR##_i]; \
\
if(TENSOR->nDimension == 0) \
TH_TENSOR_APPLY_hasFinished = 1; \
else \
{ \
TENSOR##_data = TENSOR->storage->data+TENSOR->storageOffset; \
TENSOR##_size = 1; \
TENSOR##_stride = 1; \
for(TENSOR##_i = TENSOR->nDimension-1; TENSOR##_i >= 0; TENSOR##_i--) { \
if(TENSOR->size[TENSOR##_i] != 1) { \
if(TENSOR->stride[TENSOR##_i] == TENSOR##_size && TENSOR##_i != DIM) \
TENSOR##_size *= TENSOR->size[TENSOR##_i]; \
else{ \
TENSOR##_contiguous = 0; \
break; \
} \
} \
} \
if (!TENSOR##_contiguous) { \
/* Find the dimension of contiguous sections */ \
TENSOR##_dim = 1; \
for(TENSOR##_i = TENSOR->nDimension-2; TENSOR##_i >= 0; TENSOR##_i--) \
{ \
if(TENSOR->stride[TENSOR##_i] != TENSOR->stride[TENSOR##_i+1] * TENSOR->size[TENSOR##_i+1] || TENSOR##_i == DIM || TENSOR##_i+1 == DIM) \
TENSOR##_dim++; \
} \
/* Allocate an array of 3*dim elements, where dim is the number of contiguous sections */ \
TENSOR##_counter = (int64_t*)THAlloc(sizeof(int64_t)*(3*TENSOR##_dim)); \
TENSOR##_sizes = TENSOR##_counter + TENSOR##_dim; \
TENSOR##_strides = TENSOR##_counter + 2*TENSOR##_dim; \
TH_TENSOR_dim_index = TENSOR##_dim-1; \
TENSOR##_dimOffset = (DIM == TENSOR->nDimension-1) ? &TENSOR##_i : &TENSOR##_counter[DIM]; \
TENSOR##_sizes[TH_TENSOR_dim_index] = TENSOR->size[TENSOR->nDimension-1]; \
TENSOR##_strides[TH_TENSOR_dim_index] = TENSOR->stride[TENSOR->nDimension-1]; \
/* TENSOR##_counter tracks where we are in the storage. The offset into the */ \
/* storage is given by storage_offset + (i * j), where i is the stride */ \
/* vector and j is tensor_counter vector. This sets the starting position for the loop. */ \
for(TENSOR##_i = TENSOR##_dim-1; TENSOR##_i >= 0; --TENSOR##_i) { \
TENSOR##_counter[TENSOR##_i] = 0; \
} \
for(TENSOR##_i = TENSOR->nDimension-2; TENSOR##_i >= 0; --TENSOR##_i) { \
if (TENSOR->stride[TENSOR##_i] == TENSOR->stride[TENSOR##_i+1] * TENSOR->size[TENSOR##_i+1] && TENSOR##_i != DIM && TENSOR##_i+1 != DIM) { \
TENSOR##_sizes[TH_TENSOR_dim_index] = TENSOR->size[TENSOR##_i] * TENSOR##_sizes[TH_TENSOR_dim_index]; \
if (DIM != TENSOR->nDimension-1 && TENSOR##_i < DIM) \
TENSOR##_dimOffset--; \
} else { \
--TH_TENSOR_dim_index; \
TENSOR##_sizes[TH_TENSOR_dim_index] = TENSOR->size[TENSOR##_i]; \
TENSOR##_strides[TH_TENSOR_dim_index] = TENSOR->stride[TENSOR##_i]; \
} \
} \
/* Size of the inner most section */ \
TENSOR##_size = TENSOR##_sizes[TENSOR##_dim-1]; \
/* Stride of the inner most section */ \
TENSOR##_stride = TENSOR##_strides[TENSOR##_dim-1]; \
} \
else{\
TENSOR##_dim = 1;\
TENSOR##_counter = (int64_t*)THAlloc(sizeof(int64_t)*3);\
TENSOR##_sizes = TENSOR##_counter + 1;\
TENSOR##_strides = TENSOR##_counter + 2;\
TENSOR##_sizes[0] = TENSOR##_n;\
TENSOR##_strides[0] = 1;\
TENSOR##_size = TENSOR##_sizes[0];\
TENSOR##_stride = TENSOR##_strides[0];\
}\
} \
TENSOR##_i = 0;
#define __TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR, ALWAYS_UPDATE) \
if(TENSOR##_i == TENSOR##_size || ALWAYS_UPDATE) \
{ \
if(TENSOR##_contiguous) \
break; \
\
if(TENSOR##_dim == 1) \
break; \
\
/* Reset pointer to beginning of loop */ \
TENSOR##_data -= TENSOR##_size*TENSOR##_stride; \
for(TENSOR##_i = TENSOR##_dim-2; TENSOR##_i >= 0; TENSOR##_i--) \
{ \
TENSOR##_counter[TENSOR##_i]++; \
/* Jump ahread by the stride of this dimension */ \
