blob: 60e00ed1a1ae248485a4b9e6ab57bb9c5c41eba2 [file] [log] [blame]
## @package resnet
# Module caffe2.python.models.resnet
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from caffe2.python import brew
'''
Utility for creating ResNets
See "Deep Residual Learning for Image Recognition" by He, Zhang et. al. 2015
'''
class ResNetBuilder():
'''
Helper class for constructing residual blocks.
'''
def __init__(self, model, prev_blob, no_bias, is_test, spatial_bn_mom=0.9):
self.model = model
self.comp_count = 0
self.comp_idx = 0
self.prev_blob = prev_blob
self.is_test = is_test
self.spatial_bn_mom = spatial_bn_mom
self.no_bias = 1 if no_bias else 0
def add_conv(self, in_filters, out_filters, kernel, stride=1, pad=0):
self.comp_idx += 1
self.prev_blob = brew.conv(
self.model,
self.prev_blob,
'comp_%d_conv_%d' % (self.comp_count, self.comp_idx),
in_filters,
out_filters,
weight_init=("MSRAFill", {}),
kernel=kernel,
stride=stride,
pad=pad,
no_bias=self.no_bias,
)
return self.prev_blob
def add_relu(self):
self.prev_blob = brew.relu(
self.model,
self.prev_blob,
self.prev_blob, # in-place
)
return self.prev_blob
def add_spatial_bn(self, num_filters):
self.prev_blob = brew.spatial_bn(
self.model,
self.prev_blob,
'comp_%d_spatbn_%d' % (self.comp_count, self.comp_idx),
num_filters,
epsilon=1e-3,
momentum=self.spatial_bn_mom,
is_test=self.is_test,
)
return self.prev_blob
'''
Add a "bottleneck" component as decribed in He et. al. Figure 3 (right)
'''
def add_bottleneck(
self,
input_filters, # num of feature maps from preceding layer
base_filters, # num of filters internally in the component
output_filters, # num of feature maps to output
down_sampling=False,
spatial_batch_norm=True,
):
self.comp_idx = 0
shortcut_blob = self.prev_blob
# 1x1
self.add_conv(
input_filters,
base_filters,
kernel=1,
stride=1
)
if spatial_batch_norm:
self.add_spatial_bn(base_filters)
self.add_relu()
# 3x3 (note the pad, required for keeping dimensions)
self.add_conv(
base_filters,
base_filters,
kernel=3,
stride=(1 if down_sampling is False else 2),
pad=1
)
if spatial_batch_norm:
self.add_spatial_bn(base_filters)
self.add_relu()
# 1x1
last_conv = self.add_conv(base_filters, output_filters, kernel=1)
if spatial_batch_norm:
last_conv = self.add_spatial_bn(output_filters)
# Summation with input signal (shortcut)
# If we need to increase dimensions (feature maps), need to
# do a projection for the short cut
if (output_filters > input_filters):
shortcut_blob = brew.conv(
self.model,
shortcut_blob,
'shortcut_projection_%d' % self.comp_count,
input_filters,
output_filters,
weight_init=("MSRAFill", {}),
kernel=1,
stride=(1 if down_sampling is False else 2),
no_bias=self.no_bias,
)
if spatial_batch_norm:
shortcut_blob = brew.spatial_bn(
self.model,
shortcut_blob,
'shortcut_projection_%d_spatbn' % self.comp_count,
output_filters,
epsilon=1e-3,
momentum=self.spatial_bn_mom,
is_test=self.is_test,
)
self.prev_blob = brew.sum(
self.model, [shortcut_blob, last_conv],
'comp_%d_sum_%d' % (self.comp_count, self.comp_idx)
)
self.comp_idx += 1
self.add_relu()
# Keep track of number of high level components if this ResNetBuilder
self.comp_count += 1
def add_simple_block(
self,
input_filters,
num_filters,
down_sampling=False,
spatial_batch_norm=True
):
self.comp_idx = 0
shortcut_blob = self.prev_blob
# 3x3
self.add_conv(
input_filters,
num_filters,
kernel=3,
stride=(1 if down_sampling is False else 2),
pad=1
)
if spatial_batch_norm:
self.add_spatial_bn(num_filters)
self.add_relu()
last_conv = self.add_conv(num_filters, num_filters, kernel=3, pad=1)
if spatial_batch_norm:
last_conv = self.add_spatial_bn(num_filters)
# Increase of dimensions, need a projection for the shortcut
if (num_filters != input_filters):
shortcut_blob = brew.conv(
self.model,
shortcut_blob,
'shortcut_projection_%d' % self.comp_count,
input_filters,
num_filters,
weight_init=("MSRAFill", {}),
kernel=1,
stride=(1 if down_sampling is False else 2),
no_bias=self.no_bias,
)
if spatial_batch_norm:
shortcut_blob = brew.spatial_bn(
self.model,
shortcut_blob,
'shortcut_projection_%d_spatbn' % self.comp_count,
num_filters,
epsilon=1e-3,
is_test=self.is_test,
)
self.prev_blob = brew.sum(
self.model, [shortcut_blob, last_conv],
'comp_%d_sum_%d' % (self.comp_count, self.comp_idx)
)
self.comp_idx += 1
self.add_relu()
