blob: 688eb0cdd9bbf0b5c3bb7853e76d673ee7b6f8ee [file] [log] [blame]
import numbers
import torch
from torch.nn.modules.utils import _single, _pair, _triple
from torch.nn.utils.rnn import PackedSequence
import warnings
import torch.onnx
# This import monkey-patches graph manipulation methods on Graph, used for the
# ONNX symbolics
import torch.onnx.utils
from collections import Iterable
from functools import partial, wraps
import itertools
# EDITING THIS FILE? READ THIS FIRST!
#
# - This file is ONLY for ATen operators (e.g., operators that show up in the
# trace as aten::blah). If you need to special case a primitive operator,
# look at _run_symbolic_function
# - Parameter ordering does NOT necessarily match what is in VariableType.cpp;
# tensors are always first, then non-tensor arguments.
# - Parameter names must *exactly* match the names in VariableType.cpp, because
# dispatch is done with keyword arguments.
# - Looking for inplace ops? They're detected by the trailing underscore, and
# transparently dispatched to their non inplace versions in
# 'run_symbolic_function'. See Note [Export inplace]
# ---------------------------------------------------------------------
# Helper functions
# ---------------------------------------------------------------------
def _parse_arg(value, desc):
if desc == 'v' or not _is_value(value):
return value
if value.node().kind() != 'onnx::Constant':
raise RuntimeError("ONNX symbolic expected a constant value in the trace")
tval = value.node()['value']
if desc == 'i':
return int(tval)
elif desc == 'f':
return float(tval)
elif desc == 't':
return tval
elif desc == 'is':
return [int(v) for v in tval]
else:
raise RuntimeError("Casting constants to `{}` is not implemented".format(desc))
def _maybe_get_const(value, desc):
if _is_value(value) and value.node().kind() == 'onnx::Constant':
return _parse_arg(value, desc)
return value
def _maybe_get_scalar(value):
value_t = _maybe_get_const(value, 't')
if isinstance(value_t, torch.Tensor) and value_t.shape == ():
return value_t
return value
def _get_const(value, desc, arg_name):
if _is_value(value) and value.node().kind() != 'onnx::Constant':
raise RuntimeError("ONNX symbolic expected a constant value of the {} argument".format(arg_name))
return _parse_arg(value, desc)
def _unpack_list(list_value):
list_node = list_value.node()
assert list_node.kind() == "prim::ListConstruct"
return list_node.inputs()
def parse_args(*arg_descriptors):
def decorator(fn):
def wrapper(g, *args):
assert len(arg_descriptors) == len(args)
args = [_parse_arg(arg, arg_desc) for arg, arg_desc in zip(args, arg_descriptors)]
return fn(g, *args)
# In Python 2 functools.wraps chokes on partially applied functions, so we need this as a workaround
try:
wrapper = wraps(fn)(wrapper)
except Exception:
pass
return wrapper
return decorator
def _scalar(x):
"""Convert a scalar tensor into a Python value."""
assert x.numel() == 1
return x.item()
def _if_scalar_type_as(g, self, tensor):
"""
Convert self into the same type of tensor, as necessary.
We only support implicit casting for scalars, so we never
actually need to insert an ONNX cast operator here; just
fix up the scalar.
"""
if isinstance(self, torch._C.Value):
return self
elif tensor.type().kind() == "TensorType":
ty = tensor.type().scalarType().lower()
return getattr(self, ty)()
else:
return self
def _is_value(x):
return isinstance(x, torch._C.Value)
def _unimplemented(op, msg):
warnings.warn("ONNX export failed on " + op + " because " + msg + " not supported")
