blob: f6e085814854ca1b4e79099d4a1027d0ee243f13 [file] [log] [blame]
import copy
import enum
import pprint
import unittest
from enum import Enum
# Importing these files make modifications to the op_db that we need
import test_ops # noqa: F401
import test_vmap # noqa: F401
import torch
import torch._functorch.top_operators_github_usage as top_ops
from functorch_additional_op_db import additional_op_db
from torch.testing._internal.common_device_type import toleranceOverride
from torch.testing._internal.common_methods_invocations import op_db
all_overridable = list(torch.overrides.get_testing_overrides().keys())
public_docs = [
(torch.nn.functional, "torch.nn.functional", "docs/source/nn.functional.rst"),
(torch.fft, "torch.fft", "docs/source/fft.rst"),
(torch.special, "torch.special", "docs/source/special.rst"),
(torch.linalg, "torch.linalg", "docs/source/linalg.rst"),
(torch, "torch", "docs/source/torch.rst"),
(torch.Tensor, "torch.Tensor", "docs/source/tensors.rst"),
]
# torch.abs, Tensor.abs, Tensor.abs_ are all considered to be different
def get_public_overridable_apis(pytorch_root="/raid/rzou/pt/debug-cpu"):
results = {}
all_overridable_apis = set(torch.overrides.get_testing_overrides().keys())
for module, module_name, src in public_docs:
with open(f"{pytorch_root}/{src}") as f:
lines = f.readlines()
# APIs eitehr begin with 4 spaces or ".. autofunction::"
api_lines1 = [line.strip() for line in lines if line.startswith(" " * 4)]
api_lines2 = [
line.strip()[len(".. autofunction:: ") :]
for line in lines
if line.startswith(".. autofunction::")
]
lines = api_lines1 + api_lines2
lines = [line[7:] if line.startswith("Tensor.") else line for line in lines]
lines = [line for line in lines if hasattr(module, line)]
for line in lines:
api = getattr(module, line)
if api in all_overridable_apis:
results[f"{module_name}.{line}"] = api
return results
denylist = {
"torch.Tensor.data_ptr",
"torch.Tensor.dim",
"torch.Tensor.element_size",
"torch.Tensor.backward",
"torch.Tensor.as_strided",
"torch.Tensor.register_hook",
"torch.Tensor.record_stream",
"torch.Tensor.qscheme",
"torch.Tensor.ndimension",
"torch.Tensor.smm",
"torch.Tensor.sspaddmm",
"torch.Tensor.retain_grad",
"torch.Tensor.sparse_mask",
"torch.Tensor.sparse_dim",
"torch.Tensor.dense_dim",
"torch.Tensor.values",
"torch.Tensor.indices",
"torch.Tensor.numel",
"torch.Tensor.size",
"torch.Tensor.nelement",
"torch.Tensor.q_scale",
"torch.Tensor.q_zero_point",
"torch.Tensor.q_per_channel_scales",
"torch.Tensor.q_per_channel_zero_points",
"torch.Tensor.q_per_channel_axis",
"torch.Tensor.int_repr",
"torch.Tensor.to_sparse",
"torch.Tensor.is_inference",
"torch.Tensor.storage",
"torch.Tensor.storage_type",
}
def get_method_only_ops_we_care_about():
apis = get_public_overridable_apis()
result = []
for key in apis.keys():
if not key.startswith("torch.Tensor"):
continue
if key in denylist:
continue
api = key.split(".")[2]
# filter out in-place
if api.endswith("_"):
continue
if f"torch.{api}" not in apis.keys():
result.append(api)
return result
# Deduplicates torch.abs and Tensor.abs
def get_public_overridable_ops():
results = get_public_overridable_apis()
cpy = copy.deepcopy(results)
for key in cpy.keys():
if not key.startswith("torch.Tensor"):
continue
api = key.split(".")[2]
if f"torch.{api}" in results.keys():
del results[key]
return results
def get_public_overridable_outplace_ops():
results = get_public_overridable_ops()
cpy = copy.deepcopy(results)
for key in cpy.keys():
# NB: there are no dunder methods bcs we don't document those
if key.endswith("_"):
del results[key]
return results
def get_public_overridable_outplace_we_care_about():
results = get_public_overridable_outplace_ops()
cpy = copy.deepcopy(results)
for key in cpy.keys():
# quantization
if "quant" in key or ".q_" in key:
del results[key]
# is_cpu, etc. It doesn't make sense to have OpInfos for these
if ".is_" in key:
del results[key]
if key in denylist and key in results:
del results[key]
return results
# e.g. nn.functional.softmax
def get_op(dotted_name):
names = dotted_name.split(".")
