blob: 077f789a0a142a71977d0a723bb87141ef091f21 [file] [log] [blame]
from __future__ import print_function
import sys
import os
import re
import math
import shutil
import random
import tempfile
import unittest
import traceback
import torch
import torch.nn as nn
import torch.utils.data
import torch.cuda
import warnings
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
from torch.utils.trainer import Trainer
from torch.utils.trainer.plugins import *
from torch.utils.trainer.plugins.plugin import Plugin
from torch.autograd._functions.utils import prepare_onnx_paddings
from torch.autograd._functions.utils import check_onnx_broadcast
from common import IS_WINDOWS, IS_PPC
HAS_CUDA = torch.cuda.is_available()
from common import TestCase, run_tests, download_file
try:
import cffi
HAS_CFFI = True
except ImportError:
HAS_CFFI = False
if HAS_CFFI:
from torch.utils.ffi import create_extension
class SimplePlugin(Plugin):
def __init__(self, interval):
super(SimplePlugin, self).__init__(interval)
self.trainer = None
self.num_iteration = 0
self.num_epoch = 0
self.num_batch = 0
self.num_update = 0
def register(self, trainer):
self.trainer = trainer
def iteration(self, *args):
self.iteration_args = args
self.num_iteration += 1
def epoch(self, *args):
self.epoch_args = args
self.num_epoch += 1
def batch(self, *args):
self.batch_args = args
self.num_batch += 1
def update(self, *args):
self.update_args = args
self.num_update += 1
class ModelMock(object):
def __init__(self):
self.num_calls = 0
self.output = torch.ones(1, 1, requires_grad=True)
def __call__(self, i):
self.num_calls += 1
return self.output * 2
class CriterionMock(object):
def __init__(self):
self.num_calls = 0
def __call__(self, out, target):
self.num_calls += 1
return out
class OptimizerMock(object):
max_evals = 5
min_evals = 1
def __init__(self):
self.num_steps = 0
self.num_evals = 0
def step(self, closure):
for i in range(random.randint(self.min_evals, self.max_evals)):
loss = closure()
self.num_evals += 1
self.num_steps += 1
def zero_grad(self):
pass
class DatasetMock(object):
def __iter__(self):
for i in range(10):
yield torch.randn(2, 10), torch.randperm(10)[:2]
def __len__(self):
return 10
class RandomDatasetMock(object):
def __getitem__(self, index):
return torch.tensor([torch.rand(1).item(), random.uniform(0, 1)])
def __len__(self):
return 1000
class TestCheckpoint(TestCase):
# Test whether checkpoint is being triggered or not. For this, we check
# the number of times forward pass happens
def test_checkpoint_trigger(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.counter = 0
def forward(self, input_var):
self.counter += 1
return input_var
# checkpointed
modules = [Net() for _ in range(10)]
for m in modules:
self.assertEqual(m.counter, 0)
input_var = torch.randn(3, 4, requires_grad=True)
out = checkpoint_sequential(modules, 2, input_var)
for m in modules:
self.assertEqual(m.counter, 1)
out.sum().backward()
for m in modules[:(len(modules) // 2)]:
self.assertEqual(m.counter, 2)
for m in modules[(len(modules) // 2):]:
self.assertEqual(m.counter, 1)
def test_checkpoint_valid(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
input_var = torch.randn(1, 100, requires_grad=True)
# checkpointed
chunks = 2
modules = list(model.children())
out = checkpoint_sequential(modules, chunks, input_var)
with self.assertRaisesRegex(RuntimeError, "Checkpointing is not compatible"):
torch.autograd.grad(
outputs=[out], grad_outputs=[torch.ones(1, 5)], inputs=[input_var], create_graph=True
)
def test_checkpoint(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU()
)
x = torch.randn(1, 100, requires_grad=True)
# not checkpointed
out = model(x)
out_not_checkpointed = out.data.clone()
model.zero_grad()
out.sum().backward()
grad_not_checkpointed = {}
for name, param in model.named_parameters():
grad_not_checkpointed[name] = param.grad.data.clone()
input_grad = x.grad.data.clone()
# checkpointed model by passing list of modules
chunks = 2
modules = list(model.children())
input_var = x.detach()
input_var.requires_grad = True
# pass list of modules to checkpoint
out = checkpoint_sequential(modules, chunks, input_var)
out_checkpointed = out.data.clone()
model.zero_grad()
out.sum().backward()
grad_checkpointed = {}
for name, param in model.named_parameters():
grad_checkpointed[name] = param.grad.data.clone()
checkpoint_input_grad = input_var.grad.data.clone()
# compare the output, input and parameters gradients
self.assertEqual(out_checkpointed, out_not_checkpointed)
self.assertEqual(input_grad, checkpoint_input_grad)