TENSOR##_data += TENSOR##_strides[TENSOR##_i]; \
\
if(TENSOR##_counter[TENSOR##_i] == TENSOR##_sizes[TENSOR##_i]) \
{ \
if(TENSOR##_i == 0) \
{ \
TH_TENSOR_APPLY_hasFinished = 1; \
break; \
} \
else \
{ \
/* Reset the pointer to the beginning of the chunk defined by this dimension */ \
TENSOR##_data -= TENSOR##_counter[TENSOR##_i]*TENSOR##_strides[TENSOR##_i]; \
TENSOR##_counter[TENSOR##_i] = 0; \
} \
} \
else \
break; \
} \
TENSOR##_i = 0; \
} \
#define TH_TENSOR_APPLY3_D(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, DIM, CODE) \
{ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, DIM, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, DIM, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE3, TENSOR3, DIM, 1) \
\
int elements_equal = 1; \
if(TENSOR1##_n != TENSOR2##_n) { \
elements_equal = 0; \
} \
else if(TENSOR1##_n != TENSOR3##_n) { \
elements_equal = 0; \
} \
if (elements_equal == 0) { \
THDescBuff T1buff = _THSizeDesc(TENSOR1->size, TENSOR1->nDimension); \
THDescBuff T2buff = _THSizeDesc(TENSOR2->size, TENSOR2->nDimension); \
THDescBuff T3buff = _THSizeDesc(TENSOR3->size, TENSOR3->nDimension); \
THError("inconsistent tensor size, expected %s %s, %s %s and %s %s to have the same " \
"number of elements, but got %d, %d and %d elements respectively", \
#TENSOR1, T1buff.str, #TENSOR2, T2buff.str, #TENSOR3, T3buff.str, \
TENSOR1##_n, TENSOR2##_n, TENSOR3##_n); \
} \
\
while(!TH_TENSOR_APPLY_hasFinished) \
{ \
/* Loop through the inner most region of the Tensor */ \
for(; TENSOR1##_i < TENSOR1##_size && TENSOR2##_i < TENSOR2##_size && TENSOR3##_i < TENSOR3##_size; TENSOR1##_i++, TENSOR2##_i++, TENSOR3##_i++, TENSOR1##_data += TENSOR1##_stride, TENSOR2##_data += TENSOR2##_stride, TENSOR3##_data += TENSOR3##_stride) /* 0 et pas TENSOR##_dim! */ \
{ \
CODE \
} \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR1, 0) \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR2, 0) \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR3, 0) \
} \
if(TENSOR1##_counter != NULL) \
THFree(TENSOR1##_counter); \
if(TENSOR2##_counter != NULL) \
THFree(TENSOR2##_counter); \
if(TENSOR3##_counter != NULL) \
THFree(TENSOR3##_counter); \
}
#define TH_TENSOR_APPLY3(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, CODE) \
TH_TENSOR_APPLY3_D(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, -1, CODE)
#define TH_TENSOR_APPLY2_D(TYPE1, TENSOR1, TYPE2, TENSOR2, DIM, CODE) \
{ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, DIM, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, DIM, 1) \
\
if(TENSOR1##_n != TENSOR2##_n) { \
THDescBuff T1buff = _THSizeDesc(TENSOR1->size, TENSOR1->nDimension); \
THDescBuff T2buff = _THSizeDesc(TENSOR2->size, TENSOR2->nDimension); \
THError("inconsistent tensor size, expected %s %s and %s %s to have the same " \
"number of elements, but got %d and %d elements respectively", \
#TENSOR1, T1buff.str, #TENSOR2, T2buff.str, TENSOR1##_n, TENSOR2##_n); \
} \
while(!TH_TENSOR_APPLY_hasFinished) \
{ \
/* Loop through the inner most region of the Tensor */ \
for(; TENSOR1##_i < TENSOR1##_size && TENSOR2##_i < TENSOR2##_size; TENSOR1##_i++, TENSOR2##_i++, TENSOR1##_data += TENSOR1##_stride, TENSOR2##_data += TENSOR2##_stride) /* 0 et pas TENSOR##_dim! */ \
