| import sys |
| import io |
| import os |
| import math |
| import random |
| import operator |
| import copy |
| import shutil |
| import torch |
| import torch.cuda |
| import tempfile |
| import unittest |
| import warnings |
| import pickle |
| import gzip |
| from torch._utils_internal import get_file_path, get_file_path_2 |
| from torch.utils.dlpack import from_dlpack, to_dlpack |
| from torch._utils import _rebuild_tensor |
| from itertools import product, combinations |
| from functools import reduce |
| from torch import multiprocessing as mp |
| from common import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \ |
| run_tests, download_file, skipIfNoLapack, suppress_warnings, IS_WINDOWS, \ |
| PY3, NO_MULTIPROCESSING_SPAWN |
| from multiprocessing.reduction import ForkingPickler |
| |
| if TEST_NUMPY: |
| import numpy as np |
| |
| if TEST_SCIPY: |
| from scipy import signal |
| |
| SIZE = 100 |
| |
| can_retrieve_source = True |
| with warnings.catch_warnings(record=True) as warns: |
| with tempfile.NamedTemporaryFile() as checkpoint: |
| x = torch.save(torch.nn.Module(), checkpoint) |
| for warn in warns: |
| if "Couldn't retrieve source code" in warn.message.args[0]: |
| can_retrieve_source = False |
| break |
| |
| |
| class FilelikeMock(object): |
| def __init__(self, data, has_fileno=True, has_readinto=False): |
| if has_readinto: |
| setattr(self, 'readinto', self.readinto_opt) |
| if has_fileno: |
| # Python 2's StringIO.StringIO has no fileno attribute. |
| # This is used to test that. |
| setattr(self, 'fileno', self.fileno_opt) |
| |
| self.calls = set([]) |
| self.bytesio = io.BytesIO(data) |
| |
| def trace(fn, name): |
| def result(*args, **kwargs): |
| self.calls.add(name) |
| return fn(*args, **kwargs) |
| return result |
| |
| for attr in ['read', 'readline', 'seek', 'tell', 'write', 'flush']: |
| traced_fn = trace(getattr(self.bytesio, attr), attr) |
| setattr(self, attr, traced_fn) |
| |
| def fileno_opt(self): |
| raise io.UnsupportedOperation('Not a real file') |
| |
| def readinto_opt(self, view): |
| self.calls.add('readinto') |
| return self.bytesio.readinto(view) |
| |
| def was_called(self, name): |
| return name in self.calls |
| |
| |
| class BytesIOContext(io.BytesIO): |
| def __enter__(self): |
| return self |
| |
| def __exit__(self, *args): |
| pass |
| |
| |
| class TestTorch(TestCase): |
| |
| def test_dot(self): |
| types = { |
| 'torch.DoubleTensor': 1e-8, |
| 'torch.FloatTensor': 1e-4, |
| } |
| for tname, _prec in types.items(): |
| v1 = torch.randn(100).type(tname) |
| v2 = torch.randn(100).type(tname) |
| res1 = torch.dot(v1, v2) |
| res2 = 0 |
| for i, j in zip(v1, v2): |
| res2 += i * j |
| self.assertEqual(res1, res2) |
| out = torch.randn(()).type(tname) |
| torch.dot(v1, v2, out=out) |
| self.assertEqual(res1, out) |
| |
| # Test 0-strided |
| for tname, _prec in types.items(): |
| v1 = torch.randn(1).type(tname).expand(100) |
| v2 = torch.randn(100).type(tname) |
| res1 = torch.dot(v1, v2) |
| res2 = 0 |
| for i, j in zip(v1, v2): |
| res2 += i * j |
| self.assertEqual(res1, res2) |
| out = torch.randn(()).type(tname) |
| torch.dot(v1, v2, out=out) |
| self.assertEqual(res1, out) |
| |
| def test_ger(self): |
| types = { |
| 'torch.DoubleTensor': 1e-8, |
| 'torch.FloatTensor': 1e-4, |
| } |
| for tname, _prec in types.items(): |
| v1 = torch.randn(100).type(tname) |
| v2 = torch.randn(100).type(tname) |
| res1 = torch.ger(v1, v2) |
| res2 = torch.zeros(100, 100).type(tname) |
| for i in range(100): |
| for j in range(100): |
| res2[i, j] = v1[i] * v2[j] |
| self.assertEqual(res1, res2) |
| |
| # Test 0-strided |
| for tname, _prec in types.items(): |
| v1 = torch.randn(1).type(tname).expand(100) |
| v2 = torch.randn(100).type(tname) |
| res1 = torch.ger(v1, v2) |
| res2 = torch.zeros(100, 100).type(tname) |
| for i in range(100): |
| for j in range(100): |
| res2[i, j] = v1[i] * v2[j] |
| self.assertEqual(res1, res2) |
| |
| def test_addr(self): |
| types = { |
| 'torch.DoubleTensor': 1e-8, |
| 'torch.FloatTensor': 1e-4, |
| } |
| |
| def run_test(m, v1, v2, m_transform=lambda x: x): |
| m = m_transform(m.clone()) |
| ref = m.clone() |
| torch.addr(m, v1, v2, out=m) |
| for i in range(m.size(0)): |
| for j in range(m.size(1)): |
| ref[i, j] += v1[i] * v2[j] |
| self.assertEqual(m, ref) |
| |
| for tname, _prec in types.items(): |
| for h, w in [(100, 110), (1, 20), (200, 2)]: |
| m = torch.randn(h, w).type(tname) |
| v1 = torch.randn(h).type(tname) |
| v2 = torch.randn(w).type(tname) |
| run_test(m, v1, v2) |
| # test transpose |
| run_test(m, v2, v1, lambda x: x.transpose(0, 1)) |
| # test 0 strided |
| v1 = torch.randn(1).type(tname).expand(h) |
| run_test(m, v1, v2) |
| run_test(m, v2, v1, lambda x: x.transpose(0, 1)) |
| |
| def test_addmv(self): |
| types = { |
| 'torch.DoubleTensor': 1e-8, |
| 'torch.FloatTensor': 1e-4, |
| } |
| for tname, _prec in types.items(): |
| t = torch.randn(10).type(tname) |
| m = torch.randn(10, 100).type(tname) |
| v = torch.randn(100).type(tname) |
| res1 = torch.addmv(t, m, v) |
| res2 = torch.zeros(10).type(tname) |
| res2 += t |
| for i in range(10): |
| for j in range(100): |
| res2[i] += m[i, j] * v[j] |
| self.assertEqual(res1, res2) |
| |
| # Test 0-strided |
| for tname, _prec in types.items(): |
| t = torch.randn(1).type(tname).expand(10) |
| m = torch.randn(10, 1).type(tname).expand(10, 100) |
| v = torch.randn(100).type(tname) |
| res1 = torch.addmv(t, m, v) |
| res2 = torch.zeros(10).type(tname) |
| res2 += t |
| for i in range(10): |
| for j in range(100): |
| res2[i] += m[i, j] * v[j] |
| self.assertEqual(res1, res2) |
| |
| def test_addmm(self): |
| types = { |
| 'torch.DoubleTensor': 1e-8, |
| 'torch.FloatTensor': 1e-4, |
| } |
| for tname, _prec in types.items(): |
| M = torch.randn(10, 25).type(tname) |
| m1 = torch.randn(10, 50).type(tname) |
| m2 = torch.randn(50, 25).type(tname) |
| res1 = torch.addmm(M, m1, m2) |
| res2 = torch.zeros(10, 25).type(tname) |
| res2 += M |
| for i in range(10): |
| for j in range(25): |
| for k in range(50): |
| res2[i, j] += m1[i, k] * m2[k, j] |
| self.assertEqual(res1, res2) |
| |
| # Test 0-strided |
| for tname, _prec in types.items(): |
| M = torch.randn(10, 1).type(tname).expand(10, 25) |
| m1 = torch.randn(10, 1).type(tname).expand(10, 50) |
| m2 = torch.randn(50, 25).type(tname) |
| res1 = torch.addmm(M, m1, m2) |
| res2 = torch.zeros(10, 25).type(tname) |
| res2 += M |
| for i in range(10): |
| for j in range(25): |
| for k in range(50): |
| res2[i, j] += m1[i, k] * m2[k, j] |
| self.assertEqual(res1, res2) |
| |
| def test_allclose(self): |
| x = torch.tensor([1.0, 2.0, 3.0]) |
| y = torch.tensor([1.01, 2.01, 3.01]) |
| self.assertTrue(torch.allclose(x, y, rtol=0, atol=0.02)) |
| self.assertTrue(torch.allclose(x, y, rtol=0.01, atol=0.0)) |
| self.assertFalse(torch.allclose(x, y)) |
| self.assertTrue(torch.allclose(torch.tensor([0.0]), torch.tensor([1e-8]))) |
| x = torch.tensor([2.0, 3.0, float('nan')]) |
| y = torch.tensor([2.01, 3.01, float('nan')]) |
| self.assertFalse(torch.allclose(x, y, rtol=1e-2)) |
| self.assertTrue(torch.allclose(x, y, rtol=1e-2, equal_nan=True)) |
| self.assertFalse(torch.allclose(x, y, rtol=1e-3, equal_nan=True)) |
| inf = torch.tensor([float('inf')]) |
| self.assertTrue(torch.allclose(inf, inf)) |
| self.assertTrue(torch.allclose(-inf, -inf)) |
| self.assertFalse(torch.allclose(inf, -inf)) |
| self.assertFalse(torch.allclose(inf, torch.tensor([1e20]))) |
| self.assertFalse(torch.allclose(-inf, torch.tensor([-1e20]))) |
| |
| def test_linear_algebra_scalar_raises(self): |
| m = torch.randn(5, 5) |
| v = torch.randn(5) |
| s = torch.tensor(7) |
| self.assertRaises(RuntimeError, lambda: torch.mv(m, s)) |
| self.assertRaises(RuntimeError, lambda: torch.addmv(v, m, s)) |
| self.assertRaises(RuntimeError, lambda: torch.ger(v, s)) |
| self.assertRaises(RuntimeError, lambda: torch.ger(s, v)) |
| self.assertRaises(RuntimeError, lambda: torch.addr(m, v, s)) |
| self.assertRaises(RuntimeError, lambda: torch.addr(m, s, v)) |
| |
| def _test_math(self, torchfn, mathfn, input=None): |
| if input is None: |
| input = [] |
| input.append(list(range(-5, 5))) |
| input.append([0 for x in range(-5, 5)]) |
| input.append([x + 1e-6 for x in range(-5, 5)]) |
| # Some vectorized implementations don't support large ranges |
| input.append([x + 1e10 for x in range(-5, 5)]) |
| input.append([x - 1e10 for x in range(-5, 5)]) |
| input.append(torch.randn(10).tolist()) |
| input.append((torch.randn(10) + 1e6).tolist()) |
| input.append([math.pi * (x / 2) for x in range(-5, 5)]) |
| |
| def compare_reference(input, dtype): |
| input = torch.tensor(input, dtype=dtype) |
| res1 = torchfn(input.clone()) |
| res2 = input.clone().apply_(lambda x: mathfn(x)) |
| torch.testing.assert_allclose(res1, res2) |
| |
| # compare against the reference math function |
| compare_reference(input, torch.double) |
| compare_reference(input, torch.float) |
| |
| def check_non_contiguous(shape, dtype): |
| contig = torch.randn(shape, dtype=dtype) |
| non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0] |
| non_contig.copy_(contig) |
| self.assertFalse(non_contig.is_contiguous()) |
| self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous') |
| |
| # compare application against contiguous vs. non-contiguous |
| check_non_contiguous((5, 7), torch.double) |
| check_non_contiguous((1024,), torch.double) |
| check_non_contiguous((5, 7), torch.float) |
| check_non_contiguous((1024,), torch.float) |
| |
| # If size(dim) == 1, stride(dim) is not defined. |
| # The code needs to be able to handle this |
| def check_contiguous_size1(dtype): |
| contig = torch.randn((5, 100), dtype=dtype) |
| contig = contig[:1, :50] |
| contig2 = torch.empty(contig.size(), dtype=dtype) |
| contig2.copy_(contig) |
| self.assertTrue(contig.is_contiguous()) |
| self.assertTrue(contig2.is_contiguous()) |
| self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1') |
| |
| check_contiguous_size1(torch.double) |
| check_contiguous_size1(torch.float) |
| |
| def check_contiguous_size1_largedim(dtype): |
| contig = torch.randn((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), dtype=dtype) |
| contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :] |
| contig2 = torch.empty(contig.size(), dtype=dtype) |
| contig2.copy_(contig) |
| self.assertTrue(contig.is_contiguous()) |
| self.assertTrue(contig2.is_contiguous()) |
| self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1') |
| |
| check_contiguous_size1_largedim(torch.double) |
| check_contiguous_size1_largedim(torch.float) |
| |
| def check_large(dtype): |
| input = torch.randn(1024, 512, dtype=dtype) |
| actual = torchfn(input) |
| expected = torch.stack([torchfn(slice) for slice in input]) |
| self.assertEqual(actual, expected, 'large') |
| |
| # compare large tensor vs. repeated small applications to expose |
| # possible parallelism bugs. |
| check_large(torch.double) |
| check_large(torch.float) |
| |
| def __test_math_by_name(self, function_name, mathfn, selffn): |
| mathfn = getattr(math, mathfn) |
| if selffn: |
| def torchfn(x): |
| return getattr(x, function_name)() |
| else: |
| torchfn = getattr(torch, function_name) |
| self._test_math(torchfn, mathfn) |
| |
| def _test_math_by_name(self, function_name, test_self=True): |
| if test_self: |
| self.__test_math_by_name(function_name + "_", function_name, True) |
| self.__test_math_by_name(function_name, function_name, False) |
| |
| def test_sin(self): |
| self._test_math_by_name('sin') |
| |
| def test_sinh(self): |
| def sinh(x): |
| try: |
| return math.sinh(x) |
| except OverflowError: |
| return float('inf') if x > 0 else float('-inf') |
| self._test_math(torch.sinh, sinh) |
| |
| def test_lgamma(self): |
| def lgamma(x): |
| if x <= 0 and x == int(x): |
| return float('inf') |
| return math.lgamma(x) |
| self._test_math(torch.lgamma, lgamma) |
| |
| def _digamma_input(self, test_poles=True): |
| input = [] |
| input.append((torch.randn(10).abs() + 1e-4).tolist()) |
| input.append((torch.randn(10).abs() + 1e6).tolist()) |
| zeros = torch.linspace(-9.5, -0.5, 10) |
| input.append(zeros.tolist()) |
| input.append((zeros - 0.49).tolist()) |
| input.append((zeros + 0.49).tolist()) |
| input.append((zeros + (torch.rand(10) * 0.99) - 0.5).tolist()) |
| |
| if test_poles: |
| input.append([-0.999999994, -1.999999994, -2.0000000111, |
| -100.99999994, -1931.99999994, 0.000000111, |
| -0.000000111, 0, -2, -329]) |
| return input |
| |
| @unittest.skipIf(not TEST_SCIPY, "Scipy not found") |
| def test_digamma(self): |
| from scipy.special import digamma |
| |
| # scipy 1.1.0 changed when it returns +/-inf vs. NaN |
| def torch_digamma_without_inf(inp): |
| res = torch.digamma(inp) |
| res[(res == float('-inf')) | (res == float('inf'))] = float('nan') |
| return res |
| |
| def scipy_digamma_without_inf(inp): |
| res = digamma(inp) |
| if np.isscalar(res): |
| return res if np.isfinite(res) else float('nan') |
| res[np.isinf(res)] = float('nan') |
| return res |
| |
| self._test_math(torch_digamma_without_inf, scipy_digamma_without_inf, self._digamma_input()) |
| |
| @unittest.skipIf(not TEST_SCIPY, "Scipy not found") |
| def test_polygamma(self): |
| from scipy.special import polygamma |
| for n in [0, 1]: |
| self._test_math(lambda x: torch.polygamma(n, x), |
| lambda x: polygamma(n, x).item(), |
| self._digamma_input(test_poles=False)) |
| |
| def test_asin(self): |
| self._test_math(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else float('nan')) |
| |
| def test_cos(self): |
| self._test_math_by_name('cos') |
| |
| def test_cosh(self): |
| def cosh(x): |
| try: |
| return math.cosh(x) |
| except OverflowError: |
| # Return inf on overflow. |
| # See http://en.cppreference.com/w/cpp/numeric/math/cosh |
| return float('inf') |
| self._test_math(torch.cosh, cosh) |
| |
| def test_acos(self): |
| self._test_math(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan')) |
| |
| def test_tan(self): |
| self._test_math_by_name('tan') |
| |
| def test_tanh(self): |
| self._test_math_by_name('tanh') |
| |
| def test_atan(self): |
| self._test_math_by_name('atan') |
| |
| def test_log(self): |
| def log(x): |
| if x == 0: |
| return float('-inf') |
| elif x < 0: |
| return float('nan') |
| return math.log(x) |
| self._test_math(torch.log, log) |
| |
| def test_log10(self): |
| def log10(x): |
| if x == 0: |
| return float('-inf') |
| elif x < 0: |
| return float('nan') |
| return math.log10(x) |
| self._test_math(torch.log10, log10) |
| |
| def test_log1p(self): |
| def log1p(x): |
| if x == -1: |
| return float('-inf') |
| elif x < -1: |
| return float('nan') |
| return math.log1p(x) |
| self._test_math(torch.log1p, log1p) |
| |
| def test_log2(self): |
| def log2(x): |
| if x == 0: |
| return float('-inf') |
| elif x < 0: |