mod = torch
for name in names:
if not hasattr(mod, name):
return None
mod = getattr(mod, name)
return mod
# Maps function -> [OpInfo]
def get_ops_covered_by_opinfos():
ops = {}
def safe_append(dct, key, val):
if key in dct:
dct[key].append(val)
else:
dct[key] = [val]
for opinfo in op_db:
func_op = get_op(opinfo.name)
if func_op:
safe_append(ops, func_op, opinfo)
if opinfo.method_variant:
safe_append(ops, opinfo.method_variant, opinfo)
if opinfo.inplace_variant:
safe_append(ops, opinfo.inplace_variant, opinfo)
for alias in opinfo.aliases:
safe_append(ops, alias.op, opinfo)
return ops
factory_fns = {
"tensor",
"zeros",
"ones",
"randn",
"arange",
"rand",
"empty",
"randperm",
"linspace",
"logspace",
"hann_window",
"full",
"eye",
"blackman_window",
"bartlett_window",
"randint",
"range",
}
def get_top_ops(torch_threshold, nn_fn_threshold, with_counts=False):
denylist = set(
{
# These are either not real "operators", factory functions
# that trivially work, or not-documented ops.
"load",
"no_grad",
"save",
"from_numpy",
"manual_seed",
"set_grad_enabled",
"set_default_tensor_type",
"set_num_threads",
"set_printoptions",
"numel",
"set_default_dtype",
"sparse_coo_tensor",
"set_rng_state",
"get_rng_state",
"get_default_dtype",
"initial_seed",
"get_num_threads",
"quantize_per_tensor",
"hann_window",
"is_tensor",
"as_tensor",
"equal",
"enable_grad",
"seed",
"is_storage",
"is_floating_point",
"nn.functional.torch",
"set_flush_denormal",
"set_num_interop_threads",
"dequantize",
"get_num_interop_threads",
"nn.functional.math",
"nn.functional.threshold_",
"nn.functional.selu_",
"nn.functional.elu_",
"nn.functional.rrelu_",
"nn.functional.leaky_relu_",
"nn.functional.hardtanh_",
"nn.functional.has_torch_function",
"nn.functional.has_torch_function_unary",
"nn.functional.has_torch_function_variadic",
"nn.functional.handle_torch_function",
"nn.functional.adaptive_max_pool1d_with_indices",
"nn.functional.adaptive_max_pool2d_with_indices",
"nn.functional.adaptive_max_pool3d_with_indices",
"nn.functional.fractional_max_pool2d_with_indices",
"nn.functional.fractional_max_pool3d_with_indices",
"is_complex",
"grad",
"quantize_per_channel",
"nn.functional.max_pool2d_with_indices",
"nn.functional.max_pool3d_with_indices",
"nn.functional.max_pool1d_with_indices",
"nn.functional.celu_",
"nn.functional.grad",
"nn.functional.relu_",
"nn.functional.boolean_dispatch",
"nn.functional.assert_int_or_pair",
"fft", # is namespace
}
)
torch_ops = top_ops.top_torch
nn_fn_ops = top_ops.get_nn_functional_top_list()
torch_ops = [op for op in torch_ops if op[0] not in denylist]
nn_fn_ops = [op for op in nn_fn_ops if op[0] not in denylist]
ops = torch_ops[:torch_threshold] + nn_fn_ops[:nn_fn_threshold]
# Now, sort by priority
ops.sort(reverse=True, key=lambda op: op[1])
if not with_counts:
ops = [op[0] for op in ops]
return ops
def get_ops_percentage(torch_threshold, nn_fn_threshold):