{ \
CODE \
} \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR1, 0) \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR2, 0) \
} \
if(TENSOR1##_counter != NULL) \
THFree(TENSOR1##_counter); \
if(TENSOR2##_counter != NULL) \
THFree(TENSOR2##_counter); \
}
#define TH_TENSOR_APPLY2(TYPE1, TENSOR1, TYPE2, TENSOR2, CODE) \
TH_TENSOR_APPLY2_D(TYPE1, TENSOR1, TYPE2, TENSOR2, -1, CODE)
#define TH_TENSOR_APPLY_D(TYPE, TENSOR, DIM, CODE) \
{ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE, TENSOR, DIM, 0) \
\
while(!TH_TENSOR_APPLY_hasFinished) \
{ \
/* Loop through the inner most region of the Tensor */ \
for(; TENSOR##_i < TENSOR##_size; TENSOR##_i++, TENSOR##_data += TENSOR##_stride) /* 0 et pas TENSOR##_dim! */ \
{ \
CODE \
} \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR, 1) \
} \
THFree(TENSOR##_counter); \
}
#define TH_TENSOR_APPLY(TYPE, TENSOR, CODE) \
TH_TENSOR_APPLY_D(TYPE, TENSOR, -1, CODE)
#ifdef _OPENMP
#ifndef _WIN32
#define PRAGMA(P) _Pragma(#P)
#else
#define PRAGMA(P) __pragma(P)
#endif
#define TH_OMP_OVERHEAD_THRESHOLD_OMP 5000
#include <omp.h>
/*
* Calcuate the memory offset of an element in a tensor. The strategy is below:
*
* 1. convert the line index(the index of the element) to the indexs(coordinates) in the tensor.
* It can hinted by a classical problem: Getting each individual digit from a whole integer(Decimal base).
* A N-digit decimal base number could be view as a N-dimension tensor and the sizes of the tensor are 10.
* So the value the whole interger is the line index. And the digits could be viewed as the indexes in
* different dimentions.
*
* 2. convert the indexs(coordinates) in the tensor to the memory offset.
*
* You can get the detailes in the for-statement iterations.
*
* The macro is only used in the first element in each thread. For the rest, the memory offset could update
* according to info of the tensor in order to get better performance. So we should also record the each
* indexs in coresponding dimension of first element.
* The recorded info is stored in the TENSOR##_counter_tmp.
*
*/
#define __TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR) \
int64_t *TENSOR##_counter_tmp = (int64_t*)THAlloc(sizeof(int64_t) * TENSOR##_dim); \
ptrdiff_t TENSOR##_memory_offset = 0; \
ptrdiff_t TENSOR##_quot = line_index_start; \
for (TENSOR##_i = TENSOR##_dim-1; TENSOR##_i>=0; --TENSOR##_i) { \
TENSOR##_counter_tmp[TENSOR##_i] = TENSOR##_quot%TENSOR##_sizes[TENSOR##_i]; \
TENSOR##_quot /= TENSOR##_sizes[TENSOR##_i]; \
TENSOR##_memory_offset += TENSOR##_counter_tmp[TENSOR##_i] * TENSOR##_strides[TENSOR##_i]; \
}
/*
* The macro update the indexes in each dimension of the elements except for the first one allocated in
* each thread.
* For a tensor, if the index of some dimension reaches the size of the corresponding dimension. It will carry and clear.
* If the index of next high dimension does do, the index of next high dimension should carry and clear, too.
*
* The momery offset calculatation is a little confusing. If current index carries, the current index is set to 0. So
* the offset should decrease by size*stride of the last dimension. Then the index next high dimension increases by 1. So
* the offset should increase by stride of next high dimension.