| return float('nan') |
| try: |
| return math.log2(x) |
| except AttributeError: |
| return math.log(x, 2) |
| self._test_math(torch.log2, log2) |
| |
| def test_sqrt(self): |
| self._test_math(torch.sqrt, lambda x: math.sqrt(x) if x >= 0 else float('nan')) |
| |
| def test_erf(self): |
| self._test_math_by_name('erf') |
| |
| def test_erfinv(self): |
| def checkType(tensor): |
| inputValues = torch.randn(4, 4, out=tensor()).clamp(-2., 2.) |
| self.assertEqual(tensor(inputValues).erf().erfinv(), tensor(inputValues)) |
| # test inf |
| self.assertTrue(torch.equal(tensor([-1, 1]).erfinv(), tensor([float('-inf'), float('inf')]))) |
| # test nan |
| self.assertEqual(tensor([-2, 2]).erfinv(), tensor([float('nan'), float('nan')])) |
| |
| checkType(torch.FloatTensor) |
| checkType(torch.DoubleTensor) |
| |
| def test_exp(self): |
| def exp(x): |
| try: |
| return math.exp(x) |
| except OverflowError: |
| return float('inf') |
| self._test_math(torch.exp, exp) |
| |
| def test_expm1(self): |
| def expm1(x): |
| try: |
| return math.expm1(x) |
| except OverflowError: |
| return float('inf') |
| self._test_math(torch.expm1, expm1) |
| |
| def test_floor(self): |
| self._test_math_by_name('floor') |
| |
| def test_ceil(self): |
| self._test_math_by_name('ceil') |
| |
| def test_rsqrt(self): |
| def rsqrt(x): |
| if x == 0: |
| return float('inf') |
| elif x < 0: |
| return float('nan') |
| return 1.0 / math.sqrt(x) |
| |
| self._test_math(torch.rsqrt, rsqrt) |
| |
| def test_sigmoid(self): |
| # TODO: why not simulate math.sigmoid like with rsqrt? |
| inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000] |
| expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000] |
| precision_4dps = 0.0002 |
| |
| def checkType(tensor): |
| self.assertEqual(tensor(inputValues).sigmoid(), tensor(expectedOutput), precision_4dps) |
| |
| checkType(torch.FloatTensor) |
| checkType(torch.DoubleTensor) |
| |
| def test_frac(self): |
| self._test_math(torch.frac, lambda x: math.fmod(x, 1)) |
| |
| def test_trunc(self): |
| self._test_math(torch.trunc, lambda x: x - math.fmod(x, 1)) |
| |
| def test_round(self): |
| self._test_math(torch.round, round) |
| |
| def test_has_storage(self): |
| self.assertIsNotNone(torch.Tensor().storage()) |
| self.assertIsNotNone(torch.Tensor(0).storage()) |
| self.assertIsNotNone(torch.Tensor([]).storage()) |
| self.assertIsNotNone(torch.Tensor().clone().storage()) |
| self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage()) |
| self.assertIsNotNone(torch.Tensor().new().storage()) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_has_storage_numpy(self): |
| for dtype in [np.float32, np.float64, np.int64, |
| np.int32, np.int16, np.uint8]: |
| arr = np.array([1], dtype=dtype) |
| self.assertIsNotNone(torch.FloatTensor(arr).storage()) |
| self.assertIsNotNone(torch.DoubleTensor(arr).storage()) |
| self.assertIsNotNone(torch.IntTensor(arr).storage()) |
| self.assertIsNotNone(torch.LongTensor(arr).storage()) |
| self.assertIsNotNone(torch.ByteTensor(arr).storage()) |
| if torch.cuda.is_available(): |
| self.assertIsNotNone(torch.cuda.FloatTensor(arr).storage()) |
| self.assertIsNotNone(torch.cuda.DoubleTensor(arr).storage()) |
| self.assertIsNotNone(torch.cuda.IntTensor(arr).storage()) |
| self.assertIsNotNone(torch.cuda.LongTensor(arr).storage()) |
| self.assertIsNotNone(torch.cuda.ByteTensor(arr).storage()) |
| |
| def _testSelection(self, torchfn, mathfn): |
| # contiguous |
| m1 = torch.randn(100, 100) |
| res1 = torchfn(m1) |
| res2 = m1[0, 0] |
| for i, j in iter_indices(m1): |
| res2 = mathfn(res2, m1[i, j]) |
| self.assertEqual(res1, res2) |
| |
| # non-contiguous |
| m1 = torch.randn(10, 10, 10) |
| m2 = m1[:, 4] |
| res1 = torchfn(m2) |
| res2 = m2[0, 0] |
| for i, j in iter_indices(m2): |
| res2 = mathfn(res2, m2[i][j]) |
| self.assertEqual(res1, res2) |
| |
| # with indices |
| m1 = torch.randn(100, 100) |
| res1val, res1ind = torchfn(m1, 1, False) |
| res2val = m1[:, 0:1].clone().squeeze() |
| res2ind = res1ind.clone().fill_(0) |
| for i, j in iter_indices(m1): |
| if mathfn(res2val[i], m1[i, j]) != res2val[i]: |
| res2val[i] = m1[i, j] |
| res2ind[i] = j |
| |
| maxerr = 0 |
| for i in range(res1val.size(0)): |
| maxerr = max(maxerr, abs(res1val[i] - res2val[i])) |
| self.assertEqual(res1ind[i], res2ind[i]) |
| self.assertLessEqual(abs(maxerr), 1e-5) |
| |
| # NaNs |
| for index in (0, 4, 99): |
| m1 = torch.randn(100) |
| m1[index] = float('nan') |
| res1val, res1ind = torch.max(m1, 0) |
| self.assertTrue(math.isnan(res1val)) |
| self.assertEqual(res1ind, index) |
| res1val = torchfn(m1) |
| self.assertTrue(math.isnan(res1val)) |
| |
| def test_max(self): |
| self._testSelection(torch.max, max) |
| |
| def test_min(self): |
| self._testSelection(torch.min, min) |
| |
| @staticmethod |
| def _test_norm(self, device): |
| # full reduction |
| x = torch.randn(5, device=device) |
| xn = x.cpu().numpy() |
| for p in [0, 1, 2, 3, 4, float('inf')]: |
| res = x.norm(p).item() |
| expected = np.linalg.norm(xn, p) |
| self.assertEqual(res, expected, "full reduction failed for {}-norm".format(p)) |
| # one dimension |
| x = torch.randn(5, 5, device=device) |
| xn = x.cpu().numpy() |
| for p in [0, 1, 2, 3, 4, float('inf')]: |
| res = x.norm(p, 1).cpu().numpy() |
| expected = np.linalg.norm(xn, p, 1) |
| self.assertEqual(res.shape, expected.shape) |
| self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_norm(self): |
| self._test_norm(self, device='cpu') |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_norm_cuda(self): |
| self._test_norm(self, device='cuda') |
| |
| def test_dim_reduction_uint8_overflow(self): |
| example = [[-1, 2, 1], [5, 3, 6]] |
| x = torch.tensor(example, dtype=torch.uint8) |
| self.assertEqual(x.sum(dtype=torch.uint8).item(), 16) |
| self.assertEqual(x.sum(0, dtype=torch.uint8), torch.FloatTensor([4, 5, 7])) |
| self.assertEqual(x.sum(1, dtype=torch.uint8), torch.FloatTensor([2, 14])) |
| y = torch.tensor(example, dtype=torch.uint8) |
| torch.sum(x, 0, out=y) |
| self.assertEqual(x.sum(0, dtype=torch.uint8), y) |
| |
| @staticmethod |
| def _test_dim_reduction(self, cast): |
| example = [[-1, 2, 1], [5, 3, 6]] |
| |
| types = [torch.double, |
| torch.float, |
| torch.int64, |
| torch.int32, |
| torch.int16] |
| |
| # This won't test for 256bit instructions, since we usually |
| # only work on 1 cacheline (1024bit) at a time and these |
| # examples aren't big enough to trigger that. |
| for dtype in types: |
| x = cast(torch.tensor(example, dtype=dtype)) |
| self.assertEqual(x.sum().item(), 16) |
| self.assertEqual(x.sum(0), torch.FloatTensor([4, 5, 7])) |
| self.assertEqual(x.sum(1), torch.FloatTensor([2, 14])) |
| y = cast(torch.tensor(example, dtype=dtype)) |
| torch.sum(x, 0, out=y) |
| self.assertEqual(x.sum(0), y) |
| |
| # Mean not supported for Int types |
| for dtype in types[:2]: |
| x = cast(torch.tensor(example, dtype=dtype)) |
| self.assertEqual(x.mean().item(), 16.0 / 6) |
| self.assertEqual(x.mean(0), torch.FloatTensor([2.0, 2.5, 7.0 / 2])) |
| self.assertEqual(x.mean(1), torch.FloatTensor([2.0 / 3, 14.0 / 3])) |
| |
| for dtype in types: |
| x = cast(torch.tensor(example, dtype=dtype)) |
| self.assertEqual(x.prod().item(), -180) |
| self.assertEqual(x.prod(0), torch.FloatTensor([-5, 6, 6])) |
| self.assertEqual(x.prod(1), torch.FloatTensor([-2, 90])) |
| |
| for dtype in types: |
| x = cast(torch.tensor(example, dtype=dtype)) |
| self.assertEqual(x.max().item(), 6) |
| self.assertEqual(x.max(0), (torch.FloatTensor([5, 3, 6]), torch.FloatTensor([1, 1, 1]))) |
| self.assertEqual(x.max(1), (torch.FloatTensor([2, 6]), torch.FloatTensor([1, 2]))) |
| |
| for dtype in types: |
| x = cast(torch.tensor(example, dtype=dtype)) |
| self.assertEqual(x.min().item(), -1) |
| self.assertEqual(x.min(0), (torch.FloatTensor([-1, 2, 1]), torch.FloatTensor([0, 0, 0]))) |
| self.assertEqual(x.min(1), (torch.FloatTensor([-1, 3]), torch.FloatTensor([0, 1]))) |
| |
| for dtype in types: |
| x = cast(torch.tensor(example, dtype=dtype)) |
| self.assertEqual(x.argmax().item(), 5) |
| self.assertEqual(x.argmax(dim=0), torch.FloatTensor([1, 1, 1])) |
| self.assertEqual(x.argmax(dim=1), torch.FloatTensor([1, 2])) |
| self.assertEqual(x.argmax(dim=0, keepdim=True), torch.FloatTensor([[1, 1, 1]])) |
| # test that non-contiguous tensors work |
| self.assertEqual(x[:, :2].argmax().item(), 2) |
| |
| for dtype in types: |
| x = cast(torch.tensor(example, dtype=dtype)) |
| self.assertEqual(x.argmin().item(), 0) |
| self.assertEqual(x.argmin(dim=0), torch.FloatTensor([0, 0, 0])) |
| self.assertEqual(x.argmin(dim=1), torch.FloatTensor([0, 1])) |
| self.assertEqual(x.argmin(dim=1, keepdim=True), torch.FloatTensor([[0], [1]])) |
| # test that non-contiguous tensors work |
| self.assertEqual(x[:, :2].argmin().item(), 0) |
| |
| dim_red_fns = [ |
| "mean", "median", "mode", "norm", "prod", |
| "std", "sum", "var", "max", "min"] |
| |
| def normfn_attr(t, dim, keepdim=False, out=None): |
| attr = getattr(torch, "norm") |
| return attr(t, 2, dim, keepdim, out=out) |
| |
| for fn_name in dim_red_fns: |
| fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr |
| |
| def fn(x, dim, keepdim=False, out=None): |
| ans = fn_attr(x, dim, keepdim=keepdim, out=out) |
| return ans if not isinstance(ans, tuple) else ans[0] |
| |
| def fn_tuple(x, dim, keepdim=False, out=None): |
| return fn_attr(x, dim, keepdim=keepdim, out=out) |
| |
| def test_multidim(x, dim): |
| self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) |
| self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) |
| self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) |
| |
| # general case |
| x = cast(torch.randn(3, 4, 5)) |
| dim = random.randint(0, 2) |
| test_multidim(x, dim) |
| |
| # check 1-d behavior |
| x = cast(torch.randn(1)) |
| dim = 0 |
| self.assertEqual(fn(x, dim).shape, tuple()) |
| self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) |
| |
| # check reducing of a singleton dimension |
| dims = [3, 4, 5] |
| singleton_dim = random.randint(0, 2) |
| dims[singleton_dim] = 1 |
| x = cast(torch.randn(dims)) |
| test_multidim(x, singleton_dim) |
| |
| # check reducing with output kwargs |
| if fn_name in ['median', 'mode', 'max', 'min']: |
| y = cast(torch.randn(5, 3)) |
| values = cast(torch.randn(5, 3)) |
| indices = cast(torch.zeros(5, 3).long() - 1) |
| fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) |
| values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) |
| self.assertEqual(values[:, 1], values_expected, |
| '{} values with out= kwarg'.format(fn_name)) |
| self.assertEqual(indices[:, 1], indices_expected, |
| '{} indices with out= kwarg'.format(fn_name)) |
| continue |
| |
| x = cast(torch.randn(5, 3)) |
| y = cast(torch.randn(5, 3)) |
| fn(y, 1, keepdim=False, out=x[:, 1]) |
| expected = fn(y, 1, keepdim=False) |
| self.assertEqual(x[:, 1], expected, '{} with out= kwarg'.format(fn_name)) |
| |
| def test_dim_reduction(self): |
| self._test_dim_reduction(self, lambda t: t) |
| |
| @unittest.skipIf(not TEST_SCIPY, "Scipy not found") |
| def test_logsumexp(self): |
| from scipy.special import logsumexp |
| a = torch.randn(5, 4) |
| a[0, 0] = float('inf') |
| a[1, :] = float('-inf') |
| actual = a.logsumexp(1) |
| expected = logsumexp(a.numpy(), 1) |
| self.assertEqual(expected.shape, actual.shape) |
| self.assertTrue(np.allclose(expected, actual.numpy())) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_cpu_parallel(self): |
| # To use parallel branches we'll need to compare on tensors |
| # that are relatively large. Even if this is run on a single |
| # core machine these tests will still give you signal on |
| # the correctness |
| |
| def _run_test(size): |
| for dim in range(len(size) + 1): |
| nv = np.round(np.random.rand(*size)) # 0s and 1s |
| tv = torch.from_numpy(nv) |
| # Parallelisim is only used if numel is |
| # larger than grainsize defined in Parallel.h |
| self.assertTrue(tv.numel() > 32768) |
| if dim == len(size): |
| nvs = nv.sum() |
| tvs = tv.sum() |
| else: |
| nvs = nv.sum(dim) |
| tvs = tv.sum(dim) |
| diff = np.abs(nvs - tvs.numpy()).sum() |
| self.assertEqual(diff, 0) |
| |
| _run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3]) |
| _run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4]) |
| _run_test([1, 32 * 8 * 32 * 8]) |
| _run_test([1, 32770]) |
| |
| def _testCSelection(self, torchfn, mathfn): |
| # Two tensors |
| size = (100, 100) |
| a = torch.rand(*size) |
| b = torch.rand(*size) |
| c = torchfn(a, b) |
| expected_c = torch.zeros(*size) |
| expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b)) |
| self.assertEqual(expected_c, c, 0) |
| |
| def test_max_elementwise(self): |
| self._testCSelection(torch.max, max) |
| |
| def test_min_elementwise(self): |
| self._testCSelection(torch.min, min) |
| |
| def test_lerp(self): |
| def TH_lerp(a, b, weight): |
| return a + weight * (b - a) |
| |
| size = (100, 100) |
| a = torch.rand(*size) |
| b = torch.rand(*size) |
| w = random.random() |
| result = torch.lerp(a, b, w) |
| expected = a.clone() |
| expected.map2_(a, b, lambda _, a, b: TH_lerp(a, b, w)) |
| self.assertEqual(result, expected) |
| |
| def test_all_any(self): |
| def test(size): |
| x = torch.ones(*size).byte() |
| self.assertTrue(x.all()) |
| self.assertTrue(x.any()) |
| |
| x[3] = 0 |
| self.assertFalse(x.all()) |
| self.assertTrue(x.any()) |
| |
| x.zero_() |
| self.assertFalse(x.all()) |
| self.assertFalse(x.any()) |
| |
| x.fill_(2) |
| self.assertTrue(x.all()) |
| self.assertTrue(x.any()) |
| |
| test((10,)) |
| test((5, 5)) |
| |
| def test_all_any_empty(self): |
| x = torch.ByteTensor() |
| self.assertTrue(x.all()) |
| self.assertFalse(x.any()) |
| |
| def test_all_any_with_dim(self): |
| def test(x): |
| r1 = x.prod(dim=0, keepdim=False).byte() |
| r2 = x.all(dim=0, keepdim=False) |
| self.assertEqual(r1.shape, r2.shape) |
| self.assertTrue((r1 == r2).all()) |
| |
| r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte() |
| r4 = x.any(dim=1, keepdim=True) |
| self.assertEqual(r3.shape, r4.shape) |
| self.assertTrue((r3 == r4).all()) |
| |
| test(torch.ByteTensor([[0, 0, 0], |
| [0, 0, 1], |
| [0, 1, 1], |
| [1, 1, 1]])) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_all_any_empty_cuda(self): |
| x = torch.cuda.ByteTensor() |
| self.assertTrue(x.all()) |
| self.assertFalse(x.any()) |
| |
| def test_mv(self): |
| m1 = torch.randn(100, 100) |
| v1 = torch.randn(100) |
| |
| res1 = torch.mv(m1, v1) |
| res2 = res1.clone().zero_() |
| for i, j in iter_indices(m1): |
| res2[i] += m1[i][j] * v1[j] |
| |
| self.assertEqual(res1, res2) |
| |
| def test_add(self): |
| # [res] torch.add([res,] tensor1, tensor2) |
| m1 = torch.randn(100, 100) |
| v1 = torch.randn(100) |
| |
| # contiguous |
| res1 = torch.add(m1[4], v1) |
| res2 = res1.clone().zero_() |