# ---------------------------------------------------------------------
# ONNX operator version
# ---------------------------------------------------------------------
# READ ME BEFORE EDITING _onnx_opset_version:
#
# The variable below controls which ONNX operator set version we are
# targeting. THIS VARIABLE HAS SEMANTIC EFFECT! Say a breaking
# change occurred in version 8. As long as this variable < 8, you can
# export models targeting the old behavior. However, if you bump
# this variable to 8 or later, the breaking change will take into effect:
# you MUST adjust any symbolic affected by breaking changes. The ONNX
# spec publishes a *comprehensive* list of BC-breaking changes for every
# operator revision at:
#
# https://github.com/onnx/onnx/blob/master/docs/Changelog.md
#
# Please be sure to go through and check all of our implementations here before
# increasing this number. This includes symbolic definitions NOT in this
# file, so grep for "OpName" (with quotes)
_onnx_opset_version = 7
# ---------------------------------------------------------------------
# Symbolic definitions
# ---------------------------------------------------------------------
# Note [Pointwise by scalar]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
# What happens if you add a tensor with a constant (e.g., x + 2)? There are
# some moving parts to implementing the ONNX translation in this case:
#
# - By the time we get the scalar in a symbolic function here, it is no longer
# a Python long/float, but a PyTorch tensor with numel == 1 (eventually, we
# want it to be a zero dim tensor but this change has not happened yet.)
# However, the type of this scalar is *exactly* what the user wrote in
# Python, which may not match the tensor it is being added to. PyTorch
# will do implicit conversions on scalars; however, ONNX will not, so
# we must do the conversion ourselves. This is what _if_scalar_type_as
# does.
#
# - Dispatch to these functions takes advantage an outrageous coincidence
# between the tensor and scalar name. When we add two tensors together,
# you get the dispatch:
#
# add(*[self, other], **{"alpha": alpha})
#
# When you add a tensor and a scalar, you get the dispatch:
#
# add(*[self], **{"other": other, "alpha": alpha})
#
# By having the argument name line up with the name of the scalar attribute
# if it exists, we can write a single function for both overloads.
#
# used to represent "missing" optional inputs
def unused(g):
return g.op("prim::Undefined")
@parse_args('v', 'v', 't')
def add(g, self, other, alpha):
if _scalar(alpha) != 1:
return _unimplemented("add", "alpha != 1")
# See Note [Pointwise by scalar]
other = _maybe_get_scalar(other)
return g.op("Add", self, _if_scalar_type_as(g, other, self))
@parse_args('v', 'v', 't')
def sub(g, self, other, alpha):
if _scalar(alpha) != 1:
return _unimplemented("sub", "alpha != 1")
# See Note [Pointwise by scalar]. Note that self or other may be scalars.
other = _maybe_get_scalar(other)
self = _maybe_get_scalar(self)
self = _if_scalar_type_as(g, self, other)
other = _if_scalar_type_as(g, other, self)
return g.op("Sub", self, other)
def mul(g, self, other):
# See Note [Pointwise by scalar]
other = _maybe_get_scalar(other)
return g.op("Mul", self, _if_scalar_type_as(g, other, self))
def div(g, self, other):
# See Note [Pointwise by scalar]
other = _maybe_get_scalar(other)
return g.op("Div", self, _if_scalar_type_as(g, other, self))
def reciprocal(g, self):
return g.op("Div", _if_scalar_type_as(g, torch.ones(1), self), self)
@parse_args('v', 'i')
def cat(g, tensor_list, dim):
tensors = _unpack_list(tensor_list)
return g.op("Concat", *tensors, axis_i=dim)
@parse_args('v', 'i')
def stack(g, tensor_list, dim):
unsqueezed = [g.op("Unsqueeze", t, axes_i=[dim]) for t in _unpack_list(tensor_list)]
return g.op("Concat", *unsqueezed, axis_i=dim)
def mm(g, self, other):
# Create a dummy C tensor. Only needed for API purposes, the value is
# since beta = 0
ty = self.type().scalarType().lower()
C = g.constant(0, [1], ty)
return g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0)
def bmm(g, self, other):
return g.op("MatMul", self, other)
def matmul(g, self, other):
return g.op("MatMul", self, other)
@parse_args('v', 'v', 'v', 't', 't')
def addmm(g, self, mat1, mat2, beta, alpha):
return g.op("Gemm", mat1, mat2, self, beta_f=_scalar(beta), alpha_f=_scalar(alpha))
def neg(g, self):
return g.op("Neg", self)
def sqrt(g, self):
return g.op("Sqrt", self)
def tanh(g, self):
return g.op("Tanh", self)
def sin(g, self):
return g.op("Sin", self)
def cos(g, self):
return g.op("Cos", self)
def tan(g, self):
return g.op("Tan", self)
def asin(g, self):
return g.op("Asin", self)
def acos(g, self):
return g.op("Acos", self)
def atan(g, self):
return g.op("Atan", self)
def sigmoid(g, self):
return g.op("Sigmoid", self)
def _reduce_op_symbolic(onnx_op_name):
def symbolic(g, self, dim=None, keepdim=None):
params = {}
if dim is None:
# all-reduce path
return g.op(onnx_op_name, self, keepdims_i=0)
else:
# dim-reduce path
dim, keepdim = _get_const(dim, 'i', 'dim'), _get_const(keepdim, 'i', 'keepdim')
return g.op(onnx_op_name, self, axes_i=[dim], keepdims_i=keepdim)
return symbolic
mean = _reduce_op_symbolic('ReduceMean')
sum = _reduce_op_symbolic('ReduceSum')
prod = _reduce_op_symbolic('ReduceProd')
@parse_args('v', 'i')
def cumsum(g, input, dim):
return g.op("ATen", input, operator_s="cumsum", dim_i=dim)
def t(g, self):
return g.op("Transpose", self, perm_i=(1, 0))
# There is no translation for it, but we don't want to raise an error yet
def expand(g, self, size, implicit):
return None
def embedding(g, weight, indices, padding_idx, scale_grad_by_freq, sparse):
return g.op("Gather", weight, indices)
@parse_args('v', 'v', 'v', 'i', 'i', 'i')
def embedding_bag(g,
embedding_matrix,
indices,
offsets,
scale_grad_by_freq,
mode,
sparse):
return g.op("ATen",
embedding_matrix,
indices,
offsets,
operator_s="embedding_bag",
outputs=3,
scale_grad_by_freq_i=scale_grad_by_freq,
mode_i=mode,
sparse_i=sparse)
def size(g, self, dim):
full_shape = g.op("Shape", self)
return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim)
@parse_args('v', 'i', 'i')
def transpose(g, self, dim0, dim1):
if dim0 == dim1: # micro-optimization
return self
# NB: Transpose in ONNX is actually a Permute
axes = list(range(len(self.type().sizes())))
axes[dim0], axes[dim1] = axes[dim1], axes[dim0]
return g.op("Transpose", self, perm_i=axes)
@parse_args('v', 'is')
def permute(g, self, dims):
if dims == list(range(0, len(dims))):
return self
return g.op("Transpose", self, perm_i=dims)
def view(g, self, size):
size = _maybe_get_const(size, 'is')
if _is_value(size):
shape = size
else:
if self.isTensor():
self_sizes = self.type().sizes()
if self_sizes and len(size) == 2 and self_sizes[0] == size[0]:
return g.op("Flatten", self, axis_i=1)
shape = g.op("Constant", value_t=torch.LongTensor(size))
return g.op("Reshape", self, shape)
@parse_args('v', 'i', 'i')
def split(g, self, split_size, dim):
size = self.type().sizes()[dim]
splits = [split_size] * (size // split_size)
leftover = size % split_size
if leftover:
splits.append(leftover)
return g.op("Split", self, split_i=splits, axis_i=dim, outputs=len(splits))
