blob: da6ab38f0ce9cb7fe46d1a550eee02de83606270 [file] [log] [blame]
import sys
import tempfile
import unittest
from copy import deepcopy
from itertools import product
import torch
import torch.cuda
from torch.nn.functional import _Reduction
from common_utils import TestCase, to_gpu, freeze_rng_state, is_iterable, TEST_WITH_ROCM
from common_cuda import TEST_CUDA
from torch.autograd.gradcheck import get_numerical_jacobian, iter_tensors
import torch.backends.cudnn
# tarfile module tries to obtain a file object name in python 3.3
if sys.version_info[:2] == (3, 3):
TemporaryFile = tempfile.NamedTemporaryFile
else:
TemporaryFile = tempfile.TemporaryFile
PRECISION = 1e-5
def get_reduction(m):
result = getattr(m, 'reduction', None)
if result is None:
result = _Reduction.legacy_get_string(getattr(m, 'sizeAverage', None), True, emit_warning=False)
assert result is not None
return result
def get_weight(m):
result = getattr(m, 'weight', None)
if result is not None:
return result
return getattr(m, 'weights', None)
module_tests = [
dict(
module_name='Linear',
constructor_args=(10, 8),
input_size=(4, 10),
reference_fn=lambda i, p: torch.mm(i, p[0].t()) + p[1].view(1, -1).expand(4, 8),
),
dict(
module_name='Linear',
constructor_args=(10, 8, False),
input_size=(4, 10),
desc='no_bias',
reference_fn=lambda i, p: torch.mm(i, p[0].t())
),
dict(
module_name='Threshold',
constructor_args=(2, 1),
input_size=(2, 3, 4, 5),
check_inplace=True,
desc='threshold_value'
),
dict(
module_name='Threshold',
constructor_args=(2, 10),
input_size=(2, 3, 4, 5),
desc='large_value'
),
dict(
module_name='ReLU',
input_size=(2, 3, 4, 5),
check_inplace=True,
),
dict(
module_name='ReLU6',
input_size=(2, 3, 4, 5),
check_inplace=True,
),
dict(
module_name='RReLU',
input_size=(1, 2, 2),
test_cuda=False,
),
dict(
module_name='RReLU',
constructor_args=(0.1, 0.9),
input_size=(4, 4, 5),
desc='with_up_down',
test_cuda=False,
),
dict(
module_name='Hardtanh',
input_size=(3, 2, 5),
reference_fn=lambda i, _: i.clamp(-1, 1),
),
dict(
module_name='Sigmoid',
input_size=(2, 3, 4, 5)
),
dict(
module_name='Tanh',
input_size=(2, 3, 4, 5)
),
dict(
module_name='Softmax',
constructor_args=(1,),
input_size=(10, 20),
reference_fn=lambda i, _: torch.exp(i).div(torch.exp(i).sum(1, True).expand(10, 20)),
),
dict(
module_name='Softmax2d',
input_size=(1, 3, 10, 20),
reference_fn=lambda i, _: torch.exp(i).div(torch.exp(i).sum(1, False)),
),
dict(
module_name='LogSoftmax',
constructor_args=(1,),
input_size=(10, 20),
reference_fn=lambda i, _: torch.exp(i).div_(torch.exp(i).sum(1, True).expand(10, 20)).log_(),
),
dict(
module_name='LogSoftmax',
constructor_args=(1,),
input_size=(1, 3, 10, 20),
reference_fn=lambda i, _: torch.exp(i).div_(torch.exp(i).sum(1, False)).log_(),
desc='multiparam',
),
dict(
module_name='ELU',
constructor_args=(2.,),
input_size=(3, 2, 5),
reference_fn=lambda x, _: torch.where(x >= 0, x, 2 * (x.exp() - 1)),
),
# TODO: reference function
dict(
module_name='Hardshrink',
constructor_args=(2.,),
input_size=(4, 3, 2, 4),
),
dict(
module_name='LeakyReLU',
input_size=(3, 2, 5),
check_inplace=True
),
dict(
module_name='LeakyReLU',
constructor_args=(0.5,),
input_size=(3, 2, 5),
check_inplace=True,
desc='with_negval'
),
dict(
module_name='LogSigmoid',
input_size=(2, 3, 4),
reference_fn=lambda i, _: i.sigmoid().log(),
),
dict(
module_name='Softplus',
input_size=(10, 20),
reference_fn=lambda i, _: torch.log(1 + torch.exp(i)),
),
dict(
module_name='Softplus',
constructor_args=(2,),
input_size=(10, 20),
reference_fn=lambda i, _: 1. / 2. * torch.log(1 + torch.exp(2 * i)),
desc='beta',
),
dict(
module_name='Softplus',
constructor_args=(2, -100),
input_size=(10, 20),
reference_fn=(lambda i, _: ((i * 2) > -100).type_as(i) * i +
((i * 2) <= -100).type_as(i) * 1. / 2. * torch.log(1 + torch.exp(2 * i))),
desc='beta_threshold',
),
dict(
module_name='Softshrink',
input_size=(3, 2, 5),
),
dict(
module_name='Softshrink',
constructor_args=(1,),
input_size=(3, 2, 5),
desc='lambda',
),
dict(
module_name='CrossMapLRN2d',
constructor_args=(5, 5e-3, 1e-3, 2),
input_size=(2, 3, 6, 6),
check_gradgrad=False,
),
dict(
module_name='PReLU',
input_size=(2, 3, 4),