| for i in range(m1.size(1)): |
| res2[i] = m1[4, i] + v1[i] |
| self.assertEqual(res1, res2) |
| |
| m1 = torch.randn(100, 100) |
| v1 = torch.randn(100) |
| |
| # non-contiguous |
| res1 = torch.add(m1[:, 4], v1) |
| res2 = res1.clone().zero_() |
| for i in range(m1.size(0)): |
| res2[i] = m1[i, 4] + v1[i] |
| self.assertEqual(res1, res2) |
| |
| # [res] torch.add([res,] tensor, value) |
| m1 = torch.randn(10, 10) |
| |
| # contiguous |
| res1 = m1.clone() |
| res1[3].add_(2) |
| res2 = m1.clone() |
| for i in range(m1.size(1)): |
| res2[3, i] = res2[3, i] + 2 |
| self.assertEqual(res1, res2) |
| |
| # non-contiguous |
| m1 = torch.randn(10, 10) |
| res1 = m1.clone() |
| res1[:, 3].add_(2) |
| res2 = m1.clone() |
| for i in range(m1.size(0)): |
| res2[i, 3] = res2[i, 3] + 2 |
| self.assertEqual(res1, res2) |
| |
| # [res] torch.add([res,] tensor1, value, tensor2) |
| |
| def test_csub(self): |
| # with a tensor |
| a = torch.randn(100, 90) |
| b = a.clone().normal_() |
| |
| res_add = torch.add(a, -1, b) |
| res_csub = a.clone() |
| res_csub.sub_(b) |
| self.assertEqual(res_add, res_csub) |
| |
| # with a scalar |
| a = torch.randn(100, 100) |
| |
| scalar = 123.5 |
| res_add = torch.add(a, -scalar) |
| res_csub = a.clone() |
| res_csub.sub_(scalar) |
| self.assertEqual(res_add, res_csub) |
| |
| @staticmethod |
| def _test_neg(self, cast): |
| float_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor'] |
| int_types = ['torch.IntTensor', 'torch.ShortTensor', 'torch.ByteTensor', |
| 'torch.CharTensor'] |
| |
| for t in float_types + int_types: |
| if t in float_types: |
| a = cast(torch.randn(100, 90).type(t)) |
| else: |
| a = cast(torch.Tensor(100, 90).type(t).random_()) |
| zeros = cast(torch.Tensor().type(t)).resize_as_(a).zero_() |
| |
| if t == 'torch.ByteTensor': |
| res_add = torch.add(zeros, a, alpha=255) |
| else: |
| res_add = torch.add(zeros, a, alpha=-1) |
| res_neg = a.clone() |
| res_neg.neg_() |
| self.assertEqual(res_neg, res_add) |
| |
| # test out of place as well |
| res_neg_out_place = a.clone().neg() |
| self.assertEqual(res_neg_out_place, res_add) |
| |
| # test via __neg__ operator |
| res_neg_op = -a.clone() |
| self.assertEqual(res_neg_op, res_add) |
| |
| def test_neg(self): |
| self._test_neg(self, lambda t: t) |
| |
| def test_reciprocal(self): |
| a = torch.randn(100, 89) |
| res_div = 1 / a |
| res_reciprocal = a.clone() |
| res_reciprocal.reciprocal_() |
| self.assertEqual(res_reciprocal, res_div) |
| |
| def test_mul(self): |
| m1 = torch.randn(10, 10) |
| res1 = m1.clone() |
| res1[:, 3].mul_(2) |
| res2 = m1.clone() |
| for i in range(res1.size(0)): |
| res2[i, 3] = res2[i, 3] * 2 |
| self.assertEqual(res1, res2) |
| |
| def test_div(self): |
| m1 = torch.randn(10, 10) |
| res1 = m1.clone() |
| res1[:, 3].div_(2) |
| res2 = m1.clone() |
| for i in range(m1.size(0)): |
| res2[i, 3] = res2[i, 3] / 2 |
| self.assertEqual(res1, res2) |
| |
| def test_floordiv(self): |
| for dtype in torch.testing.get_all_dtypes(): |
| if dtype is torch.float16: |
| continue |
| x = torch.randn(100).mul(10).to(dtype) |
| y = x // 3 |
| self.assertEqual(y.dtype, x.dtype) |
| z = torch.tensor([math.trunc(v.item() / 3.) for v in x], dtype=y.dtype) |
| self.assertEqual(y, z) |
| |
| def test_rdiv(self): |
| for dtype in torch.testing.get_all_dtypes(): |
| if dtype is torch.float16: |
| continue |
| x = torch.rand(100).add(1).mul(4).to(dtype) |
| y = 30 / x |
| if dtype.is_floating_point: |
| z = torch.tensor([30 / v.item() for v in x], dtype=dtype) |
| else: |
| z = torch.tensor([math.trunc(30. / v.item()) for v in x], dtype=dtype) |
| self.assertEqual(y, z) |
| |
| def test_fmod(self): |
| m1 = torch.Tensor(10, 10).uniform_(-10., 10.) |
| res1 = m1.clone() |
| q = 2.1 |
| res1[:, 3].fmod_(q) |
| res2 = m1.clone() |
| for i in range(m1.size(1)): |
| res2[i, 3] = math.fmod(res2[i, 3], q) |
| self.assertEqual(res1, res2) |
| |
| def test_remainder(self): |
| # Check the Floating point case, both tensor and scalar overloads |
| for use_item in [True, False]: |
| m1 = torch.Tensor(10, 10).uniform_(-10., 10.) |
| res1 = m1.clone() |
| res2 = m1.clone() |
| qs = torch.arange(-5.1, 4.1) |
| # Check the case where the divisor is a simple float |
| for col_idx, q in enumerate(qs): |
| # Reference |
| for i in range(m1.size(0)): |
| res2[i, col_idx] = res2[i, col_idx] % q |
| # To test |
| res1[:, col_idx].remainder_(q if not use_item else q.item()) |
| self.assertEqual(res1, res2) |
| # Check the case where the divisor is a tensor |
| res1 = m1.clone() |
| res1.remainder_(qs.unsqueeze(0).expand_as(res1)) |
| self.assertEqual(res1, res2) |
| |
| # Check the LongTensor case, both tensor and scalar overloads |
| for use_item in [True, False]: |
| long_m1 = torch.LongTensor(10, 10).random_(-10, 10) |
| long_res1 = long_m1.clone() |
| long_res2 = long_m1.clone() |
| long_qs = torch.arange(-5, 5) |
| long_qs[5] = 5 # Can't handle the divisor=0 case |
| for col_idx, long_q in enumerate(long_qs): |
| # Reference |
| for i in range(long_m1.size(0)): |
| long_res2[i, col_idx] = long_res2[i, col_idx] % long_q |
| # To test |
| long_res1[:, col_idx].remainder_(long_q if not use_item else long_q.item()) |
| self.assertEqual(long_res1, long_res2) |
| # Divisor is a tensor case |
| long_res1 = long_m1.clone() |
| long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1)) |
| |
| @staticmethod |
| def _test_remainder_overflow(self, dtype, device): |
| # Check Integer Overflows |
| x = torch.tensor(23500, dtype=dtype, device=device) |
| q = 392486996410368 |
| self.assertEqual(x % q, x) |
| self.assertEqual(-x % q, q - x) |
| self.assertEqual(x % -q, x - q) |
| self.assertEqual(-x % -q, -x) |
| |
| def test_remainder_overflow(self): |
| self._test_remainder_overflow(self, dtype=torch.int64, device='cpu') |
| |
| def test_mm(self): |
| # helper function |
| def matrixmultiply(mat1, mat2): |
| n = mat1.size(0) |
| m = mat1.size(1) |
| p = mat2.size(1) |
| res = torch.zeros(n, p) |
| for i, j in iter_indices(res): |
| res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m)) |
| return res |
| |
| # contiguous case |
| n, m, p = 10, 10, 5 |
| mat1 = torch.randn(n, m) |
| mat2 = torch.randn(m, p) |
| res = torch.mm(mat1, mat2) |
| |
| res2 = matrixmultiply(mat1, mat2) |
| self.assertEqual(res, res2) |
| |
| # non contiguous case 1 |
| n, m, p = 10, 10, 5 |
| mat1 = torch.randn(n, m) |
| mat2 = torch.randn(p, m).t() |
| res = torch.mm(mat1, mat2) |
| |
| res2 = matrixmultiply(mat1, mat2) |
| self.assertEqual(res, res2) |
| |
| # non contiguous case 2 |
| n, m, p = 10, 10, 5 |
| mat1 = torch.randn(m, n).t() |
| mat2 = torch.randn(m, p) |
| res = torch.mm(mat1, mat2) |
| |
| res2 = matrixmultiply(mat1, mat2) |
| self.assertEqual(res, res2) |
| |
| # non contiguous case 3 |
| n, m, p = 10, 10, 5 |
| mat1 = torch.randn(m, n).t() |
| mat2 = torch.randn(p, m).t() |
| res = torch.mm(mat1, mat2) |
| |
| res2 = matrixmultiply(mat1, mat2) |
| self.assertEqual(res, res2) |
| |
| # test with zero stride |
| n, m, p = 10, 10, 5 |
| mat1 = torch.randn(n, m) |
| mat2 = torch.randn(m, 1).expand(m, p) |
| res = torch.mm(mat1, mat2) |
| |
| res2 = matrixmultiply(mat1, mat2) |
| self.assertEqual(res, res2) |
| |
| @staticmethod |
| def _test_btrifact(self, cast): |
| a = torch.FloatTensor((((1.3722, -0.9020), |
| (1.8849, 1.9169)), |
| ((0.7187, -1.1695), |
| (-0.0139, 1.3572)), |
| ((-1.6181, 0.7148), |
| (1.3728, 0.1319)))) |
| a = cast(a) |
| a_LU, pivots = a.btrifact() # test default info |
| |
| # test deprecated info argument |
| info = cast(torch.IntTensor()) |
| with warnings.catch_warnings(record=True): |
| a_LU, pivots = a.btrifact(info=info) |
| self.assertEqual(info.abs().sum(), 0) |
| |
| a_LU_, pivots_, info_ = a.btrifact_with_info() |
| self.assertEqual(a_LU, a_LU_) |
| self.assertEqual(pivots, pivots_) |
| self.assertEqual(info, info_) |
| P, a_L, a_U = torch.btriunpack(a_LU, pivots) |
| a_ = torch.bmm(P, torch.bmm(a_L, a_U)) |
| self.assertEqual(a_, a) |
| |
| @skipIfNoLapack |
| def test_btrifact(self): |
| self._test_btrifact(self, lambda t: t) |
| |
| @staticmethod |
| def _test_btrisolve(self, cast): |
| a = torch.FloatTensor((((1.3722, -0.9020), |
| (1.8849, 1.9169)), |
| ((0.7187, -1.1695), |
| (-0.0139, 1.3572)), |
| ((-1.6181, 0.7148), |
| (1.3728, 0.1319)))) |
| b = torch.FloatTensor(((4.02, 6.19), |
| (-1.56, 4.00), |
| (9.81, -4.09))) |
| a, b = cast(a), cast(b) |
| LU_data, pivots, info = a.btrifact_with_info() |
| self.assertEqual(info.abs().sum(), 0) |
| x = torch.btrisolve(b, LU_data, pivots) |
| b_ = torch.bmm(a, x.unsqueeze(2)).squeeze() |
| self.assertEqual(b_, b) |
| |
| @skipIfNoLapack |
| def test_btrisolve(self): |
| self._test_btrisolve(self, lambda t: t) |
| |
| def test_bmm(self): |
| num_batches = 10 |
| M, N, O = 23, 8, 12 |
| b1 = torch.randn(num_batches, M, N) |
| b2 = torch.randn(num_batches, N, O) |
| res = torch.bmm(b1, b2) |
| for i in range(num_batches): |
| r = torch.mm(b1[i], b2[i]) |
| self.assertEqual(r, res[i]) |
| |
| def test_addbmm(self): |
| # num_batches = 10 |
| # M, N, O = 12, 8, 5 |
| num_batches = 2 |
| M, N, O = 2, 3, 4 |
| b1 = torch.randn(num_batches, M, N) |
| b2 = torch.randn(num_batches, N, O) |
| res = torch.bmm(b1, b2) |
| res2 = torch.Tensor().resize_as_(res[0]).zero_() |
| |
| res2.addbmm_(b1, b2) |
| self.assertEqual(res2, res.sum(0, False)) |
| |
| res2.addbmm_(1, b1, b2) |
| self.assertEqual(res2, res.sum(0, False) * 2) |
| |
| res2.addbmm_(1., .5, b1, b2) |
| self.assertEqual(res2, res.sum(0, False) * 2.5) |
| |
| res3 = torch.addbmm(1, res2, 0, b1, b2) |
| self.assertEqual(res3, res2) |
| |
| res4 = torch.addbmm(1, res2, .5, b1, b2) |
| self.assertEqual(res4, res.sum(0, False) * 3) |
| |
| res5 = torch.addbmm(0, res2, 1, b1, b2) |
| self.assertEqual(res5, res.sum(0, False)) |
| |
| res6 = torch.addbmm(.1, res2, .5, b1, b2) |
| self.assertEqual(res6, res2 * .1 + (res.sum(0) * .5)) |
| |
| def test_baddbmm(self): |
| num_batches = 10 |
| M, N, O = 12, 8, 5 |
| b1 = torch.randn(num_batches, M, N) |
| b2 = torch.randn(num_batches, N, O) |
| res = torch.bmm(b1, b2) |
| res2 = torch.Tensor().resize_as_(res).zero_() |
| |
| res2.baddbmm_(b1, b2) |
| self.assertEqual(res2, res) |
| |
| res2.baddbmm_(1, b1, b2) |
| self.assertEqual(res2, res * 2) |
| |
| res2.baddbmm_(1, .5, b1, b2) |
| self.assertEqual(res2, res * 2.5) |
| |
| res3 = torch.baddbmm(1, res2, 0, b1, b2) |
| self.assertEqual(res3, res2) |
| |
| res4 = torch.baddbmm(1, res2, .5, b1, b2) |
| self.assertEqual(res4, res * 3) |
| |
| res5 = torch.baddbmm(0, res2, 1, b1, b2) |
| self.assertEqual(res5, res) |
| |
| res6 = torch.baddbmm(.1, res2, .5, b1, b2) |
| self.assertEqual(res6, res2 * .1 + res * .5) |
| |
| def test_clamp(self): |
| m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5] |
| # just in case we're extremely lucky. |
| min_val = -1 |
| max_val = 1 |
| m1[1] = min_val |
| m1[2] = max_val |
| |
| res1 = m1.clone() |
| res1.clamp_(min_val, max_val) |
| res2 = m1.clone() |
| for i in iter_indices(res2): |
| res2[i] = max(min_val, min(max_val, res2[i])) |
| self.assertEqual(res1, res2) |
| |
| out = m1.clone() |
| torch.clamp(m1, min=min_val, max=max_val, out=out) |
| self.assertEqual(out, res1) |
| |
| res1 = torch.clamp(m1, min=min_val) |
| res2 = m1.clone() |
| for i in iter_indices(res2): |
| res2[i] = max(min_val, res2[i]) |
| self.assertEqual(res1, res2) |
| |
| torch.clamp(m1, min=min_val, out=out) |
| self.assertEqual(out, res1) |
| |
| res1 = torch.clamp(m1, max=max_val) |
| res2 = m1.clone() |
| for i in iter_indices(res2): |
| res2[i] = min(max_val, res2[i]) |
| self.assertEqual(res1, res2) |
| |
| torch.clamp(m1, max=max_val, out=out) |
| self.assertEqual(out, res1) |
| |
| def test_pow(self): |
| # [res] torch.pow([res,] x) |
| |
| # pow has dedicated implementation for different exponents |
| for exponent in [-2, -1, -0.5, 0.5, 1, 2, 3, 4]: |
| # base - tensor, exponent - number |
| # contiguous |
| m1 = torch.rand(100, 100) + 0.5 |
| res1 = torch.pow(m1[4], exponent) |
| res2 = res1.clone().zero_() |
| for i in range(res2.size(0)): |
| res2[i] = math.pow(m1[4][i], exponent) |
| self.assertEqual(res1, res2) |
| |
| # non-contiguous |
| m1 = torch.rand(100, 100) + 0.5 |
| res1 = torch.pow(m1[:, 4], exponent) |
| res2 = res1.clone().zero_() |
| for i in range(res2.size(0)): |
| res2[i] = math.pow(m1[i, 4], exponent) |
| self.assertEqual(res1, res2) |
| |
| # base - number, exponent - tensor |
| # contiguous |
| m1 = torch.randn(100, 100) |
| res1 = torch.pow(3, m1[4]) |
| res2 = res1.clone().zero_() |
| for i in range(res2.size(0)): |
| res2[i] = math.pow(3, m1[4, i]) |
| self.assertEqual(res1, res2) |
| |
| # non-contiguous |
| m1 = torch.randn(100, 100) |
| res1 = torch.pow(3, m1[:, 4]) |
| res2 = res1.clone().zero_() |
| for i in range(res2.size(0)): |
| res2[i] = math.pow(3, m1[i][4]) |
| self.assertEqual(res1, res2) |
| |
| def test_rpow(self): |
| m = torch.randn(10, 10) |
| self.assertEqual(torch.pow(2, m), 2**m) |
| |
| @staticmethod |
| def _test_int_pow(self, cast): |
| if not TEST_NUMPY: |
| return |
| import numpy as np |
| |
| def check_against_np(tensor, exp): |
| tensor_np = tensor.cpu().numpy() |
| exp_np = exp if isinstance(exp, int) else exp.cpu().numpy() |
| expected = torch.LongTensor(tensor_np ** exp_np).type_as(tensor) |
| self.assertEqual(torch.pow(tensor, exp), expected) |
| self.assertEqual(tensor.pow(exp), torch.pow(tensor, exp)) |
| |
| typecasts = [ |
| lambda x: x.long(), |
| lambda x: x.short(), |
| lambda x: x.byte(), |
| ] |
| |
| if not IS_WINDOWS: |
| typecasts.append(lambda x: x.int()) |
| |
| shape = (11, 5) |
| tensor = cast(torch.LongTensor(shape).random_(-10, 10)) |
| exps = [0, 1, 2, 5, cast(torch.LongTensor(shape).random_(0, 20))] |
| |
| for typecast in typecasts: |
| for exp in exps: |
| t = typecast(tensor) |
| e = exp if isinstance(exp, int) else typecast(exp) |
| check_against_np(t, e) |
| |
| def test_int_pow(self): |
| self._test_int_pow(self, lambda x: x) |
| |
| def _test_cop(self, torchfn, mathfn): |
| def reference_implementation(res2): |
| for i, j in iter_indices(sm1): |
| idx1d = i * sm1.size(0) + j |
| res2[i, j] = mathfn(sm1[i, j], sm2[idx1d]) |
| return res2 |
| |
| # contiguous |
| m1 = torch.randn(10, 10, 10) |
| m2 = torch.randn(10, 10 * 10) |
| sm1 = m1[4] |
| sm2 = m2[4] |
| |
| res1 = torchfn(sm1, sm2.view(10, 10)) |
| res2 = reference_implementation(res1.clone()) |
| self.assertEqual(res1, res2) |
| |
| # non-contiguous |
| m1 = torch.randn(10, 10, 10) |
| m2 = torch.randn(10 * 10, 10 * 10) |
| sm1 = m1[:, 4] |
| sm2 = m2[:, 4] |
| # view as sm1.size() |
| sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0])) |
| res1 = torchfn(sm1, sm2) |
| # reference_implementation assumes 1-d sm2 |
| sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride()) |
| res2 = reference_implementation(res1.clone()) |