# TODO: It would be better to export this as a chunk directly, as this is
# less sensitive to changes in input size.
# TODO: Once we have proper scoping, stop reimplementing chunk, delete this
# method, and use the desugared version
@parse_args('v', 'i', 'i')
def chunk(g, self, chunks, dim):
split_size = (self.type().sizes()[dim] + chunks - 1) // chunks
return split(g, self, split_size, dim)
@parse_args('v', 'i', 'i')
def select(g, self, dim, index):
slice_node = g.op("Slice", self, axes_i=[dim], starts_i=[index], ends_i=[index + 1])
return g.op("Squeeze", slice_node, axes_i=[dim])
def squeeze(g, self, dim=None):
if dim is None:
dims = []
for i, size in enumerate(self.type().sizes()):
if size == 1:
dims.append(i)
else:
dims = [_get_const(dim, 'i', 'dim')]
return g.op("Squeeze", self, axes_i=dims)
def prelu(g, self, weight):
return g.op("PRelu", self, weight)
def relu(g, input):
return g.op("Relu", input)
@parse_args('v', 't', 't')
def threshold(g, self, threshold, value):
# See Note [Export inplace]
if _scalar(threshold) != 0:
return _unimplemented("threshold", "non-zero threshold")
if _scalar(value) != 0:
return _unimplemented("threshold", "non-zero value")
return g.op("Relu", self)
def leaky_relu(g, input, negative_slope, inplace=False):
negative_slope = _get_const(negative_slope, 't', 'negative_slope')
# See Note [Export inplace]
# TODO: Talk to ONNX about unconditional cast of scalar to float
return g.op("LeakyRelu", input, alpha_f=_scalar(negative_slope))
@parse_args('v', 'i')
def glu(g, input, dim):
assert input.type().sizes()[dim] % 2 == 0
first, second = g.op('Split', input, axis_i=dim, outputs=2)
return g.op('Mul', first, g.op('Sigmoid', second))
@parse_args('v', 'i')
def softmax(g, input, dim):
# Softmax does normalization at vector level.
# PyTorch and ONNX use different strategies to split the input tensor into vectors.
# Thus dim and axis have different meanings.
# PyTorch slices the input tensor into vectors along the `dim`-th dimension.
# ONNX reshapes the input into a 2-D tensor, and `axis` indicates where the input is coerced.
# If input is a 2 x 3 tensor:
# input = [[1.0, 1.0, 1.0],
# [1.0, 1,0, 1,0]]
# with dim = 0, the result is:
# result = [[0.5, 0.5, 0.5],
# [0.5, 0.5, 0.5]]
# with axis = 0, the result is:
# result = [[0.167, 0.167, 0.167],
# [0.167, 0.167, 0.167]]
# So only when dim and axis both equal to ndim - 1 (the last dimension),
# their semantics are equivalent.
if dim < 0:
dim = len(input.type().sizes()) + dim
if len(input.type().sizes()) != dim + 1:
return _unimplemented("dim", "ONNX and PyTorch use different strategies to split the input.")