data = top_ops.top_torch + top_ops.get_nn_functional_top_list()
def get_num_usages(opname):
# Ignore this, this is heavily inflated
if opname == "t":
return 0
result = [op[1] for op in data if op[0] == opname]
assert len(result) == 1
return result[0]
# get all operators that are not in the denylist
all_ops = get_top_ops(999999, 999999)
total_op_usages = sum(get_num_usages(op) for op in all_ops)
# get subset of all operators
subset_ops = get_top_ops(torch_threshold, nn_fn_threshold)
subset_op_usages = sum(get_num_usages(op) for op in subset_ops)
return subset_op_usages / total_op_usages
def get_top_ops_not_covered_by_opinfo(torch_threshold=0, nn_fn_threshold=0):
ops = get_top_ops(torch_threshold, nn_fn_threshold)
ops_with_opinfo = []
for op in op_db:
ops_with_opinfo.append(op.name)
ops_with_opinfo.extend([op.name for op in op.aliases])
ops_with_opinfo = set(ops_with_opinfo)
result = [op for op in ops if op not in ops_with_opinfo]
result = [op for op in result if op not in denylist]
result = [op for op in result if op not in factory_fns]
return result
def get_covered_ops(ops_list, invert=False):
ops_covered_by_opinfo = get_ops_covered_by_opinfos()
overridable_outplace_ops = ops_list
results = {}
for key, op in overridable_outplace_ops.items():
cond = op in ops_covered_by_opinfo
if invert:
cond = not cond
if cond:
results[key] = op
return results
class Status(Enum):
Correct = 0
Fast = 1
tests = {
"test_vmap_exhaustive",
"test_op_has_batch_rule",
"test_vjp",
"test_vmapvjp",
"test_vmapvjp_has_batch_rule",
"test_jvp",
"test_vmapjvp",
}
def is_decorateinfo_skip_or_xfail(decorateinfo):
assert len(decorateinfo.decorators) == 1
actual_decorator = decorateinfo.decorators[0]
if isinstance(actual_decorator, toleranceOverride):
return False
if actual_decorator == unittest.expectedFailure:
return True
# Assume the rest are skips
return True
def get_all_tested_ops():
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
op_to_opinfo = get_ops_covered_by_opinfos()
result = set({})
for op in get_covered_ops(overridable_outplace_we_care_about).values():
opinfos = op_to_opinfo[op]
for opinfo in opinfos:
result.add(opinfo.name)
return result
def get_skipped_or_xfailed_ops_for(test_name):
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
op_to_opinfo = get_ops_covered_by_opinfos()
result = set({})
for op in get_covered_ops(overridable_outplace_we_care_about).values():
opinfos = op_to_opinfo[op]
for opinfo in opinfos:
for decorator in opinfo.decorators:
if not hasattr(decorator, "test_name"):
continue
if decorator.test_name != test_name:
continue
if is_decorateinfo_skip_or_xfail(decorator):
result.add(opinfo.name)
return result
def get_statuses(for_subset=None, invert=False):
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
if for_subset is not None:
overridable_outplace_we_care_about = {
k: v
for k, v in overridable_outplace_we_care_about.items()