| self.assertEqual(res1, res2) |
| |
| def test_cdiv(self): |
| self._test_cop(torch.div, lambda x, y: x / y) |
| |
| def test_cfmod(self): |
| self._test_cop(torch.fmod, math.fmod) |
| |
| def test_cremainder(self): |
| self._test_cop(torch.remainder, lambda x, y: x % y) |
| |
| def test_cmul(self): |
| self._test_cop(torch.mul, lambda x, y: x * y) |
| |
| def test_cpow(self): |
| self._test_cop(torch.pow, lambda x, y: float('nan') if x < 0 else math.pow(x, y)) |
| |
| @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') |
| def test_einsum(self): |
| # test cases taken from https://gist.github.com/rockt/15ee013889d65342088e9260a377dc8f |
| x = torch.randn(5) |
| y = torch.randn(7) |
| A = torch.randn(3, 5) |
| B = torch.randn(2, 5) |
| C = torch.randn(2, 3, 5) |
| D = torch.randn(2, 5, 7) |
| E = torch.randn(7, 9) |
| F = torch.randn(2, 3, 5, 7) |
| G = torch.randn(7, 11, 13) |
| H = torch.randn(4, 4) |
| I = torch.randn(3, 4, 4) |
| l = torch.randn(5, 10) |
| r = torch.randn(5, 20) |
| w = torch.randn(30, 10, 20) |
| test_list = [ |
| # -- Vector |
| ("i->", x), # sum |
| ("i,i->", x, x), # dot |
| ("i,i->i", x, x), # vector element-wise mul |
| ("i,j->ij", x, y), # outer |
| # -- Matrix |
| ("ij->ji", A), # transpose |
| ("ij->j", A), # row sum |
| ("ij->i", A), # col sum |
| ("ij,ij->ij", A, A), # matrix element-wise mul |
| ("ij,j->i", A, x), # matrix vector multiplication |
| ("ij,kj->ik", A, B), # matmul |
| ("ij,ab->ijab", A, E), # matrix outer product |
| # -- Tensor |
| ("aij,ajk->aik", C, D), # batch matmul |
| ("ijk,jk->i", C, A), # tensor matrix contraction |
| ("aij,jk->aik", D, E), # tensor matrix contraction |
| ("abcd,dfg->abcfg", F, G), # tensor tensor contraction |
| ("ijk,jk->ik", C, A), # tensor matrix contraction with double indices |
| ("ijk,jk->ij", C, A), # tensor matrix contraction with double indices |
| ("ijk,ik->j", C, B), # non contiguous |
| ("ijk,ik->jk", C, B), # non contiguous with double indices |
| # -- Diagonal |
| ("ii", H), # trace |
| ("ii->i", H), # diagonal |
| # -- Ellipsis |
| ("i...->...", H), |
| ("ki,...k->i...", A.t(), B), |
| ("k...,jk", A.t(), B), |
| ("...ii->...i", I), # batch diagonal |
| # -- Other |
| ("bn,anm,bm->ba", l, w, r), # as torch.bilinear |
| ] |
| for test in test_list: |
| actual = torch.einsum(test[0], test[1:]) |
| expected = np.einsum(test[0], *[t.numpy() for t in test[1:]]) |
| self.assertEqual(expected.shape, actual.shape, test[0]) |
| self.assertTrue(np.allclose(expected, actual.numpy()), test[0]) |
| |
| def do_einsum(*args): |
| return torch.einsum(test[0], args) |
| self.assertTrue(torch.autograd.gradcheck(do_einsum, test[1:])) |
| self.assertTrue(A._version == 0) # check that we do not use inplace ops |
| |
| def test_sum_all(self): |
| def check_sum_all(tensor): |
| pylist = tensor.reshape(-1).tolist() |
| self.assertEqual(tensor.sum(), sum(pylist)) |
| |
| check_sum_all(torch.tensor([1, 2, 3, 4, 5])) |
| check_sum_all(torch.randn(200000)) |
| check_sum_all(torch.randn(2000, 2)[:, 0]) |
| |
| @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') |
| def test_sum_dim(self): |
| def check_sum_dim(tensors, dim): |
| for tensor in tensors: |
| expected = tensor.numpy().sum(dim) |
| actual = tensor.sum(dim) |
| self.assertEqual(expected.shape, actual.shape) |
| if actual.dtype == torch.float: |
| self.assertTrue(np.allclose(expected, actual.numpy(), rtol=1e-03, atol=1e-05)) |
| else: |
| self.assertTrue(np.allclose(expected, actual.numpy())) |
| |
| float_types = [torch.double, |
| torch.float] |
| int_types = [torch.int64, |
| torch.int32, |
| torch.int16] |
| |
| def make_contiguous(shape, dtype): |
| if dtype in float_types: |
| return torch.randn(*shape, dtype=dtype) |
| result = torch.zeros(*shape, dtype=dtype) |
| result.apply_(lambda x: random.randint(-100, 100)) |
| return result |
| |
| def make_non_contiguous(shape, dtype): |
| contig = make_contiguous(shape, dtype) |
| non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0] |
| non_contig.copy_(contig) |
| self.assertFalse(non_contig.is_contiguous()) |
| return non_contig |
| |
| def make_tensors(*shape): |
| tensors = [] |
| for dtype in float_types + int_types: |
| tensors.append(make_contiguous(shape, dtype)) |
| tensors.append(make_non_contiguous(shape, dtype)) |
| return tensors |
| |
| check_sum_dim(make_tensors(5, 400000), 1) |
| check_sum_dim(make_tensors(3, 5, 7), 0) |
| check_sum_dim(make_tensors(3, 5, 7), 1) |
| check_sum_dim(make_tensors(3, 5, 7), 2) |
| check_sum_dim(make_tensors(100000), -1) |
| check_sum_dim(make_tensors(50, 50, 50), 0) |
| check_sum_dim(make_tensors(50, 50, 50), 1) |
| check_sum_dim(make_tensors(50, 50, 50), 2) |
| check_sum_dim(make_tensors(50, 50, 50), (1, 2)) |
| check_sum_dim(make_tensors(50, 50, 50), (1, -1)) |
| |
| def make_contiguous_slice(size, dtype): |
| contig = make_contiguous((1, size), dtype) |
| non_contig = contig[:1, 1:size - 1] |
| self.assertTrue(non_contig.is_contiguous()) |
| return contig |
| |
| for dtype in float_types + int_types: |
| check_sum_dim(make_contiguous_slice(5, dtype), 0) |
| check_sum_dim(make_contiguous_slice(50, dtype), 0) |
| check_sum_dim(make_contiguous_slice(500, dtype), 0) |
| check_sum_dim(make_contiguous_slice(100000, dtype), 0) |
| |
| def test_sum_out(self): |
| x = torch.rand(100, 100) |
| res1 = torch.sum(x, 1) |
| res2 = torch.Tensor() |
| torch.sum(x, 1, out=res2) |
| self.assertEqual(res1, res2) |
| x = torch.rand(100, 100, 100) |
| res1 = x.sum(2).sum(1) |
| res2 = torch.Tensor() |
| torch.sum(x, (2, 1), out=res2) |
| self.assertEqual(res1, res2) |
| |
| # TODO: these tests only check if it's possible to pass a return value |
| # it'd be good to expand them |
| def test_prod(self): |
| x = torch.rand(100, 100) |
| res1 = torch.prod(x, 1) |
| res2 = torch.Tensor() |
| torch.prod(x, 1, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_cumsum(self): |
| x = torch.rand(100, 100) |
| res1 = torch.cumsum(x, 1) |
| res2 = torch.Tensor() |
| torch.cumsum(x, 1, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_cumprod(self): |
| x = torch.rand(100, 100) |
| res1 = torch.cumprod(x, 1) |
| res2 = torch.Tensor() |
| torch.cumprod(x, 1, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def _test_reduce_integer_upcast(self, fn, has_out=True): |
| shape = (3, 4, 5) |
| reduced_shape = fn(torch.ones(shape)).shape |
| |
| def _test_out(dtype, other_dtype): |
| out = torch.ones(reduced_shape, dtype=dtype) |
| result = fn(x, out=out) |
| self.assertIs(out.dtype, result.dtype) |
| self.assertEqual(fn(x.type(dtype)), result) |
| result = fn(x, out=out, dtype=dtype) |
| self.assertIs(out.dtype, result.dtype) |
| self.assertEqual(fn(x.type(dtype)), result) |
| # 'out' is favored over dtype, check error |
| self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype)) |
| |
| for dtype in [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]: |
| x = torch.ones(shape, dtype=dtype) |
| expected_dtype = dtype if dtype.is_floating_point else torch.int64 |
| self.assertIs(expected_dtype, fn(x).dtype) |
| self.assertEqual(fn(x.type(expected_dtype)), fn(x)) |
| |
| if dtype.is_floating_point: |
| other_dtype = torch.float32 if dtype == torch.float64 else torch.float64 |
| else: |
| other_dtype = torch.int32 if dtype != torch.int32 else torch.int16 |
| self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype) |
| self.assertEqual(fn(x.type(other_dtype)), fn(x, dtype=other_dtype)) |
| |
| # test mixed int/float |
| mixed_dtype = torch.int32 if dtype.is_floating_point else torch.float32 |
| self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype) |
| self.assertEqual(fn(x.type(mixed_dtype)), fn(x, dtype=mixed_dtype)) |
| |
| if has_out: |
| _test_out(dtype, other_dtype) |
| _test_out(dtype, mixed_dtype) |
| |
| def test_sum_integer_upcast(self): |
| self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False) |
| self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs)) |
| |
| def test_prod_integer_upcast(self): |
| self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False) |
| self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs)) |
| |
| def test_cumsum_integer_upcast(self): |
| self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs)) |
| |
| def test_cumprod_integer_upcast(self): |
| self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs)) |
| |
| def test_cross(self): |
| x = torch.rand(100, 3, 100) |
| y = torch.rand(100, 3, 100) |
| res1 = torch.cross(x, y) |
| res2 = torch.Tensor() |
| torch.cross(x, y, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_zeros(self): |
| res1 = torch.zeros(100, 100) |
| res2 = torch.Tensor() |
| torch.zeros(100, 100, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_zeros_like(self): |
| expected = torch.zeros(100, 100) |
| |
| res1 = torch.zeros_like(expected) |
| self.assertEqual(res1, expected) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_zeros_like_cuda(self): |
| expected = torch.zeros(100, 100).cuda() |
| |
| res1 = torch.zeros_like(expected) |
| self.assertEqual(res1, expected) |
| |
| @unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected') |
| def test_zeros_like_multiple_device(self): |
| expected = torch.zeros(100, 100).cuda() |
| x = torch.cuda.FloatTensor(100, 100, device=1) |
| output = torch.zeros_like(x) |
| self.assertEqual(output, expected) |
| |
| def test_zeros_out(self): |
| shape = (3, 4) |
| out = torch.zeros(shape) |
| torch.zeros(shape, out=out) |
| |
| # change the dtype, layout, device |
| self.assertRaises(RuntimeError, lambda: torch.zeros(shape, dtype=torch.int64, out=out)) |
| self.assertRaises(RuntimeError, lambda: torch.zeros(shape, layout=torch.sparse_coo, out=out)) |
| if torch.cuda.is_available(): |
| self.assertRaises(RuntimeError, lambda: torch.zeros(shape, device='cuda', out=out)) |
| |
| # leave them the same |
| self.assertEqual(torch.zeros(shape), torch.zeros(shape, dtype=out.dtype, out=out)) |
| self.assertEqual(torch.zeros(shape), torch.zeros(shape, layout=torch.strided, out=out)) |
| self.assertEqual(torch.zeros(shape), torch.zeros(shape, device='cpu', out=out)) |
| |
| def test_histc(self): |
| x = torch.Tensor((2, 4, 2, 2, 5, 4)) |
| y = torch.histc(x, 5, 1, 5) # nbins, min, max |
| z = torch.Tensor((0, 3, 0, 2, 1)) |
| self.assertEqual(y, z) |
| |
| def test_ones(self): |
| res1 = torch.ones(100, 100) |
| res2 = torch.Tensor() |
| torch.ones(100, 100, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_ones_like(self): |
| expected = torch.ones(100, 100) |
| |
| res1 = torch.ones_like(expected) |
| self.assertEqual(res1, expected) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_ones_like_cuda(self): |
| expected = torch.ones(100, 100).cuda() |
| |
| res1 = torch.ones_like(expected) |
| self.assertEqual(res1, expected) |
| |
| @unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected') |
| def test_ones_like_multiple_device(self): |
| expected = torch.ones(100, 100).cuda() |
| x = torch.cuda.FloatTensor(100, 100, device=1) |
| output = torch.ones_like(x) |
| self.assertEqual(output, expected) |
| |
| @staticmethod |
| def _test_dtypes(self, dtypes, layout, device): |
| for dtype in dtypes: |
| if dtype != torch.float16: |
| out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device) |
| self.assertIs(dtype, out.dtype) |
| self.assertIs(layout, out.layout) |
| self.assertEqual(device, out.device) |
| |
| def test_dtypes(self): |
| all_dtypes = torch.testing.get_all_dtypes() |
| self._test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu')) |
| if torch.cuda.is_available(): |
| self._test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0')) |
| |
| def test_copy_dtypes(self): |
| all_dtypes = torch.testing.get_all_dtypes() |
| for dtype in all_dtypes: |
| copied_dtype = copy.deepcopy(dtype) |
| self.assertIs(dtype, copied_dtype) |
| |
| def test_device(self): |
| cpu = torch.device('cpu') |
| self.assertEqual('cpu', str(cpu)) |
| self.assertEqual('cpu', cpu.type) |
| self.assertEqual(None, cpu.index) |
| |
| cpu0 = torch.device('cpu:0') |
| self.assertEqual('cpu:0', str(cpu0)) |
| self.assertEqual('cpu', cpu0.type) |
| self.assertEqual(0, cpu0.index) |
| |
| cpu0 = torch.device('cpu', 0) |
| self.assertEqual('cpu:0', str(cpu0)) |
| self.assertEqual('cpu', cpu0.type) |
| self.assertEqual(0, cpu0.index) |
| |
| cuda = torch.device('cuda') |
| self.assertEqual('cuda', str(cuda)) |
| self.assertEqual('cuda', cuda.type) |
| self.assertEqual(None, cuda.index) |
| |
| cuda1 = torch.device('cuda:1') |
| self.assertEqual('cuda:1', str(cuda1)) |
| self.assertEqual('cuda', cuda1.type) |
| self.assertEqual(1, cuda1.index) |
| |
| cuda1 = torch.device('cuda', 1) |
| self.assertEqual('cuda:1', str(cuda1)) |
| self.assertEqual('cuda', cuda1.type) |
| self.assertEqual(1, cuda1.index) |
| |
| self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1')) |
| self.assertRaises(RuntimeError, lambda: torch.device('cpu:1')) |
| self.assertRaises(RuntimeError, lambda: torch.device('cpu', -1)) |
| self.assertRaises(RuntimeError, lambda: torch.device('cpu', 1)) |
| self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1')) |
| self.assertRaises(RuntimeError, lambda: torch.device('cuda', -1)) |
| self.assertRaises(RuntimeError, lambda: torch.device(-1)) |
| |
| self.assertRaises(TypeError, lambda: torch.device('other')) |
| self.assertRaises(TypeError, lambda: torch.device('other:0')) |
| |
| def test_tensor_device(self): |
| def assertEqual(device_str, fn): |
| self.assertEqual(torch.device(device_str), fn().device) |
| self.assertEqual(device_str, str(fn().device)) |
| |
| assertEqual('cpu', lambda: torch.tensor(5)) |
| assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu')) |
| # NOTE: 'cpu' is the canonical representation of 'cpu:0', but 'cuda:X' is the canonical |
| # representation of cuda devices. |
| assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu:0')) |
| assertEqual('cpu', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0')) |
| if TEST_NUMPY: |
| assertEqual('cpu', lambda: torch.tensor(np.random.randn(2, 3), device='cpu')) |
| |
| if torch.cuda.is_available(): |
| assertEqual('cuda:0', lambda: torch.tensor(5).cuda(0)) |
| assertEqual('cuda:0', lambda: torch.tensor(5).cuda('cuda:0')) |
| self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu')) |
| self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu:0')) |
| assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device=0)) |
| assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:0')) |
| assertEqual('cuda:' + str(torch.cuda.current_device()), |
| lambda: torch.tensor(5, dtype=torch.int64, device='cuda')) |
| assertEqual('cuda:0', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0')) |
| if TEST_NUMPY: |
| assertEqual('cuda:0', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:0')) |
| |
