blob: 1a579b519fe09cf87ce667279ac6d80dfb294fbd [file] [log] [blame]
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from hypothesis import given
import hypothesis.strategies as st
import numpy as np
from caffe2.python.transformations import Transformer
from caffe2.python import core, workspace, test_util
transformer = Transformer()
def str_compare(a, b, encoding="utf8"):
if isinstance(a, bytes):
a = a.decode(encoding)
if isinstance(b, bytes):
b = b.decode(encoding)
return a == b
class TestTransformations(test_util.TestCase):
def test_transformer_AddNNPACK(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["Y2"])
transformer.AddNNPACK(net)
assert str_compare(net.Proto().op[0].engine, "NNPACK")
def test_transformer_FuseNNPACKConvRelu(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["Y2"])
transformer.AddNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
transformer.FuseNNPACKConvRelu(net)
assert len(net.Proto().op) == 1
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
def test_noFuseNNPACKConvRelu(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["Y2"])
net.Relu(["Y"], ["Y3"])
transformer.AddNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
transformer.FuseNNPACKConvRelu(net)
assert len(net.Proto().op) == 3
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation") and str_compare(arg.s, "Relu"):
has_activation_arg = True
assert not has_activation_arg
def test_transformer_FuseNNPACKConvReluNoInplace(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["X"])
transformer.AddNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
transformer.FuseNNPACKConvRelu(net)
assert len(net.Proto().op) == 1
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
def test_transformer_FuseNNPACKConvReluInplaceRelu(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["Y"])
transformer.AddNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
transformer.FuseNNPACKConvRelu(net)
assert len(net.Proto().op) == 1
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
def test_transformer_FuseNNPACKConvReluPingPongNaming(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["X"])
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
transformer.AddNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
transformer.FuseNNPACKConvRelu(net)
assert len(net.Proto().op) == 2
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
def test_transformer_FuseNNPACKConvReluFollowedByMultipleInputOp(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["Y2"])
net.Conv(["Y2", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["Y2"])
transformer.AddNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
transformer.FuseNNPACKConvRelu(net)
assert len(net.Proto().op) == 2
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
def test_transformer_FuseNNPACKConvReluInplaceFollowedByMultipleInputOp(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y"], ["Y"])
net.Conv(["Y", "w", "b"], ["Y2"], stride=1, pad=0, kernel=3, order="NCHW")
net.Relu(["Y2"], ["Y2"])
transformer.AddNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
transformer.FuseNNPACKConvRelu(net)
assert len(net.Proto().op) == 2
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
def test_transformer_SinkMaxPool(self):
net = core.Net("net")
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW")
net.MaxPool(["Y"], ["Y1"], kernel=3)
net.Relu(["Y1"], ["Y1"])
transformer.SinkMaxPool(net)
assert str_compare(net.Proto().op[1].type, "Relu")
assert str_compare(net.Proto().op[2].type, "MaxPool")
@given(
size=st.integers(7, 10),
input_channels=st.integers(1, 10),
seed=st.integers(0, 65535),
order=st.sampled_from(["NCHW", "NHWC"]),
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
)
def test_transformer_FuseConvBN(self, size, input_channels, seed, order, epsilon):
workspace.ResetWorkspace()
net = core.Net("net")
c = input_channels
h = size
w = size
k = 3
net.Conv(["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=k, order=order)
net.SpatialBN(
["Y", "scale", "bias", "mean", "var"],
["Y2"],
is_test=True,
order=order,
epsilon=epsilon,
)
np.random.seed(seed)
if order == "NCHW":
workspace.FeedBlob("X", np.random.rand(1, c, h, w).astype(np.float32))
workspace.FeedBlob("w", np.random.rand(c, c, k, k).astype(np.float32))
else:
workspace.FeedBlob("X", np.random.rand(1, h, w, c).astype(np.float32))
workspace.FeedBlob("w", np.random.rand(c, k, k, c).astype(np.float32))
workspace.FeedBlob("b", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("scale", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("bias", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("mean", np.random.rand(c).astype(np.float32))
# This is necessary because 1/sqrt(var) is used and if var is too small
# we get floating point artifacts that cause test failures
workspace.FeedBlob("var", np.random.rand(c).astype(np.float32) + 0.5)
workspace.RunNetOnce(net)
preTransformOutput = workspace.FetchBlob("Y2").flatten()
workspace.FeedBlob("Y2", np.zeros((1, 1)))
transformer.FuseConvBN(net)
# Ensure fusion
assert len(net.Proto().op) == 1
workspace.RunNetOnce(net)
postTransformOutput = workspace.FetchBlob("Y2").flatten()
# Check that there is no numerical difference
assert np.allclose(
preTransformOutput,
postTransformOutput,
rtol=5e-02,
atol=1e-03
)
@given(
size=st.integers(7, 10),
input_channels=st.integers(1, 10),
seed=st.integers(0, 65535),
order=st.sampled_from(["NCHW", "NHWC"]),