*/
#define __TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR) \
if(TENSOR##_i == TENSOR##_size && TENSOR##_dim > 1){ /*reaches the edge*/ \
int TENSOR##_carry_coord = 1; /*set carry flag to true*/ \
TENSOR##_start = 0; /*the current index be cleared to 0*/\
TENSOR##_data -= TENSOR##_size * TENSOR##_stride; /*the momery offset reset to the first one in current dimension */\
for(TENSOR##_i = TENSOR##_dim - 2; (TENSOR##_i >= 0) && (TENSOR##_carry_coord); TENSOR##_i--){ \
TENSOR##_counter_tmp[TENSOR##_i]++; /*the index of next high dimension update*/ \
TENSOR##_data += TENSOR##_strides[TENSOR##_i]; /*memory offset increase by stride of next high dimension*/\
if(TENSOR##_counter_tmp[TENSOR##_i] == TENSOR##_sizes[TENSOR##_i]){ /*The next high dimension also carry, continue
to clear and carry*/\
TENSOR##_data -= TENSOR##_sizes[TENSOR##_i] * TENSOR##_strides[TENSOR##_i]; \
TENSOR##_counter_tmp[TENSOR##_i] = 0; \
} else { \
TENSOR##_carry_coord = 0; \
} \
} \
} else { \
TENSOR##_start = TENSOR##_i; \
}
#define TH_TENSOR_APPLY_REDUCTION_OMP(TYPE, TENSOR, OPERATION, CODE) \
{\
int TENSOR##Contg = THTensor_(isContiguous)(TENSOR); \
ptrdiff_t TENSOR##Size = THTensor_(nElement)(TENSOR); \
if(TENSOR##Contg){ \
ptrdiff_t iter = 0; \
TYPE *rp = TENSOR->storage->data+TENSOR->storageOffset; \
PRAGMA( omp parallel for if (TENSOR##Size > TH_OMP_OVERHEAD_THRESHOLD_OMP) firstprivate(rp) reduction(OPERATION) ) \
for (iter = 0; iter < TENSOR##Size; iter++) { \
TYPE *TENSOR##_data = rp+iter; \
CODE \
} \
} else { \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE, TENSOR, -1, 1);\
if (0 == TH_TENSOR_APPLY_hasFinished) { \
PRAGMA(omp parallel if (TENSOR##Size > TH_OMP_OVERHEAD_THRESHOLD_OMP) firstprivate(TENSOR##_data, TENSOR##_sizes, TENSOR##_strides, TENSOR##_dim, TENSOR##_stride, TENSOR##_size, TENSOR##_i) reduction(OPERATION))\
{\
size_t num_threads = omp_get_num_threads();\
size_t tid = omp_get_thread_num();\
size_t line_seg_length_avg = TENSOR##Size/num_threads; \
ptrdiff_t line_index_start = tid * line_seg_length_avg; \
ptrdiff_t line_seg_length = (tid == num_threads - 1)? (TENSOR##Size - line_index_start):line_seg_length_avg; \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR);\
TENSOR##_data += TENSOR##_memory_offset;\
ptrdiff_t count = 0;\
ptrdiff_t TENSOR##_start = TENSOR##_counter_tmp[TENSOR##_dim - 1];\
while(count < line_seg_length){\
for(TENSOR##_i=TENSOR##_start; (count < line_seg_length)&&(TENSOR##_i < TENSOR##_size); ++TENSOR##_i, ++count){\
CODE\
TENSOR##_data += TENSOR##_stride;\
}\
if(count < line_seg_length){\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR);\
}\
}\
if(TENSOR##_counter_tmp != NULL) \
THFree(TENSOR##_counter_tmp); \
}\
}\
if(TENSOR##_counter != NULL)\
THFree(TENSOR##_counter);\
}\
}
#define TH_TENSOR_APPLY2_OMP(SIZE, CONTIG1, CONTIG2, TYPE1, TENSOR1, TYPE2, TENSOR2, CODE) \
{ \
/* for advanced searching index*/ \
if( CONTIG1 && CONTIG2 ){ \
TYPE1 *rp = TENSOR1->storage->data+TENSOR1->storageOffset; \
TYPE2 *tp = TENSOR2->storage->data+TENSOR2->storageOffset; \
ptrdiff_t iter = 0; \
if(tp != rp) { \
PRAGMA(ivdep) \
PRAGMA( omp parallel for if (SIZE > TH_OMP_OVERHEAD_THRESHOLD_OMP) firstprivate(rp, tp)) \
for (iter = 0; iter < SIZE; iter++) { \
TYPE2 *TENSOR2##_data = tp+iter; \
TYPE1 *TENSOR1##_data = rp+iter; \
CODE \
}\
} else {\
PRAGMA(simd) \
PRAGMA( omp parallel for if (SIZE > TH_OMP_OVERHEAD_THRESHOLD_OMP) firstprivate(rp, tp) ) \
for (iter = 0; iter < SIZE; iter++) {\
TYPE2* TENSOR2##_data = tp+iter;\
TYPE1* TENSOR1##_data = rp+iter;\
CODE \
}\
}\
} else { \
/* The following strategy is not easy to understand.