for name in grad_checkpointed:
self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name])
# checkpointed by passing sequential directly
input_var1 = x.detach()
input_var1.requires_grad = True
# pass the sequential itself
out = checkpoint_sequential(model, 2, input_var1)
out_checkpointed = out.data.clone()
model.zero_grad()
out.sum().backward()
grad_checkpointed = {}
for name, param in model.named_parameters():
grad_checkpointed[name] = param.grad.data.clone()
checkpoint_input_grad = input_var1.grad.data.clone()
# compare the output, input and parameters gradients
self.assertEqual(out_checkpointed, out_not_checkpointed)
self.assertEqual(input_grad, checkpoint_input_grad)
for name in grad_checkpointed:
self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name])
class TestDataLoader(TestCase):
def setUp(self):
self.dataset = torch.randn(5, 3, 3, 2)
self.batch_size = 3
def test_random_seed(self):
def run():
dataloader = torch.utils.data.DataLoader(RandomDatasetMock(),
batch_size=2,
num_workers=4,
shuffle=True)
return next(iter(dataloader))
torch.manual_seed(2018)
x1 = run()
torch.manual_seed(2018)
x2 = run()
self.assertEqual(x1, x2)
def test_single_keep(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=0,
drop_last=False)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_single_drop(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=0,
drop_last=True)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
@unittest.skip("FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN")
def test_multi_keep(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=2,
drop_last=False)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_multi_drop(self):
dataloader = torch.utils.data.DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=2,
drop_last=True)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
class TestTrainer(TestCase):
intervals = [
[(1, 'iteration')],
[(1, 'epoch')],
[(1, 'batch')],
[(1, 'update')],
[(5, 'iteration')],
[(5, 'epoch')],
[(5, 'batch')],
[(5, 'update')],
[(1, 'iteration'), (1, 'epoch')],
[(5, 'update'), (1, 'iteration')],
[(2, 'epoch'), (1, 'batch')],
]
def setUp(self):
self.optimizer = OptimizerMock()
self.trainer = Trainer(ModelMock(), CriterionMock(),
self.optimizer, DatasetMock())
self.num_epochs = 3
self.dataset_size = len(self.trainer.dataset)
self.num_iters = self.num_epochs * self.dataset_size
def test_register_plugin(self):
for interval in self.intervals:
simple_plugin = SimplePlugin(interval)
self.trainer.register_plugin(simple_plugin)
self.assertEqual(simple_plugin.trainer, self.trainer)
def test_optimizer_step(self):
self.trainer.run(epochs=1)
self.assertEqual(self.trainer.optimizer.num_steps, 10)
def test_plugin_interval(self):
for interval in self.intervals:
self.setUp()
simple_plugin = SimplePlugin(interval)
self.trainer.register_plugin(simple_plugin)
self.trainer.run(epochs=self.num_epochs)
units = {
('iteration', self.num_iters),
('epoch', self.num_epochs),
('batch', self.num_iters),
('update', self.num_iters)
}
for unit, num_triggers in units:
call_every = None
for i, i_unit in interval:
if i_unit == unit:
call_every = i
break
if call_every:
expected_num_calls = math.floor(num_triggers / call_every)
else:
expected_num_calls = 0
num_calls = getattr(simple_plugin, 'num_' + unit)
self.assertEqual(num_calls, expected_num_calls, 0)
def test_model_called(self):
self.trainer.run(epochs=self.num_epochs)
num_model_calls = self.trainer.model.num_calls
num_crit_calls = self.trainer.criterion.num_calls
self.assertEqual(num_model_calls, num_crit_calls)
for num_calls in [num_model_calls, num_crit_calls]:
lower_bound = OptimizerMock.min_evals * self.num_iters
upper_bound = OptimizerMock.max_evals * self.num_iters
self.assertEqual(num_calls, self.trainer.optimizer.num_evals)
self.assertLessEqual(lower_bound, num_calls)
self.assertLessEqual(num_calls, upper_bound)
def test_model_gradient(self):
self.trainer.run(epochs=self.num_epochs)
output_var = self.trainer.model.output
expected_grad = torch.ones(1, 1) * 2 * self.optimizer.num_evals
self.assertEqual(output_var.grad.data, expected_grad)
test_dir = os.path.abspath(os.path.dirname(str(__file__)))
class TestFFI(TestCase):
def setUp(self):
self.tmpdir = tempfile.mkdtemp()
os.chdir(self.tmpdir)
sys.path.append(self.tmpdir)
def tearDown(self):
shutil.rmtree(self.tmpdir)
@unittest.skipIf(not HAS_CFFI, "ffi tests require cffi package")
@unittest.skipIf(IS_WINDOWS, "ffi doesn't currently work on Windows")
@unittest.skipIf(IS_PPC, "skip for ppc64le due to incompatible exception handling")