reference_fn=lambda i, p: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0],
desc='1d',
),
dict(
module_name='PReLU',
constructor_args=(3,),
input_size=(2, 3, 4),
desc='1d_multiparam',
reference_fn=lambda i, p: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0],
),
dict(
module_name='PReLU',
input_size=(2, 3, 4, 5),
desc='2d',
reference_fn=lambda i, p: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0],
),
dict(
module_name='PReLU',
constructor_args=(3,),
input_size=(2, 3, 4, 5),
desc='2d_multiparam',
reference_fn=lambda i, p: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0],
),
dict(
module_name='PReLU',
input_size=(2, 3, 4, 5, 6),
reference_fn=lambda i, p: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0],
desc='3d',
),
dict(
module_name='PReLU',
constructor_args=(3,),
input_size=(2, 3, 4, 5, 6),
desc='3d_multiparam',
reference_fn=lambda i, p: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0],
),
dict(
module_name='Softsign',
input_size=(3, 2, 5),
reference_fn=lambda i, _: i.div(1 + torch.abs(i)),
),
dict(
module_name='Softmin',
constructor_args=(1,),
input_size=(10, 20),
),
dict(
module_name='Softmin',
constructor_args=(1,),
input_size=(2, 3, 5, 10),
desc='multidim',
),
dict(
module_name='Tanhshrink',
input_size=(2, 3, 4, 5),
),
]
def kldivloss_reference(input, target, reduction='mean'):
safe_target = target * (target > 0).type_as(target)
safe_target_log = (safe_target + (target <= 0).type_as(target)).log()
result = safe_target * (safe_target_log - input)
if reduction == 'mean':
return result.mean()
elif reduction == 'sum':
return result.sum()
return result
def nlllossNd_reference(input, target, weight=None, ignore_index=-100,
reduction='mean'):
assert input.dim() >= 3
N = input.size(0)
C = input.size(1)
out_size = (N,) + input.size()[2:]
output = torch.zeros(out_size).type_as(input)
if weight is None:
weight = torch.ones(C).type_as(input)
total_weight = 0
for tup in product(*[range(size) for size in out_size]):
t_nx = target[tup]
norm = 0. if ignore_index == t_nx else weight[t_nx].item()
input_index = list(tup)
input_index.insert(1, t_nx)
output[tup] = -input[tuple(input_index)] * norm
total_weight += norm
if reduction == 'mean':
return output.sum() / total_weight
elif reduction == 'sum':
return output.sum()
return output
def nllloss_reference(input, target, weight=None, ignore_index=-100,
reduction='mean'):
def nll_loss_helper(input, target, weight, ignore_index):
if target == ignore_index:
return (0, 0)
norm = 1 if weight is None else weight[target]
result = -input[target] * norm
return (result, norm)
losses_and_weights = [nll_loss_helper(i, t, weight, ignore_index)
for i, t in zip(input, target)]
losses, weights = zip(*losses_and_weights)
losses_tensor = input.new_tensor(losses)
if reduction == 'mean':
return sum(losses_tensor) / sum(weights)
elif reduction == 'sum':
return sum(losses_tensor)
else:
return losses_tensor
def smoothl1loss_reference(input, target, reduction='mean'):
abs_diff = (input - target).abs()
ge_one_mask = (abs_diff >= 1).type_as(abs_diff)
lt_one_mask = (abs_diff < 1).type_as(abs_diff)
output = ge_one_mask * (abs_diff - 0.5) + lt_one_mask * 0.5 * (abs_diff ** 2)
if reduction == 'mean':
return output.mean()
elif reduction == 'sum':
return output.sum()
return output
def _multilabelmarginloss_reference(input, target):
targets = []
for target_index in target:
if target_index < 0:
break
targets.append(target_index)
sum = 0
for target_index in targets:
for i in range(0, len(input)):
if i not in targets:
sum += max(0, 1 - input[target_index] + input[i])
return sum
def multilabelmarginloss_reference(input, target, reduction='mean'):
if input.dim() == 1:
n = 1
dim = input.size(0)
output = input.new(n).zero_()
output[0] = _multilabelmarginloss_reference(input, target)
else:
n = input.size(0)
dim = input.size(1)
output = input.new(n).zero_()
for i in range(0, n):
output[i] = _multilabelmarginloss_reference(input[i], target[i])
if reduction == 'mean':
return output.mean() / dim
elif reduction == 'sum':
return output.sum() / dim
return output / dim
def hingeembeddingloss_reference(input, target, margin=1.0, reduction='mean'):