* 1. Collapse the dimension of the tensors in order to decrease the number of nested loops.
* 2. Calculate the numbers of elements allocated in each thread and the line index of the first one.
* 3. Calculate the memory offset of the first element and the indexes in each dimension of the
* first one.
* 4. iterate all elements in each thread. update the indexes in each dimension of the rest.
*/ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
/*step 1*/ \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, -1, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, -1, 1) \
if (0 == TH_TENSOR_APPLY_hasFinished) { \
PRAGMA(omp parallel if (SIZE > TH_OMP_OVERHEAD_THRESHOLD_OMP) firstprivate(TENSOR2##_data, TENSOR2##_sizes, TENSOR2##_strides, TENSOR2##_dim, TENSOR2##_stride, TENSOR2##_size, TENSOR2##_i, TENSOR1##_data, TENSOR1##_sizes, TENSOR1##_strides, TENSOR1##_dim, TENSOR1##_stride, TENSOR1##_size, TENSOR1##_i)) \
{ \
/*step 2*/ \
size_t num_threads = omp_get_num_threads(); \
size_t tid = omp_get_thread_num(); \
size_t line_seg_length_avg = SIZE/num_threads; \
ptrdiff_t line_index_start = tid * line_seg_length_avg; \
ptrdiff_t line_seg_length = (tid == num_threads - 1)? (SIZE - line_index_start):line_seg_length_avg; \
/* step 3*/ \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR2); \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR1); \
TENSOR2##_data += TENSOR2##_memory_offset; \
TENSOR1##_data += TENSOR1##_memory_offset; \
ptrdiff_t count = 0; \
ptrdiff_t TENSOR2##_start = TENSOR2##_counter_tmp[TENSOR2##_dim-1]; \
ptrdiff_t TENSOR1##_start = TENSOR1##_counter_tmp[TENSOR1##_dim-1]; \
/* step 4*/ \
while (count < line_seg_length) { \
for(TENSOR2##_i=TENSOR2##_start, TENSOR1##_i = TENSOR1##_start; ((count < line_seg_length) && (TENSOR2##_i < TENSOR2##_size) && (TENSOR1##_i < TENSOR1##_size)); ++TENSOR2##_i, ++TENSOR1##_i, ++count){ \
CODE \
TENSOR2##_data += TENSOR2##_stride; \
TENSOR1##_data += TENSOR1##_stride; \
} \
if (count < line_seg_length){ \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR2); \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR1); \
} \
} \
if(TENSOR1##_counter_tmp != NULL) \
THFree(TENSOR1##_counter_tmp); \
if(TENSOR2##_counter_tmp != NULL) \
THFree(TENSOR2##_counter_tmp); \
} \
} \
if(TENSOR2##_counter != NULL) \
THFree(TENSOR2##_counter); \
if(TENSOR1##_counter != NULL) \
THFree(TENSOR1##_counter);\
}\
}
#define TH_TENSOR_APPLY3_OMP(SIZE, CONTIG1, CONTIG2, CONTIG3, TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, CODE) \
{ \
/* for adveanced searching index*/ \
if(CONTIG1 && CONTIG2 && CONTIG3){ \
TYPE1 *rp = TENSOR1->storage->data+TENSOR1->storageOffset; \
TYPE2 *tp = TENSOR2->storage->data+TENSOR2->storageOffset; \
TYPE3 *srcp = TENSOR3->storage->data+TENSOR3->storageOffset; \
ptrdiff_t iter = 0;\
if (rp != tp) { \
PRAGMA(ivdep) \
PRAGMA( omp parallel for if (SIZE > TH_OMP_OVERHEAD_THRESHOLD_OMP) ) \
for (iter = 0; iter < SIZE; iter++) {\