| if torch.cuda.device_count() > 1: |
| assertEqual('cuda:1', lambda: torch.tensor(5).cuda(1)) |
| assertEqual('cuda:1', lambda: torch.tensor(5).cuda('cuda:1')) |
| assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device=1)) |
| assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:1')) |
| assertEqual('cuda:1', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1')) |
| if TEST_NUMPY: |
| assertEqual('cuda:1', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:1')) |
| |
| def test_to(self): |
| a = torch.tensor(5) |
| self.assertEqual(a.device, a.to('cpu').device) |
| self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device) |
| self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype) |
| self.assertEqual(a.device, a.to(torch.float32).device) |
| self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype) |
| |
| if torch.cuda.is_available(): |
| for non_blocking in [True, False]: |
| for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: |
| b = torch.tensor(5., device=cuda) |
| self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device) |
| self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device) |
| self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device) |
| self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype) |
| self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device) |
| self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype) |
| self.assertEqual(b.device, b.to(dtype=torch.int32).device) |
| |
| def test_to_with_tensor(self): |
| a = torch.tensor(5) |
| self.assertEqual(a.device, a.to(a).device) |
| |
| if torch.cuda.is_available(): |
| for non_blocking in [True, False]: |
| for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: |
| b = torch.tensor(5., device=cuda) |
| self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device) |
| self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device) |
| self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device) |
| |
| @staticmethod |
| def _test_empty_full(self, dtypes, layout, device): |
| shape = torch.Size([2, 3]) |
| |
| def check_value(tensor, dtype, layout, device, value, requires_grad): |
| self.assertEqual(shape, tensor.shape) |
| self.assertIs(dtype, tensor.dtype) |
| self.assertIs(layout, tensor.layout) |
| self.assertEqual(tensor.requires_grad, requires_grad) |
| if tensor.is_cuda and device is not None: |
| self.assertEqual(device, tensor.device) |
| if value is not None: |
| fill = tensor.new(shape).fill_(value) |
| self.assertEqual(tensor, fill) |
| |
| def get_int64_dtype(dtype): |
| module = '.'.join(str(dtype).split('.')[1:-1]) |
| if not module: |
| return torch.int64 |
| return operator.attrgetter(module)(torch).int64 |
| |
| default_dtype = torch.get_default_dtype() |
| check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False) |
| check_value(torch.full(shape, -5), default_dtype, torch.strided, -1, None, False) |
| for dtype in dtypes: |
| for rg in {dtype.is_floating_point, False}: |
| int64_dtype = get_int64_dtype(dtype) |
| v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg) |
| check_value(v, dtype, layout, device, None, rg) |
| out = v.new() |
| check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg), |
| dtype, layout, device, None, rg) |
| check_value(v.new_empty(shape), dtype, layout, device, None, False) |
| check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), |
| int64_dtype, layout, device, None, False) |
| check_value(torch.empty_like(v), dtype, layout, device, None, False) |
| check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), |
| int64_dtype, layout, device, None, False) |
| |
| if dtype is not torch.float16 and layout != torch.sparse_coo: |
| fv = 3 |
| v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg) |
| check_value(v, dtype, layout, device, fv, rg) |
| check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False) |
| out = v.new() |
| check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg), |
| dtype, layout, device, fv + 2, rg) |
| check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False), |
| int64_dtype, layout, device, fv + 3, False) |
| check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False) |
| check_value(torch.full_like(v, fv + 5, |
| dtype=int64_dtype, layout=layout, device=device, requires_grad=False), |
| int64_dtype, layout, device, fv + 5, False) |
| |
| def test_empty_full(self): |
| self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, torch.device('cpu')) |
| if torch.cuda.device_count() > 0: |
| self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, None) |
| self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, torch.device('cuda:0')) |
| |
| def test_dtype_out_match(self): |
| d = torch.autograd.Variable(torch.DoubleTensor(2, 3)) |
| self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), out=d, dtype=torch.float32)) |
| |
| def test_constructor_dtypes(self): |
| default_type = torch.Tensor().type() |
| self.assertIs(torch.Tensor().dtype, torch.get_default_dtype()) |
| |
| self.assertIs(torch.uint8, torch.ByteTensor.dtype) |
| self.assertIs(torch.float32, torch.FloatTensor.dtype) |
| self.assertIs(torch.float64, torch.DoubleTensor.dtype) |
| |
| torch.set_default_tensor_type('torch.FloatTensor') |
| self.assertIs(torch.float32, torch.get_default_dtype()) |
| self.assertIs(torch.FloatStorage, torch.Storage) |
| |
| torch.set_default_dtype(torch.float64) |
| self.assertIs(torch.float64, torch.get_default_dtype()) |
| self.assertIs(torch.DoubleStorage, torch.Storage) |
| |
| torch.set_default_tensor_type(torch.FloatTensor) |
| self.assertIs(torch.float32, torch.get_default_dtype()) |
| self.assertIs(torch.FloatStorage, torch.Storage) |
| |
| if torch.cuda.is_available(): |
| torch.set_default_tensor_type(torch.cuda.FloatTensor) |
| self.assertIs(torch.float32, torch.get_default_dtype()) |
| self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) |
| self.assertIs(torch.cuda.FloatStorage, torch.Storage) |
| |
| torch.set_default_dtype(torch.float64) |
| self.assertIs(torch.float64, torch.get_default_dtype()) |
| self.assertIs(torch.cuda.DoubleStorage, torch.Storage) |
| |
| # don't support integral or sparse default types. |
| self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) |
| self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64)) |
| |
| # don't allow passing dtype to set_default_tensor_type |
| self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) |
| |
| torch.set_default_tensor_type(default_type) |
| |
| def test_type(self): |
| x = torch.randn(3, 3).double() |
| self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32) |
| self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32) |
| self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype()) |
| self.assertEqual(x.type(torch.int32).dtype, torch.int32) |
| |
| def test_tensor_factory(self): |
| expected = torch.Tensor([1, 1]) |
| # test data |
| res1 = torch.tensor([1, 1]) |
| self.assertEqual(res1, expected) |
| |
| res1 = torch.tensor([1, 1], dtype=torch.int) |
| self.assertEqual(res1, expected) |
| self.assertIs(torch.int, res1.dtype) |
| |
| # test copy |
| res2 = torch.tensor(expected) |
| self.assertEqual(res2, expected) |
| res2[1] = 2 |
| self.assertEqual(expected, torch.ones_like(expected)) |
| |
| res2 = torch.tensor(expected, dtype=torch.int) |
| self.assertEqual(res1, expected) |
| self.assertIs(torch.int, res1.dtype) |
| |
| # test copy with numpy |
| if TEST_NUMPY: |
| a = np.array([5.]) |
| res1 = torch.tensor(a) |
| self.assertEqual(5., res1[0].item()) |
| a[0] = 7. |
| self.assertEqual(5., res1[0].item()) |
| |
| def test_tensor_factory_type_inference(self): |
| def test_inference(default_dtype): |
| saved_dtype = torch.get_default_dtype() |
| torch.set_default_dtype(default_dtype) |
| self.assertIs(default_dtype, torch.tensor(()).dtype) |
| self.assertIs(default_dtype, torch.tensor(5.).dtype) |
| self.assertIs(torch.int64, torch.tensor(5).dtype) |
| self.assertIs(torch.uint8, torch.tensor(True).dtype) |
| self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) |
| self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) |
| self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) |
| self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) |
| |
| if TEST_NUMPY: |
| self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) |
| self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) |
| if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) |
| self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) |
| else: |
| self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) |
| self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) |
| self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) |
| self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) |
| self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) |
| torch.set_default_dtype(saved_dtype) |
| |
| test_inference(torch.float64) |
| test_inference(torch.float32) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_tensor_factory_cuda_type_inference(self): |
| saved_type = torch.Tensor().type() |
| torch.set_default_tensor_type(torch.cuda.DoubleTensor) |
| torch.set_default_dtype(torch.float32) |
| self.assertIs(torch.float32, torch.tensor(0.).dtype) |
| self.assertEqual(torch.device('cuda:0'), torch.tensor(0.).device) |
| torch.set_default_dtype(torch.float64) |
| self.assertIs(torch.float64, torch.tensor(0.).dtype) |
| self.assertEqual(torch.device('cuda:0'), torch.tensor(0.).device) |
| torch.set_default_tensor_type(saved_type) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_tensor_factory_cuda_type(self): |
| saved_type = torch.Tensor().type() |
| torch.set_default_tensor_type(torch.cuda.FloatTensor) |
| x = torch.zeros((5, 5)) |
| self.assertIs(torch.float32, x.dtype) |
| self.assertTrue(x.is_cuda) |
| torch.set_default_tensor_type(torch.cuda.DoubleTensor) |
| x = torch.zeros((5, 5)) |
| self.assertIs(torch.float64, x.dtype) |
| self.assertTrue(x.is_cuda) |
| torch.set_default_tensor_type(saved_type) |
| |
| def test_new_tensor(self): |
| expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) |
| # test data |
| res1 = expected.new_tensor([1, 1]) |
| self.assertEqual(res1, expected) |
| res1 = expected.new_tensor([1, 1], dtype=torch.int) |
| self.assertEqual(res1, expected) |
| self.assertIs(torch.int, res1.dtype) |
| |
| # test copy |
| res2 = expected.new_tensor(expected) |
| self.assertEqual(res2, expected) |
| res2[1] = 2 |
| self.assertEqual(expected, torch.ones_like(expected)) |
| res2 = expected.new_tensor(expected, dtype=torch.int) |
| self.assertEqual(res2, expected) |
| self.assertIs(torch.int, res2.dtype) |
| |
| # test copy with numpy |
| if TEST_NUMPY: |
| a = np.array([5.]) |
| res1 = torch.tensor(a) |
| res1 = res1.new_tensor(a) |
| self.assertEqual(5., res1[0].item()) |
| a[0] = 7. |
| self.assertEqual(5., res1[0].item()) |
| |
| if torch.cuda.device_count() >= 2: |
| expected = expected.cuda(1) |
| res1 = expected.new_tensor([1, 1]) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| res1 = expected.new_tensor([1, 1], dtype=torch.int) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| |
| res2 = expected.new_tensor(expected) |
| self.assertEqual(res2.get_device(), expected.get_device()) |
| res2 = expected.new_tensor(expected, dtype=torch.int) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res2.get_device(), expected.get_device()) |
| res2 = expected.new_tensor(expected, dtype=torch.int, device=0) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res2.get_device(), 0) |
| |
| res1 = expected.new_tensor(1) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| res1 = expected.new_tensor(1, dtype=torch.int) |
| self.assertIs(torch.int, res1.dtype) |
| self.assertEqual(res1.get_device(), expected.get_device()) |
| |
| def test_as_tensor(self): |
| # from python data |
| x = [[0, 1], [2, 3]] |
| self.assertEqual(torch.tensor(x), torch.as_tensor(x)) |
| self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) |
| |
| # from tensor (doesn't copy unless type is different) |
| y = torch.tensor(x) |
| self.assertIs(y, torch.as_tensor(y)) |
| self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) |
| if torch.cuda.is_available(): |
| self.assertIsNot(y, torch.as_tensor(y, device='cuda')) |
| y_cuda = y.to('cuda') |
| self.assertIs(y_cuda, torch.as_tensor(y_cuda)) |
| self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) |
| |
| if TEST_NUMPY: |
| # doesn't copy |
| n = np.random.rand(5, 6) |
| n_astensor = torch.as_tensor(n) |
| self.assertEqual(torch.tensor(n), n_astensor) |
| n_astensor[0][0] = 250.7 |
| self.assertEqual(torch.tensor(n), n_astensor) |
| |
| # changing dtype causes copy |
| n = np.random.rand(5, 6).astype(np.float32) |
| n_astensor = torch.as_tensor(n, dtype=torch.float64) |
| self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) |
| n_astensor[0][1] = 250.8 |
| self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) |
| |
| # changing device causes copy |
| if torch.cuda.is_available(): |
| n = np.random.randn(5, 6) |
| n_astensor = torch.as_tensor(n, device='cuda') |
| self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) |
| n_astensor[0][2] = 250.9 |
| self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) |
| |
| def test_diag(self): |
| x = torch.rand(100, 100) |
| res1 = torch.diag(x) |
| res2 = torch.Tensor() |
| torch.diag(x, out=res2) |
| self.assertEqual(res1, res2) |
| |
| @staticmethod |
| def _test_diagonal(self, dtype, device): |
| x = torch.randn((100, 100), dtype=dtype, device=device) |
| result = torch.diagonal(x) |
| expected = torch.diag(x) |
| self.assertEqual(result, expected) |
| |
| x = torch.randn((100, 100), dtype=dtype, device=device) |
| result = torch.diagonal(x, 17) |
| expected = torch.diag(x, 17) |
| self.assertEqual(result, expected) |
| |
| def test_diagonal(self): |
| self._test_diagonal(self, dtype=torch.float32, device='cpu') |
| |
| @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') |
| def test_diagonal_multidim(self): |
| x = torch.randn(10, 11, 12, 13) |
| xn = x.numpy() |
| for args in [(2, 2, 3), |
| (2,), |
| (-2, 1, 2), |
| (0, -2, -1)]: |
| result = torch.diagonal(x, *args) |
| expected = xn.diagonal(*args) |
| self.assertEqual(expected.shape, result.shape) |
| self.assertTrue(np.allclose(expected, result.numpy())) |
| # test non-continguous |
| xp = x.permute(1, 2, 3, 0) |
| result = torch.diagonal(xp, 0, -2, -1) |
| expected = xp.numpy().diagonal(0, -2, -1) |
| self.assertEqual(expected.shape, result.shape) |
| self.assertTrue(np.allclose(expected, result.numpy())) |
| |
| @staticmethod |
| def _test_diagflat(self, dtype, device): |
| # Basic sanity test |
| x = torch.randn((100,), dtype=dtype, device=device) |
| result = torch.diagflat(x) |
| expected = torch.diag(x) |