margin_clamp = (margin - input).clamp(min=0).type_as(input)
output = torch.where(target == 1, input, margin_clamp)
if reduction == 'mean':
return output.mean()
elif reduction == 'sum':
return output.sum()
return output
def softmarginloss_reference(input, target, reduction='mean'):
output = (1 + (-input * target).exp()).log()
if reduction == 'mean':
return output.mean()
elif reduction == 'sum':
return output.sum()
return output
def _multimarginloss_reference(input, target_idx, p, margin, weight):
if weight is None:
weight = input.new(len(input)).fill_(1)
output = 0
for i in range(0, len(input)):
if i != target_idx:
output += max(0, weight[target_idx] * (margin - input[target_idx] + input[i]) ** p)
return output
def multimarginloss_reference(input, target, p=1, margin=1, weight=None, reduction='mean'):
if input.dim() == 1:
n = 1
dim = input.size(0)
output = input.new(1)
output[0] = _multimarginloss_reference(input, target[0], p, margin, weight) / dim
return output
else:
n = input.size(0)
dim = input.size(1)
output = input.new(n)
for x in range(0, n):
output[x] = _multimarginloss_reference(input[x], target[x], p, margin, weight)
if reduction == 'mean':
return output.mean() / dim
elif reduction == 'sum':
return output.sum() / dim
return output / dim
def cosineembeddingloss_reference(input1, input2, target, margin=0, reduction='mean'):
def _cos(a, b):
cos = a.new(a.size(0))
for i in range(0, a.size(0)):
cos[i] = (a[i] * b[i]).sum() / ((((a[i] * a[i]).sum() + 1e-12) * ((b[i] * b[i]).sum() + 1e-12)) ** 0.5)
return cos
output = torch.where(target == 1, 1 - _cos(input1, input2), (_cos(input1, input2) - margin).clamp(min=0))
if reduction == 'mean':
return output.mean()
elif reduction == 'sum':
return output.sum()
return output
def tripletmarginloss_reference(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False,
reduction='mean'):
d_p = torch.pairwise_distance(anchor, positive, p, eps)
d_n = torch.pairwise_distance(anchor, negative, p, eps)
if swap:
d_s = torch.pairwise_distance(positive, negative, p, eps)
d_n = torch.min(d_n, d_s)
output = torch.clamp(margin + d_p - d_n, min=0.0)
if reduction == 'mean':
return output.mean()
elif reduction == 'sum':
return output.sum()
return output
def marginrankingloss_reference(input1, input2, target, margin=0, reduction='mean'):
output = (-target * (input1 - input2) + margin).clamp(min=0)
if reduction == 'mean':
return output.mean()
elif reduction == 'sum':
return output.sum()
return output
# this directly follows Graves et al's paper, in contrast to the production implementation, it does not use log-space
def ctcloss_reference(log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean'):
input_lengths = torch.as_tensor(input_lengths, dtype=torch.long)
target_lengths = torch.as_tensor(target_lengths, dtype=torch.long)
dt = log_probs.dtype
log_probs = log_probs.double() # we need the accuracy as we are not in logspace
targets = targets.long()
cum_target_lengths = target_lengths.cumsum(0)
losses = []
for i in range(log_probs.size(1)):
input_length = input_lengths[i].item()
target_length = target_lengths[i].item()
cum_target_length = cum_target_lengths[i].item()
targets_prime = targets.new_full((2 * target_length + 1,), blank)
if targets.dim() == 2:
targets_prime[1::2] = targets[i, :target_length]
else:
targets_prime[1::2] = targets[cum_target_length - target_length:cum_target_length]
probs = log_probs[:input_length, i].exp()
alpha = log_probs.new_zeros((target_length * 2 + 1,))
alpha[0] = probs[0, blank]
alpha[1] = probs[0, targets_prime[1]]
mask_third = (targets_prime[:-2] != targets_prime[2:])
for t in range(1, input_length):
alpha_next = alpha.clone()
alpha_next[1:] += alpha[:-1]
alpha_next[2:] += torch.where(mask_third, alpha[:-2], alpha.new_zeros(1))
alpha = probs[t, targets_prime] * alpha_next
losses.append(-alpha[-2:].sum().log()[None])
output = torch.cat(losses, 0)
if reduction == 'mean':
return (output / target_lengths.to(dtype=output.dtype, device=output.device)).mean()
elif reduction == 'sum':
return output.sum()
output = output.to(dt)
return output
loss_reference_fns = {
'KLDivLoss': kldivloss_reference,