# Removes "torch."
if k[6:] in for_subset
}
op_to_opinfo = get_ops_covered_by_opinfos()
result = {}
_ = get_covered_ops(overridable_outplace_we_care_about)
def get_covered_tests(op):
opinfos = op_to_opinfo[op]
result = copy.deepcopy(tests)
for opinfo in opinfos:
for decorator in opinfo.decorators:
if not hasattr(decorator, "test_name"):
continue
if decorator.test_name in tests and decorator.test_name in result:
result.remove(decorator.test_name)
return result
def get_all_aliases(op):
opinfos = op_to_opinfo[op]
result = []
for opinfo in opinfos:
result.append(opinfo.name)
result.extend(opinfo.aliases)
return set(result)
for name, op in get_covered_ops(overridable_outplace_we_care_about).items():
successful_tests = get_covered_tests(op)
failed_tests = tests - successful_tests
result[name] = failed_tests if invert else successful_tests
return result
def transpose_statuses(for_subset=None, invert=False):
statuses = get_statuses(for_subset, invert=invert)
result = {}
for test in tests:
result[test] = set({})
for op, supported in statuses.items():
for test in supported:
result[test].add(op)
return result
overridable_apis = get_public_overridable_apis()
overridable_ops = get_public_overridable_ops()
overridable_outplace_ops = get_public_overridable_outplace_ops()
overridable_outplace_we_care_about = get_public_overridable_outplace_we_care_about()
tested_overridable_outplace_ops = get_covered_ops(overridable_outplace_we_care_about)
untested_overridable_outplace_ops = get_covered_ops(
overridable_outplace_we_care_about, invert=True
)
# print("List of OpInfos we need:")
# for key in untested_overridable_outplace_ops.keys():
# print(key)
# print("-" * 80)
# print("")
print(f"Overridable public APIs: {len(overridable_apis)}")
print(f"Overridable public ops: {len(overridable_ops)}")
print(f"Overridable public outplace ops: {len(overridable_outplace_ops)}")
print(
f"Overridable public outplace ops we care about: {len(overridable_outplace_we_care_about)}"
)
print(
f"OpInfo-tested overridable public outplace ops: {len(tested_overridable_outplace_ops)}"
)
def remove_torch(name):
assert name[:6] == "torch."
return name[6:]
def get_list_of_all_tests():
all_tests = list(tested_overridable_outplace_ops.keys())
return {remove_torch(test) for test in all_tests}
mytest = {
"test_vmap_exhaustive",
"test_op_has_batch_rule",
"test_vjp",
"test_vmapvjp",
"test_vmapvjp_has_batch_rule",
}
print("*" * 80)
all_tests = get_list_of_all_tests()
for test in mytest:
result = get_skipped_or_xfailed_ops_for(test)
diff = len(all_tests - result)
print(f"{test}: {diff}")
def get_jvp_coverage(subset=None):
# - number that support autograd
# - number that support forward_ad (in pytorch core)
# - number that support functorch.jvp
op_to_opinfo = get_ops_covered_by_opinfos()
ops_dct = tested_overridable_outplace_ops
if subset is not None:
ops_dct = {
name: op for name, op in ops_dct.items() if remove_torch(name) in subset
}
supports_autograd_ops_dct = {
name: op_to_opinfo[fn]
for name, fn in ops_dct.items()
if op_to_opinfo[fn][0].supports_autograd
}
supports_forwardad_ops_dct = {
name: op_to_opinfo[fn]
for name, fn in ops_dct.items()
if op_to_opinfo[fn][0].supports_forward_ad
}
ops = {remove_torch(test) for test in list(ops_dct.keys())}
supports_autograd = {
remove_torch(test) for test in list(supports_autograd_ops_dct.keys())
}
supports_forward_ad = {
remove_torch(test) for test in list(supports_forwardad_ops_dct.keys())
}
assert supports_forward_ad.issubset(supports_autograd)
assert supports_autograd.issubset(ops)
failed_ops = get_skipped_or_xfailed_ops_for("test_jvp")
coverage = len(supports_forward_ad - failed_ops)
no_forward_ad = len(supports_autograd) - len(supports_forward_ad)
print(f"test_jvp, {coverage}, {no_forward_ad}, {len(ops)}")
get_jvp_coverage()
get_jvp_coverage(get_top_ops(100, 25))
for op in get_top_ops(100, 25):
print(op)
print("*" * 80)