def test_cpu(self):
create_extension(
name='test_extensions.cpulib',
headers=[test_dir + '/ffi/src/cpu/lib.h'],
sources=[
test_dir + '/ffi/src/cpu/lib1.c',
test_dir + '/ffi/src/cpu/lib2.c',
],
verbose=False,
).build()
from test_extensions import cpulib
tensor = torch.ones(2, 2).float()
cpulib.good_func(tensor, 2, 1.5)
self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5)
new_tensor = cpulib.new_tensor(4)
self.assertEqual(new_tensor, torch.ones(4, 4) * 4)
f = cpulib.int_to_float(5)
self.assertIs(type(f), float)
self.assertRaises(TypeError,
lambda: cpulib.good_func(tensor.double(), 2, 1.5))
self.assertRaises(torch.FatalError,
lambda: cpulib.bad_func(tensor, 2, 1.5))
@unittest.skipIf(not HAS_CFFI or not HAS_CUDA, "ffi tests require cffi package")
@unittest.skipIf(IS_WINDOWS, "ffi doesn't currently work on Windows")
def test_gpu(self):
create_extension(
name='gpulib',
headers=[test_dir + '/ffi/src/cuda/cudalib.h'],
sources=[
test_dir + '/ffi/src/cuda/cudalib.c',
],
with_cuda=True,
verbose=False,
).build()
import gpulib
tensor = torch.ones(2, 2).float()
gpulib.good_func(tensor, 2, 1.5)
self.assertEqual(tensor, torch.ones(2, 2) * 2 + 1.5)
ctensor = tensor.cuda().fill_(1)
gpulib.cuda_func(ctensor, 2, 1.5)
self.assertEqual(ctensor, torch.ones(2, 2) * 2 + 1.5)
self.assertRaises(TypeError,
lambda: gpulib.cuda_func(tensor, 2, 1.5))
self.assertRaises(TypeError,
lambda: gpulib.cuda_func(ctensor.storage(), 2, 1.5))
class TestLuaReader(TestCase):
@staticmethod
def _module_test(name, test):
def do_test(self):
module = test['module']
input = test['input']
grad_output = test['grad_output']
if hasattr(self, '_transform_' + name):
input = getattr(self, '_transform_' + name)(input)
output = module.forward(input)
module.zeroGradParameters()
grad_input = module.backward(input, grad_output)
self.assertEqual(output, test['output'])
self.assertEqual(grad_input, test['grad_input'])
if module.parameters() is not None:
params, d_params = module.parameters()
self.assertEqual(params, test['params'])
self.assertEqual(d_params, test['d_params'])
else:
self.assertFalse('params' in test and test['params'])
self.assertFalse('params' in test and test['d_params'])
return do_test
@staticmethod
def _criterion_test(name, test):
def do_test(self):
module = test['module']
input = test['input']
if name == 'L1Cost':
target = None
else:
target = test['target']
if hasattr(self, '_transform_' + name):
input, target = getattr(self, '_transform_' + name)(input, target)
output = module.forward(input, target)
grad_input = module.backward(input, target)
self.assertEqual(output, test['loss'])
self.assertEqual(grad_input, test['grad_input'])
return do_test
@classmethod
def init(cls):
try:
path = download_file('https://download.pytorch.org/test_data/legacy_modules.t7')
except unittest.SkipTest:
return
long_size = 8 if sys.platform == 'win32' else None
tests = load_lua(path, long_size=long_size)
for name, test in tests['modules'].items():
if name == "HardShrink":
continue
test_name = 'test_' + name.replace('nn.', '')
setattr(cls, test_name, cls._module_test(name, test))
for name, test in tests['criterions'].items():
if name == "HardShrink":
continue
test_name = 'test_' + name.replace('nn.', '')
setattr(cls, test_name, cls._criterion_test(name, test))
def _transform_Index(self, input):
return [input[0], input[1].sub(1)]
def _transform_LookupTable(self, input):
return input.sub(1)
def _transform_MultiLabelMarginCriterion(self, input, target):
return input, target.sub(1)
def _transform_ClassNLLCriterion(self, input, target):
return input, target.sub(1)
def _transform_SpatialClassNLLCriterion(self, input, target):
return input, target.sub(1)
def _transform_ClassSimplexCriterion(self, input, target):
return input, target.sub(1)
def _transform_CrossEntropyCriterion(self, input, target):
return input, target.sub(1)
def _transform_ParallelCriterion(self, input, target):
return input, [target[0].sub(1), target[1]]
def _transform_MultiCriterion(self, input, target):
return input, target.sub(1)
def _transform_MultiMarginCriterion(self, input, target):
return input, target.sub(1)
@unittest.skipIf('SKIP_TEST_BOTTLENECK' in os.environ.keys(), 'SKIP_TEST_BOTTLENECK is set')
class TestBottleneck(TestCase):
def _run(self, command):
"""Returns (return-code, stdout, stderr)"""
import subprocess
from common import PY3
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=True)
output, err = p.communicate()
rc = p.returncode
if PY3:
output = output.decode("ascii")
err = err.decode("ascii")
return (rc, output, err)