'NLLLoss': nllloss_reference,
'NLLLossNd': nlllossNd_reference,
'SmoothL1Loss': smoothl1loss_reference,
'MultiLabelMarginLoss': multilabelmarginloss_reference,
'HingeEmbeddingLoss': hingeembeddingloss_reference,
'SoftMarginLoss': softmarginloss_reference,
'MultiMarginLoss': multimarginloss_reference,
'CosineEmbeddingLoss': cosineembeddingloss_reference,
'TripletMarginLoss': tripletmarginloss_reference,
'MarginRankingLoss': marginrankingloss_reference,
'CTCLoss': ctcloss_reference,
}
criterion_tests = [
dict(
module_name='L1Loss',
input_size=(2, 3, 4),
target_size=(2, 3, 4),
reference_fn=lambda i, t, _: 1. / i.numel() *
sum((a - b).abs().sum() for a, b in zip(i, t)),
),
dict(
module_name='NLLLoss',
input_fn=lambda: torch.rand(15, 10).log(),
target_fn=lambda: torch.Tensor(15).uniform_().mul(10).floor().long(),
reference_fn=lambda i, t, m:
nllloss_reference(i, t, reduction=get_reduction(m)),
check_sum_reduction=True
),
dict(
module_name='NLLLoss',
constructor_args=(None, None, 2),
input_fn=lambda: torch.rand(15, 10).log(),
target_fn=lambda: torch.Tensor(15).uniform_().mul(10).floor().long(),
reference_fn=lambda i, t, _: nllloss_reference(i, t, ignore_index=2),
desc='ignore_index'
),
dict(
module_name='NLLLoss',
constructor_args_fn=lambda: (torch.rand(10),),
input_fn=lambda: torch.rand(15, 10).add(1e-2).log(),
target_fn=lambda: torch.Tensor(15).uniform_().mul(10).floor().long(),
reference_fn=lambda i, t, m:
nllloss_reference(i, t, weight=get_weight(m)),
desc='weights',
),
dict(
module_name='NLLLoss',
constructor_args_fn=lambda: (torch.rand(10), None, 2),
input_fn=lambda: torch.rand(15, 10).add(1e-2).log(),
target_fn=lambda: torch.Tensor(15).uniform_().mul(10).floor().long(),
reference_fn=lambda i, t, m:
nllloss_reference(i, t, weight=get_weight(m), ignore_index=2),
desc='weights_ignore_index'
),
dict(
module_name='NLLLoss',
constructor_args_fn=lambda: (torch.rand(10), None, -1),
input_fn=lambda: torch.rand(15, 10).add(1e-2).log(),
target_fn=lambda: torch.Tensor(15).uniform_().mul(10 + 1).floor().long() - 1,
reference_fn=lambda i, t, m:
nllloss_reference(i, t, weight=get_weight(m), ignore_index=-1),
desc='weights_ignore_index_neg'
),
dict(
module_name='KLDivLoss',
input_fn=lambda: torch.rand(10, 10).log(),
target_fn=lambda: torch.rand(10, 10),
reference_fn=lambda i, t, m:
kldivloss_reference(i, t, get_reduction(m)),
check_sum_reduction=True,
),
dict(
module_name='MSELoss',
input_size=(2, 3, 4, 5),
target_size=(2, 3, 4, 5),
reference_fn=lambda i, t, m: ((i - t).abs().pow(2).sum() / (i.numel()
if get_reduction(m) == 'mean' else 1)),
check_sum_reduction=True,
),
dict(
module_name='BCELoss',
input_fn=lambda: torch.rand(15, 10).clamp_(1e-2, 1 - 1e-2),
target_fn=lambda: torch.randn(15, 10).gt(0).double(),
reference_fn=lambda i, t, m: -(t * i.log() + (1 - t) * (1 - i).log()).sum() /
(i.numel() if get_reduction(m) else 1),
check_gradgrad=False,
),
dict(
module_name='BCELoss',
constructor_args_fn=lambda: (torch.rand(10),),
input_fn=lambda: torch.rand(15, 10).clamp_(1e-2, 1 - 1e-2),
target_fn=lambda: torch.randn(15, 10).gt(0).double(),
reference_fn=lambda i, t, m: -((t * i.log() + (1 - t) * (1 - i).log()) * get_weight(m)).sum() /
(i.numel() if get_reduction(m) else 1),
desc='weights',
check_gradgrad=False,
),
dict(
module_name='CrossEntropyLoss',
input_size=(15, 10),
target_fn=lambda: torch.Tensor(15).uniform_().mul(10).floor().long(),
),
dict(
module_name='CrossEntropyLoss',
constructor_args_fn=lambda: (torch.rand(10),),
input_size=(15, 10),
target_fn=lambda: torch.Tensor(15).uniform_().mul(10).floor().long(),
desc='weights',
),
dict(
module_name='HingeEmbeddingLoss',
input_size=(10,),
target_fn=lambda: torch.randn(10).gt(0).double().mul_(2).sub(1),
reference_fn=lambda i, t, m:
hingeembeddingloss_reference(i, t, reduction=get_reduction(m)),
check_sum_reduction=True,
),
dict(
module_name='HingeEmbeddingLoss',
constructor_args=(0.5,),
input_size=(10,),
target_fn=lambda: torch.randn(10).gt(0).double().mul_(2).sub(1),
reference_fn=lambda i, t, m:
hingeembeddingloss_reference(i, t, margin=0.5, reduction=get_reduction(m)),
desc='margin',
check_sum_reduction=True,
),
dict(
module_name='MultiLabelMarginLoss',