# result = get_skipped_or_xfailed_ops_for('test_vmap_exhaustive')
# result = get_skipped_or_xfailed_ops_for('test_op_has_batch_rule')
# result = get_skipped_or_xfailed_ops_for('test_vjp')
# result = get_skipped_or_xfailed_ops_for('test_vmapvjp')
# result = get_skipped_or_xfailed_ops_for('test_vmapvjp_has_batch_rule')
# import pdb; pdb.set_trace()
statuses = transpose_statuses()
for test in tests:
print(f"{test} coverage {len(statuses[test])}")
method_only_ops = get_method_only_ops_we_care_about()
# for op in method_only_ops:
# print(f' {op},')
top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(100, 25)
print("=" * 80)
for op in top_ops_not_covered_by_opinfo:
print(f"{op}, {top_ops.usage_count[op]}")
# print("top ops not covered by opinfo: ")
# top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(200, 50)
# for op in top_ops_not_covered_by_opinfo:
# print(f'{op}, {top_ops.usage_count[op]}')
# print("top ops not covered by opinfo: ")
# top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(220, 92)
# for op in top_ops_not_covered_by_opinfo:
# print(f'{op}, {top_ops.usage_count[op]}')
# print("top ops not covered by opinfo: ")
# top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(999, 999)
# for op in top_ops_not_covered_by_opinfo:
# print(f'{op}, {top_ops.usage_count[op]}')
def remove_from_set(parent, to_remove):
for to_remove_elt in to_remove:
if to_remove_elt in parent:
parent.remove(to_remove_elt)
def print_coverage_info(th=100, nn=25):
print("=" * 80)
print(f"top {th}, {nn} coverage")
statuses = transpose_statuses(get_top_ops(th, nn), invert=True)
top_ops_not_covered_by_opinfo = get_top_ops_not_covered_by_opinfo(th, nn)
# testing problems
exemptions = {
"torch.nn.functional.dropout", # randomness
}
# Allowed exemptions
vmap_exemptions = {
"torch.randn_like", # randomness
"torch.rand_like", # randomness
"torch.allclose", # number output
"torch.unique", # dynamic
"torch.nonzero", # dynamic
"torch.masked_select", # dynamic
"torch.prod", # dynamic (backward)
"torch.norm", # norm with nuc is not commonly used; we support the other cases.
"torch.svd", # There isn't a bug, it is just nondeterministic so we can't test it.
"torch.nn.functional.embedding", # We support everything except the sparse option.
}
remove_from_set(statuses["test_vmap_exhaustive"], vmap_exemptions)
remove_from_set(statuses["test_vmapvjp"], vmap_exemptions)
remove_from_set(statuses["test_vmapvjp_has_batch_rule"], vmap_exemptions)
remove_from_set(statuses["test_op_has_batch_rule"], vmap_exemptions)
remove_from_set(statuses["test_vmapjvp"], vmap_exemptions)
for test in tests:
remove_from_set(statuses[test], exemptions)
print(f"total ops in set: {th + nn}")
print(f"tested by OpInfo: {th + nn - len(top_ops_not_covered_by_opinfo)}")
for test in tests:
if test in {"test_jvp", "test_vmapjvp"}:
continue
print(f"{test} failing coverage {len(statuses[test])}")
# We don't care about these yet
del statuses["test_jvp"]
del statuses["test_vmapjvp"]
pprint.pprint(statuses)
def get_name_to_opinfo_map():
dct = {}
for op in op_db + additional_op_db:
def add(name, op):
if name not in dct:
dct[name] = []
dct[name].append(op)
add(op.name, op)
for alias in op.aliases:
add(alias.name, op)
return dct
NAME_TO_OPINFO = get_name_to_opinfo_map()
class Support(enum.Enum):
NO = 0
YES = 1
UNKNOWN = 2
FACTORY_FNS = {
"tensor",
"zeros",
"ones",
"randn",
"arange",
"rand",
"empty",
"range",
"full",
"randperm",
"eye",
"randint",
"linspace",
"logspace",
}
VJP_EXEMPTIONS = {
"nn.functional.dropout", # not actually problem, randomness testing artifact
"nn.functional.dropout2d", # not actually problem, randomness testing artifact
"nn.functional.rrelu", # not actually problem, randomness testing artifact
"bernoulli", # not actually problem, randomness testing artifact
"normal", # not actually problem, randomness testing artifact
}
VMAP_EXEMPTIONS = {
"randn_like", # randomness
"rand_like", # randomness
"allclose", # number output
"unique", # dynamic
"nonzero", # dynamic
"masked_select", # dynamic
"prod", # dynamic (backward)
"norm", # norm with nuc is not commonly used; we support the other cases.