# Keep track of number of high level components if this ResNetBuilder
self.comp_count += 1
# The conv1 and final_avg kernel/stride args provide a basic mechanism for
# adapting resnet50 for different sizes of input images.
def create_resnet50(
model,
data,
num_input_channels,
num_labels,
label=None,
is_test=False,
no_loss=False,
no_bias=0,
conv1_kernel=7,
conv1_stride=2,
final_avg_kernel=7,
):
# conv1 + maxpool
brew.conv(
model,
data,
'conv1',
num_input_channels,
64,
weight_init=("MSRAFill", {}),
kernel=conv1_kernel,
stride=conv1_stride,
pad=3,
no_bias=no_bias
)
brew.spatial_bn(
model,
'conv1',
'conv1_spatbn_relu',
64,
epsilon=1e-3,
momentum=0.1,
is_test=is_test
)
brew.relu(model, 'conv1_spatbn_relu', 'conv1_spatbn_relu')
brew.max_pool(model, 'conv1_spatbn_relu', 'pool1', kernel=3, stride=2)
# Residual blocks...
builder = ResNetBuilder(model, 'pool1', no_bias=no_bias,
is_test=is_test, spatial_bn_mom=0.1)
# conv2_x (ref Table 1 in He et al. (2015))
builder.add_bottleneck(64, 64, 256)
builder.add_bottleneck(256, 64, 256)
builder.add_bottleneck(256, 64, 256)
# conv3_x
builder.add_bottleneck(256, 128, 512, down_sampling=True)
for _ in range(1, 4):
builder.add_bottleneck(512, 128, 512)
# conv4_x
builder.add_bottleneck(512, 256, 1024, down_sampling=True)
for _ in range(1, 6):
builder.add_bottleneck(1024, 256, 1024)
# conv5_x
builder.add_bottleneck(1024, 512, 2048, down_sampling=True)
builder.add_bottleneck(2048, 512, 2048)
builder.add_bottleneck(2048, 512, 2048)
# Final layers
final_avg = brew.average_pool(
model,
builder.prev_blob,
'final_avg',
kernel=final_avg_kernel,
stride=1,
global_pooling=True,
)
# Final dimension of the "image" is reduced to 7x7
last_out = brew.fc(
model, final_avg, 'last_out_L{}'.format(num_labels), 2048, num_labels
)
if no_loss:
return last_out
# If we create model for training, use softmax-with-loss
if (label is not None):
(softmax, loss) = model.SoftmaxWithLoss(
[last_out, label],
["softmax", "loss"],
)
return (softmax, loss)
else:
# For inference, we just return softmax
return brew.softmax(model, last_out, "softmax")
def create_resnet_32x32(
model, data, num_input_channels, num_groups, num_labels, is_test=False
):
'''
Create residual net for smaller images (sec 4.2 of He et. al (2015))
num_groups = 'n' in the paper
'''
# conv1 + maxpool
brew.conv(
model, data, 'conv1', num_input_channels, 16, kernel=3, stride=1
)
brew.spatial_bn(
model, 'conv1', 'conv1_spatbn', 16, epsilon=1e-3, is_test=is_test
)
brew.relu(model, 'conv1_spatbn', 'relu1')
# Number of blocks as described in sec 4.2
filters = [16, 32, 64]
builder = ResNetBuilder(model, 'relu1', no_bias=0, is_test=is_test)
prev_filters = 16
for groupidx in range(0, 3):
for blockidx in range(0, 2 * num_groups):
builder.add_simple_block(
prev_filters if blockidx == 0 else filters[groupidx],
filters[groupidx],
down_sampling=(True if blockidx == 0 and
groupidx > 0 else False))
prev_filters = filters[groupidx]
# Final layers
brew.average_pool(
model, builder.prev_blob, 'final_avg', kernel=8, stride=1
)
brew.fc(model, 'final_avg', 'last_out', 64, num_labels)
softmax = brew.softmax(model, 'last_out', 'softmax')
return softmax