return g.op('Softmax', input, axis_i=dim)
@parse_args('v', 't', 'v')
def softplus(g, self, beta, threshold):
if beta != 1:
return _unimplemented("beta", "has to be 1")
return g.op('Softplus', self)
@parse_args('v', 'is', 'is', 'is', 'is', 'i')
def max_pool1d_with_indices(g, input, kernel_size, stride, padding, dilation, ceil_mode):
if ceil_mode:
return _unimplemented("max_pool1d_with_indices", "ceil_mode")
if set(_single(dilation)) != {1}:
return _unimplemented("max_pool1d_with_indices", "dilation")
if stride is None:
stride = kernel_size
r = g.op("MaxPool", input,
kernel_shape_i=_single(kernel_size),
pads_i=_single(padding) * 2,
strides_i=_single(stride))
return r, None
@parse_args('v', 'is', 'is', 'is', 'is', 'i')
def max_pool2d_with_indices(g, input, kernel_size, stride, padding, dilation, ceil_mode):
if ceil_mode:
return _unimplemented("max_pool2d_with_indices", "ceil_mode")
if set(_pair(dilation)) != {1}:
return _unimplemented("max_pool2d_with_indices", "dilation")
if not stride:
stride = kernel_size
r = g.op("MaxPool", input,
kernel_shape_i=_pair(kernel_size),
pads_i=_pair(padding) * 2,
strides_i=_pair(stride))
return r, None
@parse_args('v', 'is', 'is', 'is', 'is', 'i')
def max_pool3d_with_indices(g, input, kernel_size, stride, padding, dilation, ceil_mode):
if ceil_mode:
return _unimplemented("max_pool3d_with_indices", "ceil_mode")
if set(_triple(dilation)) != {1}:
return _unimplemented("max_pool3d_with_indices", "dilation")
if not stride:
stride = kernel_size
r = g.op("MaxPool", input,
kernel_shape_i=_triple(kernel_size),
pads_i=_triple(padding) * 2,
strides_i=_triple(stride))
return r, None
def _avg_pool(name, tuple_fn):
@parse_args('v', 'is', 'is', 'is', 'i', 'i')
def symbolic_fn(g, input, kernel_size, stride, padding, ceil_mode, count_include_pad):
if ceil_mode:
return _unimplemented("avg_pool2d", "ceil_mode")
if not stride:
stride = kernel_size
padding = tuple(tuple_fn(padding))
if count_include_pad:
input = g.op("Pad", input,
pads_i=((0,) * 2 + padding) * 2,
mode_s='constant',
value_f=0.)
padding = (0,) * len(padding)
return g.op("AveragePool", input,
kernel_shape_i=tuple_fn(kernel_size),
strides_i=tuple_fn(stride),
pads_i=padding * 2)
return symbolic_fn
avg_pool1d = _avg_pool('avg_pool1d', _single)
avg_pool2d = _avg_pool('avg_pool2d', _pair)
avg_pool3d = _avg_pool('avg_pool3d', _triple)
@parse_args('v', 'is')
def reflection_pad(g, input, padding):
from torch.autograd._functions.utils import prepare_onnx_paddings
mode = "reflect"
paddings = prepare_onnx_paddings(len(input.type().sizes()), padding)
return g.op("Pad", input, pads_i=paddings, mode_s=mode)
@parse_args('v', 'is')
def replication_pad(g, input, padding):
from torch.autograd._functions.utils import prepare_onnx_paddings
mode = "edge"
paddings = prepare_onnx_paddings(len(input.type().sizes()), padding)
return g.op("Pad", input, pads_i=paddings, mode_s=mode)
reflection_pad1d = reflection_pad
reflection_pad2d = reflection_pad
reflection_pad3d = reflection_pad
replication_pad1d = replication_pad
replication_pad2d = replication_pad
replication_pad3d = replication_pad
@parse_args('v', 'is')
def upsample_nearest2d(g, input, output_size):
height_scale = float(output_size[-2]) / input.type().sizes()[-2]
width_scale = float(output_size[-1]) / input.type().sizes()[-1]
return g.op("Upsample", input,
scales_f=[1., 1., height_scale, width_scale],
mode_s="nearest")
@parse_args('v', 'is', 'i')
def upsample_bilinear2d(g, input, output_size, align_corners):
if align_corners:
return _unimplemented("upsample_bilinear2d", "align_corners == True")
height_scale = float(output_size[-2]) / input.type().sizes()[-2]
width_scale = float(output_size[-1]) / input.type().sizes()[-1]
return g.op("Upsample", input,
scales_f=[1., 1., height_scale, width_scale],
mode_s="bilinear")
def gt(g, input, other):
other = _maybe_get_scalar(other)
return g.op("Greater", input, _if_scalar_type_as(g, other, input))
def lt(g, input, other):
other = _maybe_get_scalar(other)
return g.op("Less", input, _if_scalar_type_as(g, other, input))
def ge(g, input, other):
return g.op("Not", lt(g, other, input))
def le(g, input, other):
return g.op("Not", gt(g, other, input))
@parse_args('v', 'i')
def log_softmax(g, input, dim=None):
# PyTorch dim and ONNX axis have different meanings.
# See Softmax comment for details.
if dim < 0:
dim = len(input.type().sizes()) + dim
if len(input.type().sizes()) != dim + 1:
return _unimplemented("dim", "ONNX and PyTorch use different strategies to split the input.")