"svd", # There isn't a bug, it is just nondeterministic so we can't test it.
"nn.functional.embedding", # We support everything except the sparse option.
"nn.functional.dropout", # randomness
"nn.functional.dropout2d", # randomness
"bernoulli", # randomness
"multinomial", # randomness
"normal", # randomness
}
JVP_EXEMPTIONS = {
"nn.functional.dropout", # not actually problem, randomness testing artifact
"nn.functional.dropout2d", # not actually problem, randomness testing artifact
"nn.functional.rrelu", # not actually problem, randomness testing artifact
"normal", # not actually problem, randomness testing artifact
"bernoulli", # not actually problem, randomness testing artifact
}
class Operator:
def __init__(self, name):
self.name = name
self.opinfos = NAME_TO_OPINFO.get(name, None)
assert self.opinfos is None or len(self.opinfos) > 0
def has_opinfo(self):
return self.opinfos is not None
def __repr__(self):
return f'Operator("{self.name}")'
def __hash__(self):
return hash(self.name)
def no_opinfos_skip_test(self, test_name):
"""Returns NO if any opinfos have a skip or xfail for the test"""
if not self.has_opinfo():
return Support.UNKNOWN
for opinfo in self.opinfos:
for decorator in opinfo.decorators:
if not hasattr(decorator, "test_name"):
continue
if decorator.test_name != test_name:
continue
if is_decorateinfo_skip_or_xfail(decorator):
return Support.NO
return Support.YES
def any_opinfo_attr(self, attr):
if not self.has_opinfo():
raise RuntimeError
return any(getattr(opinfo, attr) for opinfo in self.opinfos)
def all_opinfo_attr(self, attr):
if not self.has_opinfo():
raise RuntimeError
return all(getattr(opinfo, attr) for opinfo in self.opinfos)
def supports_vjp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VJP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test("test_vjp")
def supports_vmap(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test("test_vmap_exhaustive")
def supports_fast_vmap(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test("test_op_has_batch_rule")
def supports_vmapvjp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test("test_vmapvjp")
def supports_fast_vmapvjp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in VMAP_EXEMPTIONS:
return Support.YES
return self.no_opinfos_skip_test("test_vmapvjp_has_batch_rule")
def supports_jvp(self):
if self.name in FACTORY_FNS:
return Support.YES
if self.name in JVP_EXEMPTIONS:
return Support.YES
if not self.has_opinfo():
return Support.UNKNOWN
if self.any_opinfo_attr("supports_autograd") and not self.all_opinfo_attr(
"supports_forward_ad"
):
return Support.NO
return self.no_opinfos_skip_test("test_jvp")
def supports_jvpvjp(self):
if self.name in FACTORY_FNS:
return Support.YES
exemptions = {
# we have support (see OpInfo), testing artifact
"nn.functional.dropout2d",
"nn.functional.dropout",
# exception: we dont even support double backward for this
"nn.functional.hardswish",
"bernoulli", # this isn't differentiable
"normal", # not differentiable
}
if self.name in exemptions:
return Support.YES
return self.no_opinfos_skip_test("test_jvpvjp")
def _supports_vmapjvp_base(self, test):
if self.name in FACTORY_FNS:
return Support.YES
VMAPJVP_EXEMPTIONS = {
"prod", # dynamic (backward)