TYPE1 *TENSOR1##_data = rp+iter;\
TYPE2 *TENSOR2##_data = tp+iter; \
TYPE3 *TENSOR3##_data = srcp+iter;\
CODE \
} \
} else {\
PRAGMA(simd) \
PRAGMA( omp parallel for if (SIZE > TH_OMP_OVERHEAD_THRESHOLD_OMP) ) \
for (iter = 0; iter < SIZE; iter++) {\
TYPE1 *TENSOR1##_data = rp+iter;\
TYPE2 *TENSOR2##_data = tp+iter; \
TYPE3 *TENSOR3##_data = srcp+iter;\
CODE \
} \
}\
} else{ \
int TH_TENSOR_APPLY_hasFinished = 0;\
int64_t TH_TENSOR_dim_index = 0;\
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, -1, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, -1, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE3, TENSOR3, -1, 1) \
if (0 == TH_TENSOR_APPLY_hasFinished) { \
PRAGMA(omp parallel if (SIZE > TH_OMP_OVERHEAD_THRESHOLD_OMP) firstprivate(TENSOR1##_data, TENSOR1##_sizes, TENSOR1##_strides, TENSOR1##_dim, TENSOR1##_stride, TENSOR1##_size, TENSOR1##_i, TENSOR2##_data, TENSOR2##_sizes, TENSOR2##_strides, TENSOR2##_dim, TENSOR2##_stride, TENSOR2##_size, TENSOR2##_i, TENSOR3##_data, TENSOR3##_sizes, TENSOR3##_strides, TENSOR3##_dim, TENSOR3##_stride, TENSOR3##_size, TENSOR3##_i))\
{\
size_t num_threads = omp_get_num_threads();\
size_t tid = omp_get_thread_num();\
size_t line_seg_length_avg = SIZE/num_threads; \
ptrdiff_t line_index_start = tid * line_seg_length_avg; \
ptrdiff_t line_seg_length = (tid == num_threads - 1)? (SIZE - line_index_start):line_seg_length_avg; \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR1);\
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR2);\
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR3);\
TENSOR1##_data += TENSOR1##_memory_offset;\
TENSOR2##_data += TENSOR2##_memory_offset;\
TENSOR3##_data += TENSOR3##_memory_offset;\
ptrdiff_t count = 0;\
ptrdiff_t TENSOR1##_start = TENSOR1##_counter_tmp[TENSOR1##_dim - 1];\
ptrdiff_t TENSOR2##_start = TENSOR2##_counter_tmp[TENSOR2##_dim - 1];\
ptrdiff_t TENSOR3##_start = TENSOR3##_counter_tmp[TENSOR3##_dim - 1];\
while(count < line_seg_length){\
for(TENSOR1##_i=TENSOR1##_start, TENSOR2##_i=TENSOR2##_start,TENSOR3##_i=TENSOR3##_start; (count<line_seg_length)&&(TENSOR1##_i<TENSOR1##_size)&&(TENSOR2##_i<TENSOR2##_size)&&(TENSOR3##_i<TENSOR3##_size); ++TENSOR1##_i,++TENSOR2##_i,++TENSOR3##_i,++count){\
CODE\
TENSOR1##_data += TENSOR1##_stride;\
TENSOR2##_data += TENSOR2##_stride;\
TENSOR3##_data += TENSOR3##_stride;\
}\
if(count < line_seg_length){\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR1);\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR2);\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR3);\
}\
}\
if(TENSOR1##_counter_tmp != NULL) \
THFree(TENSOR1##_counter_tmp); \
if(TENSOR2##_counter_tmp != NULL) \
THFree(TENSOR2##_counter_tmp); \
if(TENSOR3##_counter_tmp != NULL) \
THFree(TENSOR3##_counter_tmp);\
}\
}\
if(TENSOR1##_counter != NULL)\
THFree(TENSOR1##_counter);\
if(TENSOR2##_counter != NULL)\
THFree(TENSOR2##_counter);\
if(TENSOR3##_counter != NULL)\
THFree(TENSOR3##_counter);\
}\
}
#endif
#endif