def _run_bottleneck(self, test_file, scriptargs=''):
curdir = os.path.dirname(os.path.abspath(__file__))
filepath = '{}/{}'.format(curdir, test_file)
if scriptargs != '':
scriptargs = ' {}'.format(scriptargs)
rc, out, err = self._run(
'{} -m torch.utils.bottleneck {}{}'.format(sys.executable, filepath, scriptargs))
return rc, out, err
def _check_run_args(self):
# Check that this fails due to missing args
rc, out, err = self._run_bottleneck('bottleneck/test_args.py')
self.assertEqual(rc, 2, None, self._fail_msg('Missing args should error', out + err))
# This should succeed
rc, out, err = self._run_bottleneck('bottleneck/test_args.py', '--foo foo --bar bar')
self.assertEqual(rc, 0, None, self._fail_msg('Should pass args to script', out + err))
def _fail_msg(self, msg, output):
return '{}, output was:\n{}'.format(msg, output)
def _check_environment_summary(self, output):
results = re.search('Environment Summary', output)
self.assertIsNotNone(results, self._fail_msg('Should have Enviroment Summary', output))
# Up to five lines away from the heading, there should be the version number
results = re.search(r'Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+', output)
self.assertIsNotNone(results, self._fail_msg('Should have PyTorch version', output))
def _check_cprof_summary(self, output):
results = re.search('cProfile output', output)
self.assertIsNotNone(results, self._fail_msg('Should have cProfile output', output))
# This assumes that after the cProfile output section we have
# the autograd profiler output
results = re.search(r'cProfile output.*(\n.*){6,50}\n.*autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between cProfile and autograd prof out not in [6, 50] lines', output))
def _check_autograd_summary(self, output):
results = re.search('autograd profiler output', output)
self.assertIsNotNone(results, self._fail_msg('Should have autograd profiler output', output))
# This assumes that after the autograd profiler output is the end of the
# output.
results = re.search(r'autograd profiler output.*(\n.*){6,100}', output)
self.assertIsNotNone(results, self._fail_msg(
'Distance between autograd prof output and end of output not in [6, 100] lines', output))
def _check_cuda(self, output):
if HAS_CUDA:
results = re.search('CUDA mode', output)
self.assertIsNotNone(results, self._fail_msg('Should tell users CUDA', output))
else:
results = re.search('CUDA mode', output)
self.assertIsNone(results, self._fail_msg('Should not tell users about CUDA', output))
@unittest.skipIf(HAS_CUDA, 'CPU-only test')
def test_bottleneck_cpu_only(self):
rc, out, err = self._run_bottleneck('bottleneck/test.py')
self.assertEqual(rc, 0, 'Run failed with\n{}'.format(err))
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
@unittest.skipIf(not HAS_CUDA, 'No CUDA')
def test_bottleneck_cuda(self):
rc, out, err = self._run_bottleneck('bottleneck/test_cuda.py')
self.assertEqual(rc, 0, 'Run failed with\n{}'.format(err))
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
from torch.utils.collect_env import get_pretty_env_info
class TestCollectEnv(TestCase):
def test_smoke(self):
info_output = get_pretty_env_info()
self.assertTrue(info_output.count('\n') >= 17)
class TestONNXUtils(TestCase):
def test_prepare_onnx_paddings(self):
sizes = [2, 3, 4]
pad = [1, 2, 3, 4]
paddings = prepare_onnx_paddings(len(sizes), pad)
self.assertEqual(paddings, [0, 3, 1, 0, 4, 2])
def test_check_onnx_broadcast(self):
def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail):
broadcast = True
fail = False
try:
broadcast = check_onnx_broadcast(dims1, dims2)
except ValueError:
fail = True
self.assertEqual(broadcast, expect_broadcast)
self.assertEqual(fail, expect_fail)
# Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1
dims1 = [3, 4]
dims2 = [2, 3, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1
dims1 = [3, 4]
dims2 = [1, 1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1
dims1 = [1, 1]
dims2 = [1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2
dims1 = [2, 3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2
dims1 = [2, 3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 6, check the equal case, no broadcast
dims1 = [3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, False, False)
# Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2
dims1 = [3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1
dims1 = [3, 4]
dims2 = [1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
if __name__ == '__main__':
from torch.utils.serialization import load_lua
TestLuaReader.init()
run_tests()