"nn.functional.batch_norm", # testing problem
"normal", # not actually problem, randomness testing artifact
"bernoulli", # not actually problem, randomness testing artifact
"nn.functional.dropout2d", # not actually problem, randomness testing artifact
"nn.functional.dropout", # not actually problem, randomness testing artifact
# Not a problem.
# It's just that the max_norm testing mutates inputs...
# (we have our own functorch variant of the OpInfo without max_norm)
"nn.functional.embedding",
}
if self.name in VMAPJVP_EXEMPTIONS:
return Support.YES
if not self.has_opinfo():
return Support.UNKNOWN
if self.any_opinfo_attr("supports_autograd") and not self.all_opinfo_attr(
"supports_forward_ad"
):
return Support.NO
return self.no_opinfos_skip_test(test)
def supports_vmapjvp(self):
return self._supports_vmapjvp_base("test_vmapjvpall")
def supports_fast_vmapjvp(self):
return self._supports_vmapjvp_base("test_vmapjvpall_has_batch_rule")
class OperatorSet:
def __init__(self, operators):
self.data = set(operators)
@classmethod
def from_names(cls, names):
return OperatorSet([Operator(name) for name in names])
@classmethod
def from_top_ops_threshold(cls, torch_threshold, nn_fn_threshold):
names = get_top_ops(torch_threshold, nn_fn_threshold)
return cls.from_names(names)
@classmethod
def from_top125(cls):
return cls.from_top_ops_threshold(100, 25)
@classmethod
def from_top160(cls):
return cls.from_top_ops_threshold(107, 53)
@classmethod
def all(cls):
dct = get_public_overridable_outplace_we_care_about()
names = dct.keys()
names_sanitized = []
for n in names:
torch_tensor = "torch.Tensor."
torch_dot = "torch."
if n.startswith(torch_tensor):
names_sanitized.append(n[len(torch_tensor) :])
elif n.startswith(torch_dot):
names_sanitized.append(n[len(torch_dot) :])
else:
raise AssertionError
return cls.from_names(names_sanitized)
def query(self, operator_method, filter=(Support.NO, Support.YES, Support.UNKNOWN)):
result = {}
for key in filter:
result[key] = set()
for op in self.data:
support_status = operator_method(op)
if support_status in filter:
result[support_status].add(op)
return result
def summary(self):
checks = [
"supports_vjp",
"supports_vmap",
"supports_fast_vmap",
"supports_vmapvjp",
"supports_fast_vmapvjp",
"supports_jvp",
"supports_vmapjvp",
"supports_fast_vmapjvp",
"supports_jvpvjp",
]
result = ["test, yes, no, unknown"]
for check in checks:
accessor = getattr(Operator, check)
all_results = self.query(accessor)
yes_amt = len(all_results[Support.YES])
no_amt = len(all_results[Support.NO])
unknown_amt = len(all_results[Support.UNKNOWN])
result.append(f"{check}, {yes_amt}, {no_amt}, {unknown_amt}")
return "\n".join(result)
opset = OperatorSet.all()
has_no_opinfo = opset.query(Operator.has_opinfo, (False,))
print("=" * 30 + " Summary " + "=" * 30)
print(f"% of usages on github: {get_ops_percentage(99999, 99999)}")
print(opset.summary())
# sanity checks
result = opset.query(Operator.supports_vjp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
print("=" * 30 + " Top 60 Summary " + "=" * 30)
print(f"% of usages on github: {get_ops_percentage(35, 25)}")
opset = OperatorSet.from_top_ops_threshold(35, 25)
# result = opset.query(Operator.supports_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# result = opset.query(Operator.supports_jvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# kresult = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
# kpprint.pprint(result)
# result = opset.query(Operator.supports_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# result = opset.query(Operator.supports_fast_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# pprint.pprint(result)
print(opset.summary())
print("=" * 30 + " Top 125 Summary " + "=" * 30)
print(f"% of usages on github: {get_ops_percentage(100, 25)}")
opset = OperatorSet.from_top125()
# result = opset.query(Operator.supports_vmap, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# result = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
print("supports_vjp")
result = opset.query(Operator.supports_vjp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
print("supports_jvp")
result = opset.query(Operator.supports_jvp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
print("supports_vmapjvp")
result = opset.query(Operator.supports_vmapjvp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
print("supports_jvpvjp")
result = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
pprint.pprint(result)
# result = opset.query(Operator.supports_fast_vmapjvp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# pprint.pprint(result)
print(opset.summary())
# print("=" * 30 + " Top 160 Summary " + "=" * 30)
# opset = OperatorSet.from_top160()
# result = opset.query(Operator.supports_jvpvjp, (Support.NO, Support.UNKNOWN))
# pprint.pprint(result)
# print(opset.summary())
# Print list of everything in order
# all_ops = get_top_ops(999999, 999999, with_counts=True)
# for op, count in all_ops:
# print(f'{op}, {count}')