input_size=(10,),
target_fn=lambda: torch.rand(10).mul(10).floor().long(),
reference_fn=lambda i, t, m:
multilabelmarginloss_reference(i, t, reduction=get_reduction(m)),
desc="1d",
check_sum_reduction=True,
check_gradgrad=False,
),
dict(
module_name='MultiLabelMarginLoss',
input_size=(5, 10),
target_fn=lambda: torch.rand(5, 10).mul(10).floor().long(),
reference_fn=lambda i, t, m:
multilabelmarginloss_reference(i, t, reduction=get_reduction(m)),
check_sum_reduction=True,
check_gradgrad=False,
),
dict(
module_name='MultiLabelSoftMarginLoss',
input_size=(5, 10),
target_fn=lambda: torch.rand(5, 10).mul(2).floor(),
reference_fn=lambda i, t, m: -(t * i.sigmoid().log() + (1 - t) * (-i).sigmoid().log()).sum() / i.numel(),
check_gradgrad=False,
),
dict(
module_name='MultiMarginLoss',
input_size=(5, 10),
target_fn=lambda: torch.rand(5).mul(8).floor().long(),
reference_fn=lambda i, t, m:
multimarginloss_reference(i, t, reduction=get_reduction(m)),
check_sum_reduction=True,
check_gradgrad=False,
),
dict(
module_name='MultiMarginLoss',
input_size=(10,),
target_fn=lambda: torch.rand(1).mul(8).floor().long(),
reference_fn=lambda i, t, m:
multimarginloss_reference(i, t, reduction=get_reduction(m)),
desc='1d',
check_sum_reduction=True,
check_gradgrad=False,
),
dict(
module_name='MultiMarginLoss',
constructor_args=(2,),
input_fn=lambda: torch.rand(5, 10).clamp_(1e-2, 1 - 1e-2),
target_fn=lambda: torch.rand(5).mul(8).floor().long(),
reference_fn=lambda i, t, m:
multimarginloss_reference(i, t, p=2, reduction=get_reduction(m)),
desc='p',
check_sum_reduction=True,
check_gradgrad=False,
),
dict(
module_name='MultiMarginLoss',
constructor_args=(1, 0.5),
legacy_constructor_args=(1, None, 0.5),
input_size=(5, 10),
target_fn=lambda: torch.rand(5).mul(8).floor().long(),
reference_fn=lambda i, t, m:
multimarginloss_reference(i, t, margin=0.5, reduction=get_reduction(m)),
desc='margin',
check_sum_reduction=True,
check_gradgrad=False,
),
dict(
module_name='MultiMarginLoss',
constructor_args=(1, 1, torch.rand(10)),
legacy_constructor_args=(1, torch.rand(10)),
input_size=(5, 10),
target_fn=lambda: torch.rand(5).mul(8).floor().long(),
reference_fn=lambda i, t, m:
multimarginloss_reference(i, t, weight=get_weight(m), reduction=get_reduction(m)),
desc='weights',
check_sum_reduction=True,
check_gradgrad=False,
),
dict(
module_name='SmoothL1Loss',
input_size=(5, 10),
target_size=(5, 10),
check_sum_reduction=True,
reference_fn=lambda i, t, m:
smoothl1loss_reference(i, t, reduction=get_reduction(m)),
),
dict(
module_name='SoftMarginLoss',
input_size=(5, 5),
target_fn=lambda: torch.randn(5, 5).sign(),
reference_fn=lambda i, t, m:
softmarginloss_reference(i, t, reduction=get_reduction(m)),
check_sum_reduction=True,
),
dict(
module_name='CosineEmbeddingLoss',
input_fn=lambda: (torch.rand(15, 10), torch.rand(15, 10)),
target_fn=lambda: torch.randn(15).sign(),
reference_fn=lambda i, t, m:
cosineembeddingloss_reference(i[0], i[1], t, reduction=get_reduction(m)),
check_sum_reduction=True,
),
dict(
module_name='CosineEmbeddingLoss',
constructor_args=(0.7,),
input_fn=lambda: (torch.rand(15, 10), torch.rand(15, 10)),
target_fn=lambda: torch.randn(15).sign(),
reference_fn=lambda i, t, m:
cosineembeddingloss_reference(i[0], i[1], t, margin=0.7, reduction=get_reduction(m)),
desc='margin',
check_sum_reduction=True,
),
dict(
module_name='MarginRankingLoss',
input_fn=lambda: (torch.randn(50).mul(10), torch.randn(50).mul(10)),
target_fn=lambda: torch.randn(50).sign(),
reference_fn=lambda i, t, m:
marginrankingloss_reference(i[0], i[1], t, reduction=get_reduction(m)),
check_sum_reduction=True,
),
dict(
module_name='MarginRankingLoss',
constructor_args=(0.5,),
input_fn=lambda: (torch.randn(50).mul(10), torch.randn(50).mul(10)),
target_fn=lambda: torch.randn(50).sign(),
reference_fn=lambda i, t, m:
marginrankingloss_reference(i[0], i[1], t, margin=0.5, reduction=get_reduction(m)),
desc='margin',
check_sum_reduction=True,
),
]
class NNTestCase(TestCase):
def _jacobian(self, input, num_out):
if isinstance(input, tuple):
return tuple(self._jacobian(elem, num_out) for elem in input)
elif isinstance(input, list):