return g.op("LogSoftmax", input, axis_i=dim)
@parse_args('v', 'v', 'v', 'is', 'is', 'is', 'i', 'is', 'i', 'i', 'i', 'i')
def _convolution(g, input, weight, bias, stride, padding, dilation,
transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled):
weight_size = weight.type().sizes()
args = [input, weight]
# ONNX only supports 1D bias
if bias.node().kind() != "prim::Undefined" and len(bias.type().sizes()) == 1:
args.append(bias)
kwargs = {"kernel_shape_i": weight_size[2:],
"strides_i": stride,
# NB: ONNX supports asymmetric padding, whereas PyTorch supports only
# symmetric padding
"pads_i": padding + padding,
"dilations_i": dilation,
"group_i": groups}
if any(o != 0 for o in output_padding):
# ONNX supports both output_shape and output_padding. they are equivalent expressive.
# output_padding is more straightforward, so we use it here.
# output_shape = stride * (input_shape - 1) + output_padding + kernel_shape - padding * 2
assert transposed
assert len(stride) == len(output_padding)
kwargs["output_padding_i"] = output_padding
n = g.op("ConvTranspose" if transposed else "Conv", *args, **kwargs)
if bias.node().kind() != "prim::Undefined" and len(bias.type().sizes()) != 1:
return g.op("Add", n, bias)
else:
return n
@parse_args('v', 'v', 'v', 'v', 'v', 'i', 'f', 'f', 'i')
def batch_norm(g, input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled):
input_sizes = input.type().sizes()
if len(input_sizes) == 2:
# batchnorm1d accepts 2d and 3d array, but ONNX only accepts 3d
input = g.op("Unsqueeze", input, axes_i=[2])
out = g.op("BatchNormalization", input, weight, bias, running_mean, running_var,
epsilon_f=eps,
momentum_f=1 - momentum,
outputs=1 if not training else 5)
if not training:
if len(input_sizes) == 2:
out = g.op("Squeeze", out, axes_i=[2])
return out
else:
res, new_running_mean, new_running_var, saved_mean, saved_var = out
new_running_mean.setType(running_mean.type())
new_running_var.setType(running_var.type())
saved_mean.setUniqueName("batch_norm_dead_output-" + saved_mean.uniqueName())
saved_var.setUniqueName("batch_norm_dead_output-" + saved_var.uniqueName())
if len(input_sizes) == 2:
res = g.op("Squeeze", res, axes_i=[2])
return res
@parse_args('v', 'i', 'i', 'i')
def unfold(g, input, dimension, size, step):
return g.op("ATen", input, operator_s="unfold", dimension_i=dimension, size_i=size, step_i=step)
@parse_args('v', 't', 't', 't')
def elu(g, input, alpha, scale, input_scale):
if scale and scale != 1.:
return _unimplemented("scale", "does not support scale in Elu")
if input_scale and input_scale != 1.:
return _unimplemented("input_scale", "does not support input_scale in Elu")
# See Note [Export inplace]
return g.op("Elu", input, alpha_f=_scalar(alpha))
def selu(g, input):
return g.op("Selu", input)
@parse_args('v', 'i', 'v')
def index_select(g, self, dim, index):
return g.op("Gather", self, index, axis_i=dim)
def index_put(g, self, indices_list_value, values):
indices_list = list(_unpack_list(indices_list_value))
args = [self] + indices_list + [values]
return g.op("ATen", *args, operator_s='index_put')
def type_as(g, self, other):
if self.isTensor() and other.isTensor() and self.type().scalarType() == other.type().scalarType():
return self
if other.isTensor():
other_type_name = other.type().scalarType()
return g.op("Cast", self, to_i=cast_pytorch_to_onnx[other_type_name])
else:
# We don't know the type of other, bail by emitting ATen
return g.op("ATen", self, other, operator_s="type_as")
@parse_args('v', 'is', 'v', 'v', 'f', 'i')
def layer_norm(g, self, normalized_shape, weight, bias, eps, cudnn_enable):
return g.op("ATen", self, weight, bias, normalized_shape_i=normalized_shape,
eps_f=eps, cudnn_enable_i=cudnn_enable, operator_s="layer_norm")
# ignore clone operators that are inserted by PyTorch autograd
def clone(g, input):
return input
def abs(g, self):
return g.op("Abs", self)
def log(g, self):
return g.op("Log", self)
def pow(g, self, exponent):
exponent = _maybe_get_scalar(exponent)
return g.op("Pow", self, _if_scalar_type_as(g, exponent, self))
@parse_args('v', 'f', 'f')
def clamp(g, self, min, max):
# check min/max is NaN or not, and dispatch the call
# a != a means a == NaN
if min != min:
return clamp_max(g, self, max)
elif max != max:
return clamp_min(g, self, min)
else:
return g.op("Clip", self, min_f=min, max_f=max)
@parse_args('v', 'f')
def clamp_min(g, self, min):
return g.op("Clip", self, min_f=min)
@parse_args('v', 'f')
def clamp_max(g, self, max):
return g.op("Clip", self, max_f=max)
# torch.max (same for torch.min) actually has two interfaces smashed together:
# torch.max(x, dim, keepdim) and torch.max(x, y)
def max(g, self, dim_or_y, keepdim=None):
if keepdim is None:
return g.op("Max", self, dim_or_y)
else:
dim = _get_const(dim_or_y, 'i', 'dim')
keepdim = _get_const(keepdim, 'i', 'keepdim')
# TODO: export it as ReduceMax
return g.op("ATen",
self,
operator_s="max",
dim_i=dim,
keepdim_i=keepdim,
outputs=2)
def min(g, self, dim_or_y, keepdim=None):
if keepdim is None:
return g.op("Min", self, dim_or_y)
else:
dim = _get_const(dim_or_y, 'i', 'dim')
keepdim = _get_const(keepdim, 'i', 'keepdim')
# TODO: export it as ReduceMax
return g.op("ATen",
self,
operator_s="min",
dim_i=dim,
keepdim_i=keepdim,
outputs=2)
def eq(g, self, other):
return g.op("Equal", self, other)
def exp(g, self):
return g.op("Exp", self)
@parse_args('v', 'f', 'i')
def dropout(g, input, p, train):
r, _ = g.op("Dropout", input, ratio_f=p, outputs=2)
return r
def _unsupported_dropout(name):
@parse_args('v', 'f', 'i')
def feature_dropout(g, input, p, train):