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
)
def test_transformer_FuseConvBNNoConvBias(self, size, input_channels, seed, order, epsilon):
workspace.ResetWorkspace()
net = core.Net("net")
c = input_channels
h = size
w = size
k = 3
net.Conv(["X", "w"], ["Y"], stride=1, pad=0, kernel=k, order=order)
net.SpatialBN(
["Y", "scale", "bias", "mean", "var"],
["Y2"],
is_test=True,
order=order,
epsilon=epsilon,
)
np.random.seed(seed)
if order == "NCHW":
workspace.FeedBlob("X", np.random.rand(1, c, h, w).astype(np.float32))
workspace.FeedBlob("w", np.random.rand(c, c, k, k).astype(np.float32))
else:
workspace.FeedBlob("X", np.random.rand(1, h, w, c).astype(np.float32))
workspace.FeedBlob("w", np.random.rand(c, k, k, c).astype(np.float32))
workspace.FeedBlob("scale", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("bias", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("mean", np.random.rand(c).astype(np.float32))
# This is necessary because 1/sqrt(var) is used and if var is too small
# we get floating point artifacts that cause test failures
workspace.FeedBlob("var", np.random.rand(c).astype(np.float32) + 0.5)
workspace.RunNetOnce(net)
preTransformOutput = workspace.FetchBlob("Y2").flatten()
workspace.FeedBlob("Y2", np.zeros((1, 1)))
transformer.FuseConvBN(net)
# Ensure fusion
assert len(net.Proto().op) == 1
workspace.RunNetOnce(net)
postTransformOutput = workspace.FetchBlob("Y2").flatten()
# Check that there is no numerical difference
assert np.allclose(
preTransformOutput,
postTransformOutput,
rtol=5e-02,
atol=1e-03
)
@given(
size=st.integers(7, 10),
input_channels=st.integers(1, 10),
seed=st.integers(0, 65535),
order=st.sampled_from(["NCHW", "NHWC"]),
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
)
def test_transformer_FuseConvBNNoConvBiasDuplicatedName(self, size, input_channels, seed, order, epsilon):
workspace.ResetWorkspace()
net = core.Net("net")
c = input_channels
h = size
w = size
k = 3
net.Conv(["X", "w"], ["Y"], stride=1, pad=0, kernel=k, order=order)
net.SpatialBN(
["Y", "scale", "_bias0", "mean", "var"],
["Y2"],
is_test=True,
order=order,
epsilon=epsilon,
)
np.random.seed(seed)
if order == "NCHW":
workspace.FeedBlob("X", np.random.rand(1, c, h, w).astype(np.float32))
workspace.FeedBlob("w", np.random.rand(c, c, k, k).astype(np.float32))
else:
workspace.FeedBlob("X", np.random.rand(1, h, w, c).astype(np.float32))
workspace.FeedBlob("w", np.random.rand(c, k, k, c).astype(np.float32))
workspace.FeedBlob("scale", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("_bias0", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("mean", np.random.rand(c).astype(np.float32))
# This is necessary because 1/sqrt(var) is used and if var is too small
# we get floating point artifacts that cause test failures
workspace.FeedBlob("var", np.random.rand(c).astype(np.float32) + 0.5)
workspace.RunNetOnce(net)
preTransformOutput = workspace.FetchBlob("Y2").flatten()
workspace.FeedBlob("Y2", np.zeros((1, 1)))
transformer.FuseConvBN(net)
# Ensure fusion
assert len(net.Proto().op) == 1
workspace.RunNetOnce(net)
postTransformOutput = workspace.FetchBlob("Y2").flatten()
print("pre")
print(preTransformOutput)
print("after")
print(postTransformOutput)
# Check that there is no numerical difference
assert np.allclose(
preTransformOutput,
postTransformOutput,
rtol=5e-02,
atol=1e-03
)
@given(
size=st.integers(7, 10),
input_channels=st.integers(1, 10),
kt=st.integers(3, 5),
kh=st.integers(3, 5),
kw=st.integers(3, 5),
seed=st.integers(0, 65535),
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
)
def test_transformer_FuseConv3DBN(
self, size, input_channels, kt, kh, kw, seed, epsilon
):
workspace.ResetWorkspace()
net = core.Net("net")
c = input_channels
t = size
h = size
w = size
net.Conv(
["X", "w", "b"],
["Y"],
kernels=[kt, kh, kw],
)
net.SpatialBN(
["Y", "scale", "bias", "mean", "var"],
["Y2"],
is_test=True,
epsilon=epsilon,
)
np.random.seed(seed)
workspace.FeedBlob("X", np.random.rand(1, c, t, h, w).astype(np.float32))
workspace.FeedBlob("w", np.random.rand(c, c, kt, kh, kw).astype(np.float32))
workspace.FeedBlob("b", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("scale", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("bias", np.random.rand(c).astype(np.float32))
workspace.FeedBlob("mean", np.random.rand(c).astype(np.float32))
# This is necessary because 1/sqrt(var) is used and if var is too small
# we get floating point artifacts that cause test failures
workspace.FeedBlob("var", np.random.rand(c).astype(np.float32) + 0.5)
workspace.RunNetOnce(net)
preTransformOutput = workspace.FetchBlob("Y2").flatten()
workspace.FeedBlob("Y2", np.zeros((1, 1)))
transformer.FuseConvBN(net)
# Ensure fusion
assert len(net.Proto().op) == 1
workspace.RunNetOnce(net)
postTransformOutput = workspace.FetchBlob("Y2").flatten()
# Check that there is no numerical difference
assert np.allclose(
preTransformOutput,
postTransformOutput,
rtol=1e-02,
atol=1e-04
)
def test_converterEnforceUnusedInputs(self):
net = core.Net("net")
net.Relu(["X"], ["Y"])
net.Proto().external_input.extend(["fake"])
with self.assertRaises(Exception):
transformer.AddNNPACK(net) # just testing the converter
def test_converterEnforceUnusedOutputs(self):
net = core.Net("net")
net.Relu(["X"], ["Y"])
net.Proto().external_output.extend(["fake"])
with self.assertRaises(Exception):
transformer.AddNNPACK(net) # just testing the converter