return [self._jacobian(elem, num_out) for elem in input]
else:
return torch.zeros(input.nelement(), num_out)
def _flatten_tensors(self, x):
if isinstance(x, torch.Tensor):
if x.is_sparse:
return x.to_dense().view(-1)
else:
return x.view(-1)
else:
return tuple(self._flatten_tensors(a) for a in x)
def _zero_grad_input(self, input):
if isinstance(input, torch.Tensor):
if input.requires_grad and input.grad is not None:
input.grad.zero_()
input.grad.detach_()
else:
for i in input:
self._zero_grad_input(i)
def _analytical_jacobian(self, module, input, jacobian_input=True, jacobian_parameters=True):
output = self._forward(module, input)
output_size = output.nelement()
if jacobian_input:
jacobian_inp = self._jacobian(input, output_size)
flat_jacobian_input = list(iter_tensors(jacobian_inp))
if jacobian_parameters:
num_param = sum(p.numel() for p in self._get_parameters(module)[0])
jacobian_param = torch.zeros(num_param, output_size)
for i in range(output_size):
param, d_param = self._get_parameters(module)
# make non grad zeros
d_param = [torch.zeros_like(p) if d is None else d for (p, d) in zip(param, d_param)]
d_out = torch.zeros_like(output)
flat_d_out = d_out.view(-1)
flat_d_out[i] = 1
if jacobian_parameters:
self._zero_grad_parameters(module)
# Tensors will accumulate gradient from multiple steps
if jacobian_input:
self._zero_grad_input(input)
d_input = self._backward(module, input, output, d_out)
if jacobian_input:
for jacobian_x, d_x in zip(flat_jacobian_input, iter_tensors(d_input)):
jacobian_x[:, i] = d_x.contiguous().view(-1)
if jacobian_parameters:
jacobian_param[:, i] = torch.cat(self._flatten_tensors(d_param), 0)
res = tuple()
if jacobian_input:
res += jacobian_inp,
if jacobian_parameters:
res += jacobian_param,
return res
def _numerical_jacobian(self, module, input, jacobian_input=True, jacobian_parameters=True):
def fw(input):
return self._forward(module, input).detach()
res = tuple()
if jacobian_input:
res += get_numerical_jacobian(fw, input, eps=1e-6),
if jacobian_parameters:
param, _ = self._get_parameters(module)
res += torch.cat([get_numerical_jacobian(fw, input, p, eps=1e-6) for p in param], 0),
return res
def check_jacobian(self, module, input, jacobian_input=True):
jacobian_parameters = bool(self._get_parameters(module)[0])
analytical = self._analytical_jacobian(module, input, jacobian_input, jacobian_parameters)
numerical = self._numerical_jacobian(module, input, jacobian_input, jacobian_parameters)
analytical_t = list(iter_tensors(analytical))
numerical_t = list(iter_tensors(numerical))
# TODO: compare structure
self.assertLessEqual(
max(a.add(-1, n).abs().max() for a, n in zip(analytical_t, numerical_t)),
PRECISION
)
def check_criterion_jacobian(self, criterion, input, target):
eps = 1e-6
self._forward_criterion(criterion, input, target)
analytical_d_x = self._backward_criterion(criterion, input, target)
numerical_d_x = deepcopy(analytical_d_x)
input_t = iter_tensors(input)
numerical_t = iter_tensors(numerical_d_x)
for x, d_x in zip(input_t, numerical_t):
x = x.view(-1).data
d_x = d_x.view(-1).data
for i in range(x.nelement()):
original = x[i].item()
x[i] = original + eps
fx1 = self._forward_criterion(criterion, input, target)
x[i] = original - eps
fx2 = self._forward_criterion(criterion, input, target)
deriv = (fx1 - fx2) / (2. * eps)
d_x[i] = float(deriv)
x[i] = original
# TODO: check structure
analytical_t = list(iter_tensors(analytical_d_x))
numerical_t = list(iter_tensors(numerical_d_x))
self.assertLessEqual(
max(a.add(-1, n).abs().max() for a, n in zip(analytical_t, numerical_t)),
PRECISION
)
class TestBase(object):
_required_arg_names = {'constructor_args', 'input', 'extra_args'}
def __init__(self, constructor, desc='', reference_fn=None, fullname=None, **kwargs):
self.desc = desc
self.fullname = fullname
self.constructor = constructor
self.reference_fn = reference_fn
for name in self._required_arg_names:
if name not in kwargs and name + '_fn' not in kwargs and name + '_size' not in kwargs:
if name in {'constructor_args', 'extra_args'}:
kwargs[name] = tuple()
else:
raise ValueError("{}: Specify {} by a value, a function to generate it, or it's size!"