# NB: In inference mode, FeatureDropout is exported as an identity op.
from torch.onnx.symbolic import _unimplemented
if train:
return _unimplemented(name, "training mode")
return input
return feature_dropout
feature_dropout = _unsupported_dropout("feature_dropout")
alpha_dropout = _unsupported_dropout("alpha_dropout")
feature_alpha_dropout = _unsupported_dropout("feature_alpha_dropout")
# See Note [Export inplace]
dropout_ = dropout
feature_dropout_ = feature_dropout
alpha_dropout_ = alpha_dropout
feature_alpha_dropout_ = feature_alpha_dropout
@parse_args('v', 't', 'i', 'i')
def norm(g, self, p, dim, keepdim):
if p == 1:
f = _reduce_op_symbolic("ReduceL1")
elif p == 2:
f = _reduce_op_symbolic("ReduceL2")
else:
raise RuntimeError("ONNX export only p-norms with p of 1 or 2")
return f(g, self, dim=dim, keepdim=keepdim)
@parse_args('v', 'v', 'v', 'i')
def conv_tbc(g, input, weight, bias, pad):
return g.op("ATen", input, weight, bias, operator_s="conv_tbc", pad_i=pad)
@parse_args('v', 'i', 'i')
def _unique(g, input, sorted, return_inverse):
return g.op("ATen", input, operator_s="_unique", sorted_i=sorted,
return_inverse_i=return_inverse, outputs=2)
# Metaprogram symbolics for each ATen native specialized cast operator.
# For e.g. we specify a function named `_cast_uint8_t` that instantiates an
# ONNX cast node with `to` attribute 'UINT8'
#
# TODO: remove these once we support Type's in the JIT IR and we can once again
# use the unified toType operator
cast_pytorch_to_onnx = {
'Byte': torch.onnx.TensorProtoDataType.UINT8,
'Char': torch.onnx.TensorProtoDataType.INT8,
'Double': torch.onnx.TensorProtoDataType.DOUBLE,
'Float': torch.onnx.TensorProtoDataType.FLOAT,
'Half': torch.onnx.TensorProtoDataType.FLOAT16,
'Int': torch.onnx.TensorProtoDataType.INT32,
'Long': torch.onnx.TensorProtoDataType.INT64,
'Short': torch.onnx.TensorProtoDataType.INT16,
}
scalar_name_to_pytorch = {
'uint8_t': 'Byte',
'int8_t': 'Char',
'double': 'Double',
'float': 'Float',
'half': 'Half',
'int': 'Int',
'int64_t': 'Long',
'int16_t': 'Short',
}
def _cast_func_template(to_i, g, input, non_blocking):
return g.op("Cast", input, to_i=to_i)
for k, v in cast_pytorch_to_onnx.items():
name = '_cast_{}'.format(k)
globals()[name] = parse_args('v', 'i')(partial(_cast_func_template, v))
def zeros_like(g, input):
return g.op("Sub", input, input).setType(input.type().contiguous())
def full_like(g, input, fill_value):