| self.assertEqual(result, expected) |
| |
| # Test offset |
| x = torch.randn((100,), dtype=dtype, device=device) |
| result = torch.diagflat(x, 17) |
| expected = torch.diag(x, 17) |
| self.assertEqual(result, expected) |
| |
| # Test where input has more than one dimension |
| x = torch.randn((2, 3, 4), dtype=dtype, device=device) |
| result = torch.diagflat(x) |
| expected = torch.diag(x.contiguous().view(-1)) |
| self.assertEqual(result, expected) |
| |
| # Noncontig input |
| x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) |
| self.assertFalse(x.is_contiguous()) |
| result = torch.diagflat(x) |
| expected = torch.diag(x.contiguous().view(-1)) |
| self.assertEqual(result, expected) |
| |
| def test_diagflat(self): |
| self._test_diagflat(self, dtype=torch.float32, device='cpu') |
| |
| def test_eye(self): |
| res1 = torch.eye(100, 100) |
| res2 = torch.Tensor() |
| torch.eye(100, 100, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_renorm(self): |
| m1 = torch.randn(10, 5) |
| res1 = torch.Tensor() |
| |
| def renorm(matrix, value, dim, max_norm): |
| m1 = matrix.transpose(dim, 0).contiguous() |
| # collapse non-dim dimensions. |
| m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0)))) |
| norms = m2.norm(value, 1, True) |
| # clip |
| new_norms = norms.clone() |
| new_norms[torch.gt(norms, max_norm)] = max_norm |
| new_norms.div_(norms.add_(1e-7)) |
| # renormalize |
| m1.mul_(new_norms.expand_as(m1)) |
| return m1.transpose(dim, 0) |
| |
| # note that the axis fed to torch.renorm is different (2~=1) |
| maxnorm = m1.norm(2, 1).mean() |
| m2 = renorm(m1, 2, 1, maxnorm) |
| m1.renorm_(2, 1, maxnorm) |
| self.assertEqual(m1, m2, 1e-5) |
| self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5) |
| |
| m1 = torch.randn(3, 4, 5) |
| m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4) |
| maxnorm = m2.norm(2, 0).mean() |
| m2 = renorm(m2, 2, 1, maxnorm) |
| m1.renorm_(2, 1, maxnorm) |
| m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4) |
| self.assertEqual(m3, m2) |
| self.assertEqual(m3.norm(2, 0), m2.norm(2, 0)) |
| |
| @staticmethod |
| def _test_renorm_ps(self, device): |
| # full reduction |
| x = torch.randn(5, 5) |
| xn = x.numpy() |
| for p in [1, 2, 3, 4, float('inf')]: |
| res = x.renorm(p, 1, 1) |
| expected = x / x.norm(p, 0, keepdim=True).clamp(min=1) |
| self.assertEqual(res.numpy(), expected.numpy(), "renorm failed for {}-norm".format(p)) |
| |
| def test_renorm_ps(self): |
| self._test_renorm_ps(self, device='cpu') |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_renorm_ps_cuda(self): |
| self._test_renorm_ps(self, device='cuda') |
| |
| @staticmethod |
| def _test_multinomial(self, type): |
| def make_prob_dist(shape, is_contiguous): |
| if is_contiguous: |
| return type(*shape).uniform_() |
| elif len(shape) == 1: |
| return type(*(shape + [5])).uniform_()[:, 2] |
| else: |
| # num dim = 2 |
| new_shape = [2, shape[1], 7, 1, shape[0], 1, 10] |
| prob_dist = type(*new_shape).uniform_() |
| prob_dist = prob_dist.transpose(1, 4) |
| prob_dist = prob_dist[1, :, 5, 0, :, 0, 4] |
| assert not prob_dist.is_contiguous() # sanity check |
| return prob_dist |
| |
| for is_contiguous in (True, False): |
| # with replacement |
| n_row = 3 |
| for n_col in range(4, 5 + 1): |
| prob_dist = make_prob_dist([n_row, n_col], is_contiguous) |
| # indices that shouldn't be sampled (<0 means none) |
| zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist() |
| for i, j in enumerate(zero_prob_indices): |
| if j >= 0: |
| prob_dist[i, j] = 0 |
| n_sample = n_col * 3 |
| sample_indices = torch.multinomial(prob_dist, n_sample, True) |
| self.assertEqual(prob_dist.dim(), 2) |
| self.assertEqual(sample_indices.size(1), n_sample) |
| for i in range(n_row): |
| zero_prob_idx = zero_prob_indices[i] |
| if zero_prob_idx < 0: |
| continue |
| for j in range(n_sample): |
| self.assertNotEqual(sample_indices[i, j], zero_prob_idx, |
| "sampled an index with zero probability") |
| |
| # without replacement |
| n_row = 3 |
| for n_col in range(2, 10 + 1, 2): |
| prob_dist = make_prob_dist([n_row, n_col], is_contiguous) |
| # indices that shouldn't be sampled (<0 means none) |
| zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist() |
| for i, j in enumerate(zero_prob_indices): |
| if j >= 0: |
| prob_dist[i, j] = 0 |
| n_sample = max(1, n_col - 2) |
| sample_indices = torch.multinomial(prob_dist, n_sample, False) |
| self.assertEqual(prob_dist.dim(), 2) |
| self.assertEqual(sample_indices.size(1), n_sample) |
| for i in range(n_row): |
| row_samples = {} |
| zero_prob_idx = zero_prob_indices[i] |
| for j in range(n_sample): |
| sample_idx = sample_indices[i, j] |
| if zero_prob_idx >= 0: |
| self.assertNotEqual(sample_idx, zero_prob_idx, |
| "sampled an index with zero probability") |
| self.assertNotIn(sample_idx, row_samples, "sampled an index twice") |
| row_samples[sample_idx] = True |
| |
| # vector |
| n_col = 4 |
| prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1) |
| zero_prob_idx = 1 # index that shouldn't be sampled |
| prob_dist[zero_prob_idx] = 0 |
| n_sample = 20 |
| sample_indices = torch.multinomial(prob_dist, n_sample, True) |
| for sample_index in sample_indices: |
| self.assertNotEqual(sample_index, zero_prob_idx, "sampled an index with zero probability") |
| s_dim = sample_indices.dim() |
| self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions") |
| self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions") |
| self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples") |
| |
| def test_multinomial(self): |
| self._test_multinomial(self, torch.FloatTensor) |
| |
| def _spawn_method(self, method, arg): |
| try: |
| mp.set_start_method('spawn') |
| except RuntimeError: |
| pass |
| with mp.Pool(1) as pool: |
| self.assertTrue(pool.map(method, [arg])) |
| |
| @staticmethod |
| def _test_multinomial_invalid_probs(probs): |
| try: |
| torch.multinomial(probs.to('cpu'), 1) |
| return False # Should not be reached |
| except RuntimeError as e: |
| return 'invalid multinomial distribution' in str(e) |
| |
| @unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \ |
| don't support multiprocessing with spawn start method") |
| @unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows') |
| @unittest.skipIf(not PY3, |
| "spawn start method is not supported in Python 2, \ |
| but we need it for for testing failure case for CPU RNG on Windows") |
| def test_multinomial_invalid_probs(self): |
| test_method = TestTorch._test_multinomial_invalid_probs |
| self._spawn_method(test_method, torch.Tensor([0, -1])) |
| self._spawn_method(test_method, torch.Tensor([0, float('inf')])) |
| self._spawn_method(test_method, torch.Tensor([0, float('-inf')])) |
| self._spawn_method(test_method, torch.Tensor([0, float('nan')])) |
| |
| @suppress_warnings |
| def test_range(self): |
| res1 = torch.range(0, 1) |
| res2 = torch.Tensor() |
| torch.range(0, 1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| # Check range for non-contiguous tensors. |
| x = torch.zeros(2, 3) |
| torch.range(0, 3, out=x.narrow(1, 1, 2)) |
| res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) |
| self.assertEqual(x, res2, 1e-16) |
| |
| # Check negative |
| res1 = torch.Tensor((1, 0)) |
| res2 = torch.Tensor() |
| torch.range(1, 0, -1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| # Equal bounds |
| res1 = torch.ones(1) |
| res2 = torch.Tensor() |
| torch.range(1, 1, -1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| torch.range(1, 1, 1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| # FloatTensor |
| res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor()) |
| self.assertEqual(res1.size(0), 4) |
| res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor()) |
| self.assertEqual(res1.size(0), 31) |
| |
| # DoubleTensor |
| res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor()) |
| self.assertEqual(res1.size(0), 4) |
| res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor()) |
| self.assertEqual(res1.size(0), 31) |
| |
| def test_range_warning(self): |
| with warnings.catch_warnings(record=True) as w: |
| torch.range(0, 10) |
| self.assertEqual(len(w), 1) |
| |
| def test_arange(self): |
| res1 = torch.arange(0, 1) |
| res2 = torch.Tensor() |
| torch.arange(0, 1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| # Check arange with only one argument |
| res1 = torch.arange(10) |
| res2 = torch.arange(0, 10) |
| self.assertEqual(res1, res2, 0) |
| |
| # Check arange for non-contiguous tensors. |
| x = torch.zeros(2, 3) |
| torch.arange(0, 4, out=x.narrow(1, 1, 2)) |
| res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) |
| self.assertEqual(x, res2, 1e-16) |
| |
| # Check negative |
| res1 = torch.Tensor((1, 0)) |
| res2 = torch.Tensor() |
| torch.arange(1, -1, -1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| # Equal bounds |
| res1 = torch.ones(1) |
| res2 = torch.Tensor() |
| torch.arange(1, 0, -1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| torch.arange(1, 2, 1, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| # FloatTensor |
| res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor()) |
| self.assertEqual(res1, [0.6, 0.7, 0.8]) |
| res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor()) |
| self.assertEqual(res1.size(0), 30) |
| self.assertEqual(res1[0], 1) |
| self.assertEqual(res1[29], 9.7) |
| |
| # DoubleTensor |
| res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor()) |
| self.assertEqual(res1, [0.6, 0.7, 0.8]) |
| res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor()) |
| self.assertEqual(res1.size(0), 30) |
| self.assertEqual(res1[0], 1) |
| self.assertEqual(res1[29], 9.7) |
| |
| # Check that it's exclusive |
| r = torch.arange(0, 5) |
| self.assertEqual(r.min(), 0) |
| self.assertEqual(r.max(), 4) |
| self.assertEqual(r.numel(), 5) |
| |
| r = torch.arange(0, 5, 2) |
| self.assertEqual(r.min(), 0) |
| self.assertEqual(r.max(), 4) |
| self.assertEqual(r.numel(), 3) |
| |
| r1 = torch.arange(0, 5 + 1e-6) |
| r2 = torch.arange(0, 5) |
| r3 = torch.arange(0, 5 - 1e-6) |
| self.assertEqual(r1[:-1], r2, 0) |
| self.assertEqual(r2, r3, 0) |
| |
| r1 = torch.arange(10, -1 + 1e-6, -1) |
| r2 = torch.arange(10, -1, -1) |
| r3 = torch.arange(10, -1 - 1e-6, -1) |
| self.assertEqual(r1, r2, 0) |
| self.assertEqual(r2, r3[:-1], 0) |
| |
| def test_arange_inference(self): |
| saved_dtype = torch.get_default_dtype() |
| torch.set_default_dtype(torch.float32) |
| # end only |
| self.assertIs(torch.float32, torch.arange(1.).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) |
| |
| self.assertIs(torch.int64, torch.arange(1).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) |
| |
| # start, end, [step] |
| self.assertIs(torch.float32, torch.arange(1., 3).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) |
| self.assertIs(torch.float32, torch.arange(1, 3.).dtype) |
| self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) |
| self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) |
| self.assertIs(torch.float32, |
| torch.arange(torch.tensor(1), |
| torch.tensor(3, dtype=torch.int16), |
| torch.tensor(1., dtype=torch.float64)).dtype) |
| |
| self.assertIs(torch.int64, torch.arange(1, 3).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) |
| self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) |
| self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) |
| self.assertIs(torch.int64, |
| torch.arange(torch.tensor(1), |
| torch.tensor(3), |
| torch.tensor(1, dtype=torch.int16)).dtype) |
| torch.set_default_dtype(saved_dtype) |
| |
| @staticmethod |
| def _select_broadcastable_dims(dims_full=None): |
| # select full dimensionality |
| if dims_full is None: |
| dims_full = [] |
| ndims = random.randint(1, 4) |
| dims_full = [random.randint(1, 8) for _ in range(ndims)] |
| else: |
| ndims = len(dims_full) |
| |
| # select actual dimensions for ops: |
| # larger: full ndims, individual sizes may be reduced |
| # smaller: possibly reduced ndims, sizes may be reduced |
| smaller_ndims = random.randint(1, ndims) |
| dims_small = [] |
| dims_large = [] |
| for i in range(ndims - 1, -1, -1): |
| j = random.randint(1, 3) |
| if j == 1: # no reduced singleton dimension |
| ds = dims_full[i] |
| dl = dims_full[i] |
| elif j == 2: # larger may have reduced singleton dimension |
| ds = dims_full[i] |
| dl = 1 if len(dims_small) < smaller_ndims else dims_full[i] |
| elif j == 3: # smaller may have reduced singleton dimension |
| ds = 1 |
| dl = dims_full[i] |
| dims_large = [dl] + dims_large |
| if len(dims_small) < smaller_ndims: |
| dims_small = [ds] + dims_small |
| return (dims_small, dims_large, dims_full) |
| |
| @staticmethod |
| def _test_broadcast(self, cast): |
| |
| # all functions |
| fns = { |
| "dist", "atan2", "pow", "lerp", "add", |
| "sub", "mul", "div", "fmod", "remainder", |
| "eq", "ge", "gt", "le", "lt", "max", "min", "ne", |
| "addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill", |
| "map", "map2", "copy" |
| } |
| # functions with three tensor arguments |
| fns_3_args = {"addcdiv", "addcmul", "map2"} |
| |
| for fn in fns: |
| (dims_small, dims_large, dims_full) = self._select_broadcastable_dims() |
| small = cast(torch.randn(*dims_small).float()) |
| large = cast(torch.randn(*dims_large).float()) |
| small_expanded = small.expand(*dims_full) |
| large_expanded = large.expand(*dims_full) |
| small2 = None |
| small2_expanded = None |
| if fn in fns_3_args: |
| # create another smaller tensor |
| (dims_small2, _, _) = self._select_broadcastable_dims(dims_full) |
| small2 = cast(torch.randn(*dims_small2).float()) |
| small2_expanded = small2.expand(*dims_full) |
| |
| if small.is_cuda and fn in ['map', 'map2']: |
| # map and map2 are not implementd on CUDA tensors |
| continue |
| |
| # TODO: fix masked_scatter and masked_fill broadcasting |
| if hasattr(large_expanded, fn) and fn not in ['masked_scatter', 'masked_fill']: |
| # run through tensor versions of functions |
| # and verify fully expanded inputs give same results |
| expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded} |
| |
| def tensorfn(myfn, t1, t2): |
| if fn == "lerp": |
| return myfn(t1, 0.5) |
| elif fn == "masked_select": |
| return myfn(t1 < 0) |
| elif fn in fns_3_args: |
| return myfn(1, t1, t2) |
| else: |
| return myfn(t1) |
| |
| # test various orders |
| for first, second, third in [(large, small, small2), (small, large, small2), |
| (small2, small, large), (small2, large, small)]: |
| if first is None: |
| break # ignore last iter when small2 is None |
| method_expanded = getattr(expanded[first], fn) |
| method = getattr(first, fn) |
| r1 = tensorfn(method_expanded, expanded[second], expanded[third]) |
| r2 = tensorfn(method, second, third) |
| self.assertEqual(r1, r2) |
| |
| # now for torch. versions of functions |