.format(self.get_name(), name))
self._extra_kwargs = kwargs
self._arg_cache = {}
def get_name(self):
if self.fullname is not None:
return 'test_' + self.fullname
test_name = 'test_' + self.constructor.__name__
if self.desc:
test_name += '_' + self.desc
return test_name
def _unpack(self, value):
if isinstance(value, torch.Tensor):
return value
elif is_iterable(value):
return type(value)(self._unpack(v) for v in value)
else:
return value
@property
def constructor_args(self):
return self._get_arg('constructor_args', True)
@property
def extra_args(self):
return self._get_arg('extra_args', True)
def _get_arg(self, name, unpack):
assert name in self._required_arg_names
if name not in self._arg_cache:
fn_name = name + '_fn'
size_name = name + '_size'
if name in self._extra_kwargs:
self._arg_cache[name] = self._extra_kwargs[name]
elif fn_name in self._extra_kwargs:
self._arg_cache[name] = self._extra_kwargs[fn_name]()
else:
assert size_name in self._extra_kwargs
def map_tensor_sizes(sizes):
if isinstance(sizes, list):
return [map_tensor_sizes(s) for s in sizes]
elif isinstance(sizes, torch.Tensor):
return sizes.double()
else:
return torch.randn(sizes)
self._arg_cache[name] = map_tensor_sizes(self._extra_kwargs[size_name])
return self._unpack(self._arg_cache[name]) if unpack else self._arg_cache[name]
def _get_input(self, unpack=True):
return self._get_arg('input', unpack)
def __call__(self, test_case):
raise NotImplementedError
class ModuleTest(TestBase):
def __init__(self, *args, **kwargs):
super(ModuleTest, self).__init__(*args, **kwargs)
self.jacobian_input = kwargs.get('jacobian_input', True)
self.should_test_cuda = kwargs.get('test_cuda', True)
self.should_test_pickle = kwargs.get('pickle', True)
self.check_gradgrad = kwargs.get('check_gradgrad', True)
self.FIXME_no_cuda_gradgrad_comparison = \
kwargs.get('FIXME_no_cuda_gradgrad_comparison', False)
self.precision = kwargs.get('precision', 2e-4)
def __call__(self, test_case):
module = self.constructor(*self.constructor_args)
input = self._get_input()
if self.reference_fn is not None:
out = test_case._forward(module, input)
ref_input = deepcopy(input)
expected_out = self.reference_fn(ref_input, test_case._get_parameters(module)[0])
test_case.assertEqual(out, expected_out)
self.test_noncontig(test_case, module, input)
if self.should_test_pickle:
# TODO: do this with in-memory files as soon as torch.save will support it
with TemporaryFile() as f:
test_case._forward(module, input)
torch.save(module, f)
f.seek(0)
module_copy = torch.load(f)
test_case.assertEqual(test_case._forward(module, input), test_case._forward(module_copy, input))
self._do_test(test_case, module, input)
def noncontiguize(self, obj):
if isinstance(obj, list):
return [self.noncontiguize(o) for o in obj]
tensor = obj
ndim = tensor.dim()
# Always making only the last dimension noncontiguous is easy to hide
# bugs because .view(-1) will still work. So try to find a dim with size
# > 1 and make that non-contiguous, i.e., stack + select on the
# dimension directly after that.
dim = ndim
for d in range(ndim):
if tensor.size(d) > 1:
dim = d + 1
break
noncontig = torch.stack([torch.empty_like(tensor), tensor], dim).select(dim, 1).detach()
assert noncontig.numel() == 1 or not noncontig.is_contiguous()
noncontig.requires_grad = tensor.requires_grad
return noncontig
def test_noncontig(self, test_case, module, input):
# check no scalars, can't make non-contig
if isinstance(input, torch.Tensor) and input.dim() == 0:
return
if any(i.dim() == 0 for i in input if isinstance(i, torch.Tensor)):
return
test_case._zero_grad_parameters(module)
test_case._zero_grad_input(input)
with freeze_rng_state():
output = test_case._forward(module, input)
grad_output = output.new(output.shape).normal_()
output = output.clone()
d_input = deepcopy(test_case._backward(module, input, output, grad_output))
d_param = deepcopy(test_case._get_parameters(module)[1])
nc_input = self.noncontiguize(input)
nc_grad_output = self.noncontiguize(grad_output)
for contig_i, contig_g in product((True, False), repeat=2):
i = input if contig_i else nc_input
go = grad_output if contig_g else nc_grad_output
test_case._zero_grad_parameters(module)
test_case._zero_grad_input(i)
with freeze_rng_state():
out = test_case._forward(module, i)
grad = test_case._backward(module, i, out, go)
test_case.assertEqual(out, output)
test_case.assertEqual(grad, d_input, 1e-4)
test_case.assertEqual(test_case._get_parameters(module)[1], d_param)
def test_cuda(self, test_case):
if not TEST_CUDA or not self.should_test_cuda:
raise unittest.SkipTest('Excluded from CUDA tests')
try:
cpu_input = self._get_input()
type_map = {'torch.DoubleTensor': torch.cuda.FloatTensor}
gpu_input = to_gpu(cpu_input, type_map=type_map)
cpu_module = self.constructor(*self.constructor_args)
gpu_module = self.constructor(*self.constructor_args).float().cuda()
cpu_param = test_case._get_parameters(cpu_module)