# TODO: a more efficient implementation (ConstantFill?)
return add(g, zeros_like(g, input), fill_value, g.op("Constant", value_t=torch.tensor(1)))
@parse_args('v', 'i', 'i', 'i', 'i')
def slice(g, self, dim, start, end, step):
if step != 1:
_unimplemented("slice", "step!=1 is currently not supported")
return g.op("Slice", self, axes_i=[dim], starts_i=[start], ends_i=[end])
@parse_args('v', 'f', 'f')
def hardtanh(g, self, min_val, max_val):
return g.op("Clip", self, min_f=min_val, max_f=max_val)
def alias(g, self):
return self
@parse_args('v', 'i')
def unsqueeze(g, self, dim):
return g.op("Unsqueeze", self, axes_i=[dim])
@parse_args('v', 'i', 'i', 'i', 'i')
def topk(g, self, k, dim, largest, sorted, out=None):
if out is not None:
_unimplemented("TopK", "Out parameter is not supported for topk")
if not largest:
_unimplemented("TopK", "Ascending TopK is not supported")
return g.op("TopK", self, k_i=k, axis_i=dim, outputs=2)
def repeat(g, self, repeats):
if not _is_value(repeats):
repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
const_repeats = _maybe_get_const(repeats, 'is')
if self.isTensor() and not _is_value(const_repeats):
sizes = self.type().sizes()
diff_dims = len(const_repeats) - len(sizes)
if diff_dims > 0:
self = view(g, self, [1] * diff_dims + sizes)
return g.op("Tile", self, repeats)
def instance_norm(g, input, **kwargs):
input_type = input.type().scalarType()
weight = kwargs.get("weight", None)
bias = kwargs.get("bias", None)
eps = kwargs.get("eps", 1e-5)
if weight is None:
weight = g.constant(1.0, [input.type().sizes()[1]], input_type)
else:
weight = g.op('Constant', value_t=weight)
if bias is None:
bias = g.constant(0.0, [input.type().sizes()[1]], input_type)
else:
bias = g.op('Constant', value_t=bias)
return g.op("InstanceNormalization", input, weight, bias, epsilon_f=eps)
def RNN_symbolic_builder(cell_type, *args, **kwargs):
if cell_type == 'LSTM':
return RNN_variant_symbolic_builder('LSTM', *args, **kwargs)
elif cell_type == 'GRU':
return RNN_variant_symbolic_builder('GRU', *args, **kwargs)
elif cell_type.startswith('RNN_'):
return RNN_variant_symbolic_builder('RNN', *args, nonlinearity=cell_type[4:], **kwargs)
else:
return lambda *args, **kwargs: _unimplemented("RNN", "cell type " + cell_type)
def reform_weights(g, w, n, intervals):
slices = [g.op('Slice', w, axes_i=[0], starts_i=[x * n], ends_i=[y * n]) for x, y in intervals]
return g.op('Concat', *slices, axis_i=0)
# WARNING: Here be dragons. i.e. this is a hack that should die in a fire
#
# Since we need RNN nodes to work both in the GraphExecutor as well as call the
# correct symbolic function during ONNX export, we do the following:
#
# 1. During tracing we dispatch to this function
# 2. This function emits a PythonOp wrapping the RNN function that would have
# run had we not been tracing. Thus, GraphExecutor will call the RNN operator
# via Python. In the future we will likely want to make the RNN modules into
# ScriptModules so we can optimize them.
# 3. We store a wrapper around the ONNX symbolic function in the `symbolic`
# attribute of the Python function. The ONNX export pass accesses this
# attribute during tracing and calls it to lower the PythonOp into the right
# thing
#
# The first three parameters to this function are meant to be bound with:
# cell_type - The string description of the type of RNN cell. e.g. 'LSTM'
# func - The function that would have been called here if we had not been
# tracing, e.g. CudnnRNN or AutogradRNN.
# sym - The ONNX symbolic we should store in the PythonOp for later export.
#
# With those three parameters bound, we can pass the function into the
# torch.onnx.symbolic_override* functions
#
# The remaining arguments are equivalent to the inputs seen when dispatching
# a symbolic function for an operator. Concretely:
# * input - a single input tensor [seq_len, batch, input_size] or if bach_first=True,
# [batch, seq_len, input_size]
# * weights - list of list of tensors. len(weights) = number of layers
# weights[i] is a list of weights, same as the parameters to
# torch.nn.{RNN,LSTM,GRU}. See the symbolic builders above
# * hiddens - hidden state for the first layer, or {hidden state, cell state} if
# cell_type == LSTM
# * batch_sizes - 1-D tensor containing the sequence length for each example
# in the batch.
def rnn_trace_override_symbolic(cell_type, func, sym, g, input, weights, hiddens, batch_sizes):
num_layers = len(weights)
num_weights = 0
for x in weights:
num_weights += len(x)
weights_per_layer = num_weights // num_layers
has_batch_sizes = batch_sizes is not None
# Since we need flat argument lists in the IR, these two functions and the
# supporting code before the `wrapPyFuncWithSymbolic` call are simply
# helpers to reconstruct the input, weights, hiddens, and batch_sizes
# inputs from the flat argument list. To do this, the above code captures
# then lengths of each of these inputs so that we can rematerialize them
# later before calling either the RNN function or the ONNX symbolic function
def forward_flattened_wrapper(input, *args):
args_offset = 0
weights = []
for _ in range(num_layers):
weights.append(args[args_offset:args_offset + weights_per_layer])
args_offset += weights_per_layer
if has_batch_sizes:
hiddens = args[args_offset:-1]
batch_sizes = args[-1]
else:
hiddens = args[args_offset:]
batch_sizes = None
if cell_type != 'LSTM':
assert len(hiddens) == 1
hiddens = hiddens[0]
outputs = func(input, weights, hiddens, batch_sizes)
# We also need a flattened output list
outs_flattened = [outputs[0]]
if cell_type == 'LSTM':
for o in outputs[1]:
outs_flattened.append(o)
else:
outs_flattened.append(outputs[1])
return tuple(outs_flattened)
def symbolic_flattened_wrapper(g, input, *args):
args_offset = 0
weights = []
for _ in range(num_layers):
weights.append(args[args_offset:args_offset + weights_per_layer])
args_offset += weights_per_layer
if has_batch_sizes:
hiddens = args[args_offset:-1]
batch_sizes = args[-1]
else:
hiddens = args[args_offset:]
batch_sizes = None
if cell_type != 'LSTM':
assert len(hiddens) == 1
hiddens = hiddens[0]
return sym(g, input, weights, hiddens, batch_sizes)
flattened_weights = []
for x in weights:
for y in x:
flattened_weights.append(y)
if not isinstance(hiddens, Iterable):
hiddens = [hiddens]
inputs = list(itertools.chain.from_iterable(
[[input], flattened_weights, hiddens,
[batch_sizes] if batch_sizes else []]))
outputs = g.wrapPyFuncWithSymbolic(
forward_flattened_wrapper,
inputs,
3 if cell_type == 'LSTM' else 2,
symbolic_flattened_wrapper
)
return tuple(o for o in outputs)
def RNN_variant_symbolic_builder(
variant, input_size, hidden_size, num_layers, batch_first, dropout, bidirectional, **kwargs):
def symbolic(g, input, all_weights, initial_states, batch_sizes):
if batch_first:
return _unimplemented("RNN/GRU/LSTM", "batch_first")
if dropout and kwargs['train']:
return _unimplemented("RNN/GRU/LSTM", "dropout in training mode")
unidirectional = not bidirectional
prev_output = input
h_outs = []
if variant == 'RNN' or variant == 'GRU':
h0 = initial_states
elif variant == 'LSTM':
h0, c0 = initial_states
c_outs = []
sequence_lens = unused(g) if batch_sizes is None else batch_sizes
if variant == 'GRU':
# pytorch is reset, input, hidden
# onnx is input, reset, hidden
reform_permutation = [(1, 2), (0, 1), (2, 3)]
elif variant == 'LSTM':