| if hasattr(torch, fn): |
| fntorch = getattr(torch, fn) |
| expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded} |
| |
| def torchfn(t1, t2, t3): |
| if fn == "lerp": |
| return fntorch(t1, t2, 0.5) |
| elif fn == "masked_select": |
| return fntorch(t1, t2 < 0) |
| elif fn == "masked_scatter": |
| return fntorch(t1, t2 < 0.5, cast(torch.arange(1, t1.nelement() + 1).float())) |
| elif fn == "masked_fill": |
| return fntorch(t1, t2 < 0.5, 1.0) |
| elif fn in fns_3_args: |
| return fntorch(t1, 1.0, t2, t3) |
| else: |
| return fntorch(t1, t2) |
| |
| # test various orders |
| for first, second, third in [(large, small, small2), (small, large, small2), |
| (small2, small, large), (small2, large, small)]: |
| if first is None: |
| break # ignore last iter when small2 is None |
| r1 = torchfn(expanded[first], expanded[second], expanded[third]) |
| r2 = torchfn(first, second, third) |
| self.assertEqual(r1, r2) |
| |
| # now for in place functions |
| # in-place tensor is not broadcastable; test only guaranteed |
| # to work by broadcasting other argument(s) |
| if not hasattr(large_expanded, fn + "_"): |
| continue |
| |
| # need to clone largeExpanded so we can reuse, since functions are in-place |
| large_expanded_clone = large_expanded.clone() |
| |
| def tensorfn_inplace(t0, t1, t2=None): |
| t0_fn = getattr(t0, fn + "_") |
| if fn == "lerp": |
| return t0_fn(t1, 0.5) |
| elif fn == "masked_scatter": |
| return t0_fn(t1 < 0.5, cast(torch.arange(1, t0.nelement() + 1).float())) |
| elif fn == "masked_fill": |
| return t0_fn(t1 < 0.5, 1.0) |
| elif fn == "map": |
| return t0_fn(t1, lambda x, y: x + y) |
| elif fn == "map2": |
| return t0_fn(t1, t2, lambda x, y, z: x + y + z) |
| elif fn in fns_3_args: |
| return t0_fn(1.0, t1, t2) |
| else: |
| return t0_fn(t1) |
| r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded) |
| r2 = tensorfn_inplace(large_expanded_clone, small, small2) |
| # in-place pointwise operations don't actually work if the in-place |
| # tensor is 0-strided (numpy has the same issue) |
| if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()): |
| self.assertEqual(r1, r2) |
| |
| def broadcastable(t0, t1, t2=None): |
| try: |
| t1.expand_as(t0) |
| if t2 is not None: |
| t2.expand_as(t0) |
| except RuntimeError: |
| return False |
| return True |
| |
| def _test_in_place_broadcastable(t0, t1, t2=None): |
| if not broadcastable(t0, t1, t2): |
| same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True) |
| if not same_size: |
| self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2)) |
| else: |
| tensorfn_inplace(t0, t1, t2) |
| |
| if fn not in fns_3_args: |
| _test_in_place_broadcastable(small, large_expanded) |
| _test_in_place_broadcastable(small, large) |
| else: |
| _test_in_place_broadcastable(small2, small_expanded, large_expanded) |
| _test_in_place_broadcastable(small2, small, large) |
| |
| def test_broadcast(self): |
| self._test_broadcast(self, lambda t: t) |
| |
| @staticmethod |
| def _test_contiguous(self, cast): |
| x = cast(torch.randn(1, 16, 5, 5)) |
| self.assertTrue(x.is_contiguous()) |
| stride = list(x.stride()) |
| stride[0] = 20 |
| # change the stride in dimension 0. the tensor is still contiguous because size[0] is 1 |
| x.set_(x.storage(), 0, x.size(), stride) |
| self.assertTrue(x.is_contiguous()) |
| |
| def test_contiguous(self): |
| return self._test_contiguous(self, lambda t: t) |
| |
| def test_empty_tensor_props(self): |
| sizes = [(0,)] |
| if torch._C._use_zero_size_dim(): |
| sizes += [(0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] |
| devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda'] |
| for size in sizes: |
| for device in devices: |
| x = torch.empty(tuple(size), device=device) |
| self.assertEqual(size, x.shape) |
| self.assertTrue(x.is_contiguous()) |
| size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) |
| y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) |
| self.assertEqual(x.stride(), y.stride()) |
| |
| def test_scalars_as_floats(self): |
| "zero-dim variables that don't require grad should bind to scalar arguments" |
| x = torch.tensor(2.) |
| y = torch.tensor(3.) |
| # 3 + (3 * 3) * 2 |
| self.assertEqual(y.addcmul(y, y, value=x), 21) |
| |
| x = torch.tensor(2., requires_grad=True) |
| self.assertRaises(Exception, lambda: y.addcmul(y, y, value=x)) |
| |
| @staticmethod |
| def _test_broadcast_fused_matmul(self, cast): |
| fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"] |
| |
| for fn in fns: |
| batch_dim = random.randint(1, 8) |
| n_dim = random.randint(1, 8) |
| m_dim = random.randint(1, 8) |
| p_dim = random.randint(1, 8) |
| |
| def dims_full_for_fn(): |
| if fn == "baddbmm": |
| return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim]) |
| elif fn == "addbmm": |
| return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim]) |
| elif fn == "addmm": |
| return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim]) |
| elif fn == "addmv": |
| return ([n_dim], [n_dim, m_dim], [m_dim]) |
| elif fn == "addr": |
| return ([n_dim, m_dim], [n_dim], [m_dim]) |
| else: |
| raise AssertionError("unknown function") |
| |
| (t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn() |
| (t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full) |
| |
| t0_small = cast(torch.randn(*t0_dims_small).float()) |
| t1 = cast(torch.randn(*t1_dims).float()) |
| t2 = cast(torch.randn(*t2_dims).float()) |
| |
| t0_full = cast(t0_small.expand(*t0_dims_full)) |
| |
| fntorch = getattr(torch, fn) |
| r0 = fntorch(t0_small, t1, t2) |
| r1 = fntorch(t0_full, t1, t2) |
| self.assertEqual(r0, r1) |
| |
| def test_broadcast_fused_matmul(self): |
| self._test_broadcast_fused_matmul(self, lambda t: t) |
| |
| @staticmethod |
| def _test_broadcast_batched_matmul(self, cast): |
| n_dim = random.randint(1, 8) |
| m_dim = random.randint(1, 8) |
| p_dim = random.randint(1, 8) |
| full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))] |
| (batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims) |
| |
| def verify_batched_matmul(full_lhs, one_dimensional): |
| if not one_dimensional: |
| lhs_dims = [n_dim, m_dim] |
| rhs_dims = [m_dim, p_dim] |
| result_dims = [n_dim, p_dim] |
| else: |
| lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim] |
| rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim] |
| result_dims = [n_dim] if full_lhs else [p_dim] |
| |
| lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim] |
| rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1] |
| full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims |
| dim0_dims = rhs_dims if full_lhs else lhs_dims |
| small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims) |
| |
| small = cast(torch.randn(*(small_dims)).float()) |
| dim0 = cast(torch.randn(*(dim0_dims)).float()) |
| full = cast(torch.randn(*(full_batch_dims + full_mat_dims)).float()) |
| if not one_dimensional: |
| (lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,)) |
| else: |
| (lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,)) |
| |
| def maybe_squeeze_result(l, r, result): |
| if len(lhs_dims) == 1 and l.dim() != 1: |
| return result.squeeze(-2) |
| elif len(rhs_dims) == 1 and r.dim() != 1: |
| return result.squeeze(-1) |
| else: |
| return result |
| |
| for lhs in lhsTensors: |
| lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims))) |
| lhs_expanded_matmul_fn = getattr(lhs_expanded, "matmul") |
| for rhs in rhsTensors: |
| rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)). |
| expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims)))) |
| truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded)) |
| for l in (lhs, lhs_expanded): |
| for r in (rhs, rhs_expanded): |
| l_matmul_fn = getattr(l, "matmul") |
| result = maybe_squeeze_result(l, r, l_matmul_fn(r)) |
| self.assertEqual(truth, result) |
| # test torch.matmul function as well |
| torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r)) |
| self.assertEqual(truth, torch_result) |
| # test torch.matmul with out |
| out = torch.zeros_like(torch_result) |
| torch.matmul(l, r, out=out) |
| self.assertEqual(truth, maybe_squeeze_result(l, r, out)) |
| |
| # compare to bmm |
| bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims), |
| rhs_expanded.contiguous().view(-1, *rhs_mat_dims))) |
| self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims)) |
| |
| for indices in product((True, False), repeat=2): |
| verify_batched_matmul(*indices) |
| |
| def test_broadcast_batched_matmul(self): |
| self._test_broadcast_batched_matmul(self, lambda t: t) |
| |
| def test_copy_broadcast(self): |
| torch.zeros(5, 6).copy_(torch.zeros(6)) |
| self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30))) |
| |
| def test_randperm(self): |
| _RNGState = torch.get_rng_state() |
| res1 = torch.randperm(100) |
| res2 = torch.LongTensor() |
| torch.set_rng_state(_RNGState) |
| torch.randperm(100, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| # randperm of 0 elements is an empty tensor |
| res1 = torch.randperm(0) |
| res2 = torch.LongTensor(5) |
| torch.randperm(0, out=res2) |
| self.assertEqual(res1.numel(), 0) |
| self.assertEqual(res2.numel(), 0) |
| |
| def test_random(self): |
| # This test is flaky with p<=(2/(ub-lb))^200=6e-36 |
| t = torch.FloatTensor(200) |
| lb = 1 |
| ub = 4 |
| |
| t.fill_(-1) |
| t.random_(lb, ub) |
| self.assertEqual(t.min(), lb) |
| self.assertEqual(t.max(), ub - 1) |
| |
| t.fill_(-1) |
| t.random_(ub) |
| self.assertEqual(t.min(), 0) |
| self.assertEqual(t.max(), ub - 1) |
| |
| @staticmethod |
| def _test_random_neg_values(self, use_cuda=False): |
| signed_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', |
| 'torch.IntTensor', 'torch.ShortTensor'] |
| for tname in signed_types: |
| res = torch.rand(SIZE, SIZE).type(tname) |
| if use_cuda: |
| res = res.cuda() |
| res.random_(-10, -1) |
| self.assertLessEqual(res.max().item(), 9) |
| self.assertGreaterEqual(res.min().item(), -10) |
| |
| def test_random_neg_values(self): |
| self._test_random_neg_values(self) |
| |
| def assertIsOrdered(self, order, x, mxx, ixx, task): |
| SIZE = 4 |
| if order == 'descending': |
| def check_order(a, b): |
| return a >= b |
| elif order == 'ascending': |
| def check_order(a, b): |
| return a <= b |
| else: |
| error('unknown order "{}", must be "ascending" or "descending"'.format(order)) |
| |
| are_ordered = True |
| for j, k in product(range(SIZE), range(1, SIZE)): |
| self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]), |
| 'torch.sort ({}) values unordered for {}'.format(order, task)) |
| |
| seen = set() |
| indicesCorrect = True |
| size = x.size(x.dim() - 1) |
| for k in range(size): |
| seen.clear() |
| for j in range(size): |
| self.assertEqual(x[k][ixx[k][j]], mxx[k][j], |
| 'torch.sort ({}) indices wrong for {}'.format(order, task)) |
| seen.add(ixx[k][j]) |
| self.assertEqual(len(seen), size) |
| |
| def test_sort(self): |
| SIZE = 4 |
| x = torch.rand(SIZE, SIZE) |
| res1val, res1ind = torch.sort(x) |
| |
| # Test use of result tensor |
| res2val = torch.Tensor() |
| res2ind = torch.LongTensor() |
| torch.sort(x, out=(res2val, res2ind)) |
| self.assertEqual(res1val, res2val, 0) |
| self.assertEqual(res1ind, res2ind, 0) |
| |
| # Test sorting of random numbers |
| self.assertIsOrdered('ascending', x, res2val, res2ind, 'random') |
| |
| # Test simple sort |
| self.assertEqual( |
| torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0], |
| torch.Tensor((10, 20, 30, 40, 50)), |
| 0 |
| ) |
| |
| # Test that we still have proper sorting with duplicate keys |
| x = torch.floor(torch.rand(SIZE, SIZE) * 10) |
| torch.sort(x, out=(res2val, res2ind)) |
| self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys') |
| |
| # DESCENDING SORT |
| x = torch.rand(SIZE, SIZE) |
| res1val, res1ind = torch.sort(x, x.dim() - 1, True) |
| |
| # Test use of result tensor |
| res2val = torch.Tensor() |
| res2ind = torch.LongTensor() |
| torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind)) |
| self.assertEqual(res1val, res2val, 0) |
| self.assertEqual(res1ind, res2ind, 0) |
| |
| # Test sorting of random numbers |
| self.assertIsOrdered('descending', x, res2val, res2ind, 'random') |
| |
| # Test simple sort task |
| self.assertEqual( |
| torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0], |
| torch.Tensor((50, 40, 30, 20, 10)), |
| 0 |
| ) |
| |
| # Test that we still have proper sorting with duplicate keys |
| self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys') |
| |
| def test_topk(self): |
| def topKViaSort(t, k, dim, dir): |
| sorted, indices = t.sort(dim, dir) |
| return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k) |
| |
| def compareTensors(t, res1, ind1, res2, ind2, dim): |
| # Values should be exactly equivalent |
| self.assertEqual(res1, res2, 0) |
| |
| # Indices might differ based on the implementation, since there is |
| # no guarantee of the relative order of selection |
| if not ind1.eq(ind2).all(): |
| # To verify that the indices represent equivalent elements, |
| # gather from the input using the topk indices and compare against |
| # the sort indices |
| vals = t.gather(dim, ind2) |
| self.assertEqual(res1, vals, 0) |
| |
| def compare(t, k, dim, dir): |
| topKVal, topKInd = t.topk(k, dim, dir, True) |
| sortKVal, sortKInd = topKViaSort(t, k, dim, dir) |
| compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim) |
| |
| t = torch.rand(random.randint(1, SIZE), |
| random.randint(1, SIZE), |
| random.randint(1, SIZE)) |
| |
| for _kTries in range(3): |
| for _dimTries in range(3): |
| for transpose in (True, False): |
| for dir in (True, False): |
| testTensor = t |
| if transpose: |
| dim1 = random.randrange(t.ndimension()) |
| dim2 = dim1 |
| while dim1 == dim2: |
| dim2 = random.randrange(t.ndimension()) |
| |
| testTensor = t.transpose(dim1, dim2) |
| |
| dim = random.randrange(testTensor.ndimension()) |
| k = random.randint(1, testTensor.size(dim)) |
| compare(testTensor, k, dim, dir) |
| |
| def test_topk_arguments(self): |
| q = torch.randn(10, 2, 10) |
| # Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1) |
| self.assertRaises(TypeError, lambda: q.topk(4, True)) |
| |
| def test_kthvalue(self): |
| SIZE = 50 |
| x = torch.rand(SIZE, SIZE, SIZE) |
| x0 = x.clone() |
| |
| k = random.randint(1, SIZE) |
| res1val, res1ind = torch.kthvalue(x, k, keepdim=False) |
| res2val, res2ind = torch.sort(x) |
| |
| self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0) |
| self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0) |
| # test use of result tensors |
| k = random.randint(1, SIZE) |
| res1val = torch.Tensor() |
| res1ind = torch.LongTensor() |
| torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind)) |
| res2val, res2ind = torch.sort(x) |
| self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0) |