gpu_param = test_case._get_parameters(gpu_module)
for cpu_p, gpu_p in zip(cpu_param[0], gpu_param[0]):
gpu_p.data.copy_(cpu_p)
test_case._zero_grad_input(cpu_input)
test_case._zero_grad_input(gpu_input)
test_case._zero_grad_parameters(cpu_module)
test_case._zero_grad_parameters(gpu_module)
cpu_output = test_case._forward(cpu_module, cpu_input)
gpu_output = test_case._forward(gpu_module, gpu_input)
test_case.assertEqual(cpu_output, gpu_output, self.precision)
# Run backwards on CPU and GPU and compare results
for i in range(5):
cpu_gradOutput = cpu_output.clone().normal_()
gpu_gradOutput = cpu_gradOutput.type('torch.cuda.FloatTensor')
cpu_gradInput = test_case._backward(cpu_module, cpu_input, cpu_output, cpu_gradOutput)
gpu_gradInput = test_case._backward(gpu_module, gpu_input, gpu_output, gpu_gradOutput)
test_case.assertEqual(cpu_gradInput, gpu_gradInput, self.precision)
for cpu_d_p, gpu_d_p in zip(cpu_param[1], gpu_param[1]):
test_case.assertEqual(cpu_d_p, gpu_d_p, self.precision)
# Run double-backwards on CPU and GPU and compare results
if self.check_gradgrad and not self.FIXME_no_cuda_gradgrad_comparison:
cpu_output = cpu_module(cpu_input)
gpu_output = gpu_module(gpu_input)
cpu_gradOutput = torch.randn_like(cpu_output, requires_grad=True)
gpu_gradOutput = cpu_gradOutput.type_as(gpu_output).detach()
gpu_gradOutput.requires_grad = True
cpu_gradInputs = torch.autograd.grad(
cpu_output,
(cpu_input,) + tuple(cpu_module.parameters()),
cpu_gradOutput,
create_graph=True)
gpu_gradInputs = torch.autograd.grad(
gpu_output,
(gpu_input,) + tuple(gpu_module.parameters()),
gpu_gradOutput,
create_graph=True)
for cpu_d_i, gpu_d_i in zip(cpu_gradInputs, gpu_gradInputs):
test_case.assertEqual(cpu_d_i, gpu_d_i, self.precision)
# We mix output into the second backwards computation so that
# torch.autograd.grad doesn't complain that some inputs
# are unreachable (which can happen if you differentiate
# only on the gradient.
cpu_gg = torch.autograd.grad(
cpu_output.sum() + sum(map(lambda x: x.sum(), cpu_gradInputs)),
(cpu_input, cpu_gradOutput) + tuple(cpu_module.parameters()),
retain_graph=True)
gpu_gg = torch.autograd.grad(
gpu_output.sum() + sum(map(lambda x: x.sum(), gpu_gradInputs)),
(gpu_input, gpu_gradOutput) + tuple(gpu_module.parameters()),
retain_graph=True)
test_case.assertEqual(cpu_gradInput, gpu_gradInput, self.precision)
for cpu_d_p, gpu_d_p in zip(cpu_gg, gpu_gg):
test_case.assertEqual(cpu_d_p, gpu_d_p, self.precision)
self.test_noncontig(test_case, gpu_module, gpu_input)
except NotImplementedError:
pass
# TODO: remove this after CUDA scatter_ is implemented
except AttributeError as e:
if len(e.args) == 1 and "'FloatTensor' object has no attribute 'scatter_'" in e.args[0]:
pass
else:
raise
class CriterionTest(TestBase):
_required_arg_names = TestBase._required_arg_names.union({'target'})
def __init__(self, *args, **kwargs):
super(CriterionTest, self).__init__(*args, **kwargs)
self.should_test_cuda = kwargs.get('test_cuda', True)
self.check_forward_only = kwargs.get('check_forward_only', True)
def _get_target(self):
return self._get_arg('target', True)
def __call__(self, test_case):
module = self.constructor(*self.constructor_args)
input = self._get_input()
# Check that these methods don't raise errors
module.__repr__()
str(module)
target = self._get_target()
if self.reference_fn is not None:
out = test_case._forward_criterion(module, input, target, extra_args=self.extra_args)
ref_args = (deepcopy(input), deepcopy(target)) + self.extra_args + (module,)
expected_out = self.reference_fn(*ref_args)
if isinstance(expected_out, torch.Tensor):
expected_out = expected_out.item()
test_case.assertEqual(out, expected_out)
if self.check_forward_only:
return
test_case.check_criterion_jacobian(module, input, target)
self._do_extra_tests(test_case, module, input, target)
def test_cuda(self, test_case):
if not TEST_CUDA or not self.should_test_cuda:
raise unittest.SkipTest('Excluded from CUDA tests')
try:
cpu_input = self._get_input()
type_map = {
'torch.DoubleTensor': torch.cuda.FloatTensor,
}
gpu_input = to_gpu(cpu_input, type_map=type_map)
cpu_target = self._get_target()
gpu_target = to_gpu(cpu_target, type_map=type_map)
cpu_module = self.constructor(*self.constructor_args)
gpu_module = self.constructor(*self.constructor_args).float().cuda()
cpu_output = test_case._forward_criterion(cpu_module, cpu_input, cpu_target)
gpu_output = test_case._forward_criterion(gpu_module, gpu_input, gpu_target)
test_case.assertEqual(cpu_output, gpu_output, 4e-4)
gradOutput = torch.randn(())
cpu_gradInput = test_case._backward_criterion(cpu_module, cpu_input, cpu_target, gradOutput)
gpu_gradInput = test_case._backward_criterion(gpu_module, gpu_input, gpu_target, gradOutput)
test_case.assertEqual(cpu_gradInput, gpu_gradInput, 4e-4)
except NotImplementedError:
pass
def _do_extra_tests(self, test_case, module, input, target):
pass