# pytorch is input, forget, cell, output.
# onnx is input, output, forget, cell.
reform_permutation = [(0, 1), (3, 4), (1, 3)]
def transform_weights(layer_index):
if variant == 'RNN':
weight_ih, weight_hh, bias_ih, bias_hh = all_weights[layer_index]
elif variant == 'GRU' or variant == 'LSTM':
weight_ih, weight_hh, bias_ih, bias_hh = \
[reform_weights(g, w, hidden_size, reform_permutation) for w in all_weights[layer_index]]
bias_concat = g.op('Concat', bias_ih, bias_hh, axis_i=0)
return tuple(g.op('Unsqueeze', x, axes_i=[0]) for x in (weight_ih, weight_hh, bias_concat))
def retrieve_state(x, start, end):
return x if num_layers == 1 else g.op('Slice', x, axes_i=[0], starts_i=[start], ends_i=[end])
for i in range(num_layers):
if unidirectional:
weight_ih, weight_hh, bias_concat = transform_weights(i)
state_indices = i, i + 1
else:
weight_ih_f, weight_hh_f, bias_f = transform_weights(2 * i)
weight_ih_b, weight_hh_b, bias_b = transform_weights(2 * i + 1)
weight_ih = g.op('Concat', weight_ih_f, weight_ih_b, axis_i=0)
weight_hh = g.op('Concat', weight_hh_f, weight_hh_b, axis_i=0)
bias_concat = g.op('Concat', bias_f, bias_b, axis_i=0)
state_indices = 2 * i, 2 * i + 2
inputs = [prev_output, weight_ih, weight_hh, bias_concat, sequence_lens]
inputs.append(retrieve_state(h0, *state_indices))
if variant == 'LSTM':
inputs.append(retrieve_state(c0, *state_indices))
extra_kwargs = {} if unidirectional else {'direction_s': 'bidirectional'}
if variant == 'RNN':
prev_output, h_out = g.op('RNN', *inputs, outputs=2,
hidden_size_i=hidden_size,
activations_s=[kwargs['nonlinearity'].lower()],
**extra_kwargs)
elif variant == 'GRU':
prev_output, h_out = g.op('GRU', *inputs, outputs=2,
hidden_size_i=hidden_size,
linear_before_reset_i=1,
**extra_kwargs)
elif variant == 'LSTM':
prev_output, h_out, c_out = g.op('LSTM', *inputs, outputs=3,
hidden_size_i=hidden_size,
**extra_kwargs)
if bidirectional:
# The ONNX RNN/GRU/LSTM produce an output of dimensions
# seq_len, num_directions, batch, hidden_size
# We have to convert to match pytorch's expected
# seq_len, batch, hidden_size * num_directions
# by first moving num_directions to the end with
# Transpose, and then combining it with hidden_size
# with Reshape.
prev_output = g.op('Transpose', prev_output, perm_i=[0, 2, 3, 1])
prev_output = g.op('Reshape', prev_output, g.op('Constant', value_t=torch.LongTensor([0, 0, -1])))
else:
prev_output = g.op('Squeeze', prev_output, axes_i=[1])
h_outs.append(h_out)
if variant == 'LSTM':
c_outs.append(c_out)
h_outs = h_out if num_layers == 1 else g.op('Concat', *h_outs, axis_i=0)
if variant == 'RNN' or variant == 'GRU':
return prev_output, h_outs
elif variant == 'LSTM':
c_outs = c_out if num_layers == 1 else g.op('Concat', *c_outs, axis_i=0)
return prev_output, h_outs, c_outs
return symbolic
@parse_args('v', 'i')
def _dim_arange(g, like, dim):
return g.op('ATen', like, dim_i=dim, operator_s='_dim_arange')