| self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0) |
| |
| # test non-default dim |
| k = random.randint(1, SIZE) |
| res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False) |
| res2val, res2ind = torch.sort(x, 0) |
| self.assertEqual(res1val, res2val[k - 1], 0) |
| self.assertEqual(res1ind, res2ind[k - 1], 0) |
| |
| # non-contiguous |
| y = x.narrow(1, 0, 1) |
| y0 = y.contiguous() |
| k = random.randint(1, SIZE) |
| res1val, res1ind = torch.kthvalue(y, k) |
| res2val, res2ind = torch.kthvalue(y0, k) |
| self.assertEqual(res1val, res2val, 0) |
| self.assertEqual(res1ind, res2ind, 0) |
| |
| # check that the input wasn't modified |
| self.assertEqual(x, x0, 0) |
| |
| # simple test case (with repetitions) |
| y = torch.Tensor((3, 5, 4, 1, 1, 5)) |
| self.assertEqual(torch.kthvalue(y, 3)[0], 3, 0) |
| self.assertEqual(torch.kthvalue(y, 2)[0], 1, 0) |
| |
| def test_median(self): |
| for size in (155, 156): |
| x = torch.rand(size, size) |
| x0 = x.clone() |
| |
| nelem = x.nelement() |
| res1val = torch.median(x) |
| res2val, _ = torch.sort(x.view(nelem)) |
| ind = int(math.floor((nelem + 1) / 2) - 1) |
| |
| self.assertEqual(res2val[ind], res1val, 0) |
| |
| res1val, res1ind = torch.median(x, dim=1, keepdim=False) |
| res2val, res2ind = torch.sort(x) |
| ind = int(math.floor((size + 1) / 2) - 1) |
| |
| self.assertEqual(res2val.select(1, ind), res1val, 0) |
| self.assertEqual(res2val.select(1, ind), res1val, 0) |
| |
| # Test use of result tensor |
| res2val = torch.Tensor() |
| res2ind = torch.LongTensor() |
| torch.median(x, dim=-1, keepdim=False, out=(res2val, res2ind)) |
| self.assertEqual(res2val, res1val, 0) |
| self.assertEqual(res2ind, res1ind, 0) |
| |
| # Test non-default dim |
| res1val, res1ind = torch.median(x, 0, keepdim=False) |
| res2val, res2ind = torch.sort(x, 0) |
| self.assertEqual(res1val, res2val[ind], 0) |
| self.assertEqual(res1ind, res2ind[ind], 0) |
| |
| # input unchanged |
| self.assertEqual(x, x0, 0) |
| |
| def test_mode(self): |
| x = torch.arange(1., SIZE * SIZE + 1).clone().resize_(SIZE, SIZE) |
| x[:2] = 1 |
| x[:, :2] = 1 |
| x0 = x.clone() |
| |
| # Pre-calculated results. |
| res1val = torch.Tensor(SIZE).fill_(1) |
| # The indices are the position of the last appearance of the mode element. |
| res1ind = torch.LongTensor(SIZE).fill_(1) |
| res1ind[0] = SIZE - 1 |
| res1ind[1] = SIZE - 1 |
| |
| res2val, res2ind = torch.mode(x, keepdim=False) |
| self.assertEqual(res1val, res2val, 0) |
| self.assertEqual(res1ind, res2ind, 0) |
| |
| # Test use of result tensor |
| res2val = torch.Tensor() |
| res2ind = torch.LongTensor() |
| torch.mode(x, keepdim=False, out=(res2val, res2ind)) |
| self.assertEqual(res1val, res2val, 0) |
| self.assertEqual(res1ind, res2ind, 0) |
| |
| # Test non-default dim |
| res2val, res2ind = torch.mode(x, 0, False) |
| self.assertEqual(res1val, res2val, 0) |
| self.assertEqual(res1ind, res2ind, 0) |
| |
| # input unchanged |
| self.assertEqual(x, x0, 0) |
| |
| def test_tril(self): |
| x = torch.rand(SIZE, SIZE) |
| res1 = torch.tril(x) |
| res2 = torch.Tensor() |
| torch.tril(x, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| def test_triu(self): |
| x = torch.rand(SIZE, SIZE) |
| res1 = torch.triu(x) |
| res2 = torch.Tensor() |
| torch.triu(x, out=res2) |
| self.assertEqual(res1, res2, 0) |
| |
| def test_cat(self): |
| SIZE = 10 |
| for dim in range(-3, 3): |
| pos_dim = dim if dim >= 0 else 3 + dim |
| x = torch.rand(13, SIZE, SIZE).transpose(0, pos_dim) |
| y = torch.rand(17, SIZE, SIZE).transpose(0, pos_dim) |
| z = torch.rand(19, SIZE, SIZE).transpose(0, pos_dim) |
| |
| res1 = torch.cat((x, y, z), dim) |
| self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0) |
| self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0) |
| self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0) |
| |
| x = torch.randn(20, SIZE, SIZE) |
| self.assertEqual(torch.cat(torch.split(x, 7)), x) |
| self.assertEqual(torch.cat(torch.chunk(x, 7)), x) |
| |
| y = torch.randn(1, SIZE, SIZE) |
| z = torch.cat([x, y]) |
| self.assertEqual(z.size(), (21, SIZE, SIZE)) |
| |
| self.assertRaises(RuntimeError, lambda: torch.cat([])) |
| |
| def test_cat_bad_input_sizes(self): |
| x = torch.randn(2, 1) |
| y = torch.randn(2, 1, 1) |
| z = torch.randn(2, 1, 1) |
| self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z])) |
| |
| x = torch.randn(2, 1, 2) |
| y = torch.randn(2, 1, 1) |
| z = torch.randn(2, 2, 1) |
| self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1)) |
| |
| def test_cat_scalars(self): |
| x = torch.tensor(0) |
| y = torch.tensor(1) |
| with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'): |
| torch.cat([x, y]) |
| |
| @staticmethod |
| def _test_cat_empty_legacy(self, use_cuda=False): |
| # FIXME: this is legacy behavior and should be removed |
| # when we support empty tensors with arbitrary sizes |
| dtype = torch.float32 |
| device = 'cuda' if use_cuda else 'cpu' |
| |
| x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) |
| empty = torch.randn((0,), dtype=dtype, device=device) |
| |
| res1 = torch.cat([x, empty], dim=1) |
| res2 = torch.cat([empty, x], dim=1) |
| self.assertEqual(res1, res2) |
| |
| conv = torch.nn.Conv2d(3, 3, kernel_size=1).float() |
| if use_cuda: |
| conv = conv.cuda() |
| res1 = torch.cat([conv(x), empty], dim=1) |
| res2 = torch.cat([empty, conv(x)], dim=1) |
| self.assertEqual(res1, res2) |
| |
| res1 = torch.cat([empty, empty], dim=1) |
| self.assertEqual(res1, empty) |
| |
| with self.assertRaisesRegex(RuntimeError, |
| 'expected a non-empty list of Tensors'): |
| torch.cat([], dim=1) |
| |
| def test_cat_empty_legacy(self): |
| self._test_cat_empty_legacy(self) |
| |
| @staticmethod |
| def _test_cat_empty(self, use_cuda=False): |
| if not torch._C._use_zero_size_dim(): |
| return |
| |
| dtype = torch.float32 |
| device = 'cuda' if use_cuda else 'cpu' |
| |
| x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) |
| empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) |
| |
| res1 = torch.cat([x, empty], dim=1) |
| res2 = torch.cat([empty, x], dim=1) |
| self.assertEqual(res1, res2) |
| |
| conv = torch.nn.Conv2d(3, 3, kernel_size=1).float() |
| if use_cuda: |
| conv = conv.cuda() |
| res1 = torch.cat([conv(x), empty], dim=1) |
| res2 = torch.cat([empty, conv(x)], dim=1) |
| self.assertEqual(res1, res2) |
| |
| res1 = torch.cat([empty, empty], dim=1) |
| self.assertEqual(res1, empty) |
| |
| # check non-legacy-behavior (sizes don't match) |
| empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device) |
| self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) |
| self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) |
| |
| # check non-legacy-behavior (dimensions don't match) |
| empty = torch.randn((4, 0), dtype=dtype, device=device) |
| self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) |
| self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) |
| |
| def test_cat_empty(self): |
| self._test_cat_empty(self) |
| |
| def test_narrow_empty(self): |
| if not torch._C._use_zero_size_dim(): |
| return |
| |
| devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda'] |
| for device in devices: |
| x = torch.randn(2, 3, 4, device=device) |
| for d in range(x.dim()): |
| y = x.narrow(d, x.size(d), 0) |
| sz = list(x.size()) |
| sz[d] = 0 |
| self.assertEqual(sz, y.size()) |
| |
| def test_stack(self): |
| x = torch.rand(2, 3, 4) |
| y = torch.rand(2, 3, 4) |
| z = torch.rand(2, 3, 4) |
| for dim in range(4): |
| res = torch.stack((x, y, z), dim) |
| res_neg = torch.stack((x, y, z), dim - 4) |
| expected_size = x.size()[:dim] + (3,) + x.size()[dim:] |
| self.assertEqual(res, res_neg) |
| self.assertEqual(res.size(), expected_size) |
| self.assertEqual(res.select(dim, 0), x, 0) |
| self.assertEqual(res.select(dim, 1), y, 0) |
| self.assertEqual(res.select(dim, 2), z, 0) |
| |
| def test_stack_out(self): |
| x = torch.rand(2, 3, 4) |
| y = torch.rand(2, 3, 4) |
| z = torch.rand(2, 3, 4) |
| for dim in range(4): |
| expected_size = x.size()[:dim] + (3,) + x.size()[dim:] |
| res_out = x.new(expected_size) |
| res_neg_out = x.new(expected_size) |
| res_out_dp = res_out.data_ptr() |
| res_out_neg_dp = res_neg_out.data_ptr() |
| torch.stack((x, y, z), dim, out=res_out) |
| torch.stack((x, y, z), dim - 4, out=res_neg_out) |
| self.assertEqual(res_out, res_neg_out) |
| self.assertEqual(res_out.size(), expected_size) |
| self.assertEqual(res_out_dp, res_out.data_ptr()) |
| self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) |
| self.assertEqual(res_out.select(dim, 0), x, 0) |
| self.assertEqual(res_out.select(dim, 1), y, 0) |
| self.assertEqual(res_out.select(dim, 2), z, 0) |
| |
| def test_unbind(self): |
| x = torch.rand(2, 3, 4, 5) |
| for dim in range(4): |
| res = torch.unbind(x, dim) |
| self.assertEqual(x.size(dim), len(res)) |
| for i in range(dim): |
| self.assertEqual(x.select(dim, i), res[i]) |
| |
| def test_linspace(self): |
| _from = random.random() |
| to = _from + random.random() |
| res1 = torch.linspace(_from, to, 137) |
| res2 = torch.Tensor() |
| torch.linspace(_from, to, 137, out=res2) |
| self.assertEqual(res1, res2, 0) |
| self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, 1)) |
| self.assertEqual(torch.linspace(0, 0, 1), torch.zeros(1), 0) |
| |
| # Check linspace for generating with start > end. |
| self.assertEqual(torch.linspace(2, 0, 3), torch.Tensor((2, 1, 0)), 0) |
| |
| # Check linspace for non-contiguous tensors. |
| x = torch.zeros(2, 3) |
| y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2)) |
| self.assertEqual(x, torch.Tensor(((0, 0, 1), (0, 2, 3))), 0) |
| |
| def test_logspace(self): |
| _from = random.random() |
| to = _from + random.random() |
| res1 = torch.logspace(_from, to, 137) |
| res2 = torch.Tensor() |
| torch.logspace(_from, to, 137, out=res2) |
| self.assertEqual(res1, res2, 0) |
| self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, 1)) |
| self.assertEqual(torch.logspace(0, 0, 1), torch.ones(1), 0) |
| |
| # Check logspace_ for generating with start > end. |
| self.assertEqual(torch.logspace(1, 0, 2), torch.Tensor((10, 1)), 0) |
| |
| # Check logspace_ for non-contiguous tensors. |
| x = torch.zeros(2, 3) |
| y = torch.logspace(0, 3, 4, out=x.narrow(1, 1, 2)) |
| self.assertEqual(x, torch.Tensor(((0, 1, 10), (0, 100, 1000))), 0) |
| |
| def test_rand(self): |
| torch.manual_seed(123456) |
| res1 = torch.rand(SIZE, SIZE) |
| res2 = torch.Tensor() |
| torch.manual_seed(123456) |
| torch.rand(SIZE, SIZE, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_randint(self): |
| torch.manual_seed(123456) |
| res1 = torch.randint(0, 6, (SIZE, SIZE)) |
| res2 = torch.Tensor() |
| torch.manual_seed(123456) |
| torch.randint(0, 6, (SIZE, SIZE), out=res2) |
| torch.manual_seed(123456) |
| res3 = torch.randint(6, (SIZE, SIZE)) |
| res4 = torch.Tensor() |
| torch.manual_seed(123456) |
| torch.randint(6, (SIZE, SIZE), out=res4) |
| self.assertEqual(res1, res2) |
| self.assertEqual(res1, res3) |
| self.assertEqual(res1, res4) |
| self.assertEqual(res2, res3) |
| self.assertEqual(res2, res4) |
| self.assertEqual(res3, res4) |
| res1 = res1.view(-1) |
| high = (res1 < 6).type(torch.LongTensor) |
| low = (res1 >= 0).type(torch.LongTensor) |
| tensorSize = res1.size()[0] |
| assert(tensorSize == high.sum()) |
| assert(tensorSize == low.sum()) |
| |
| def test_randn(self): |
| torch.manual_seed(123456) |
| res1 = torch.randn(SIZE, SIZE) |
| res2 = torch.Tensor() |
| torch.manual_seed(123456) |
| torch.randn(SIZE, SIZE, out=res2) |
| self.assertEqual(res1, res2) |
| |
| def test_slice(self): |
| empty = torch.Tensor() |
| x = torch.arange(0., 16).view(4, 4) |
| self.assertEqual(x[:], x) |
| self.assertEqual(x[:4], x) |
| # start and stop are clamped to the size of dim |
| self.assertEqual(x[:5], x) |
| # if start >= stop then the result is empty |
| self.assertEqual(x[2:1], empty) |
| self.assertEqual(x[2:2], empty) |
| # out of bounds is also empty |
| self.assertEqual(x[10:12], empty) |
| # additional correctness checks |
| self.assertEqual(x[:1].data.tolist(), [[0, 1, 2, 3]]) |
| self.assertEqual(x[:-3].data.tolist(), [[0, 1, 2, 3]]) |
| self.assertEqual(x[:, -2:3].data.tolist(), [[2], [6], [10], [14]]) |
| self.assertEqual(x[0:-1:2].data.tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]]) |
| |
| def test_is_signed(self): |
| self.assertEqual(torch.IntTensor(5).is_signed(), True) |
| self.assertEqual(torch.ByteTensor(5).is_signed(), False) |
| self.assertEqual(torch.CharTensor(5).is_signed(), True) |
| self.assertEqual(torch.FloatTensor(5).is_signed(), True) |
| self.assertEqual(torch.HalfTensor(10).is_signed(), True) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_is_signed_cuda(self): |
| self.assertEqual(torch.cuda.IntTensor(5).is_signed(), True) |
| self.assertEqual(torch.cuda.ByteTensor(5).is_signed(), False) |
| self.assertEqual(torch.cuda.CharTensor(5).is_signed(), True) |
| self.assertEqual(torch.cuda.FloatTensor(5).is_signed(), True) |
| self.assertEqual(torch.cuda.HalfTensor(10).is_signed(), True) |
| |
| @skipIfNoLapack |
| def test_gesv(self): |
| a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), |
| (-6.05, -3.30, 5.36, -4.44, 1.08), |
| (-0.45, 2.58, -2.70, 0.27, 9.04), |
| (8.32, 2.71, 4.35, -7.17, 2.14), |
| (-9.67, -5.14, -7.26, 6.08, -6.87))).t() |
| b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03), |
| (-1.56, 4.00, -8.67, 1.75, 2.86), |
| (9.81, -4.09, -4.57, -8.61, 8.99))).t() |
| |
| res1 = torch.gesv(b, a)[0] |
| self.assertLessEqual(b.dist(torch.mm(a, res1)), 1e-12) |
| |
| ta = torch.Tensor() |
| tb = torch.Tensor() |
| res2 = torch.gesv(b, a, out=(tb, ta))[0] |
| res3 = torch.gesv(b, a, out=(b, a))[0] |
| self.assertEqual(res1, tb) |
| self.assertEqual(res1, b) |
| self.assertEqual(res1, res2) |
| self.assertEqual(res1, res3) |
| |
| # test reuse |
| res1 = torch.gesv(b, a)[0] |
| ta = torch.Tensor() |
| tb = torch.Tensor() |
| torch.gesv(b, a, out=(tb, ta))[0] |
| self.assertEqual(res1, tb) |
| torch.gesv(b, a, out=(tb, ta))[0] |
| self.assertEqual(res1, tb) |
| |
| @staticmethod |
| def _test_gesv_batched(self, cast): |
| # test against gesv: one batch |
| A = cast(torch.randn(1, 5, 5)) |
| b = cast(torch.randn(1, 5, 10)) |
| x_exp, LU_exp = torch.gesv(b.squeeze(0), A.squeeze(0)) |
| x, LU = torch.gesv(b, A) |
| self.assertEqual(x, x_exp.unsqueeze(0)) |
| self.assertEqual(LU, LU_exp.unsqueeze(0)) |
| |
| # test against gesv in a loop: four batches |
| A = cast(torch.randn(4, 5, 5)) |
| b = cast(torch.randn(4, 5, 10)) |
| |
| x_exp_list = list() |
| LU_exp_list = list() |
| for i in range(4): |
| x_exp, LU_exp = torch.gesv(b[i], A[i]) |
| x_exp_list.append(x_exp) |
| LU_exp_list.append(LU_exp) |
| x_exp = torch.stack(x_exp_list) |
| LU_exp = torch.stack(LU_exp_list) |
| |
| x, LU = torch.gesv(b, A) |
| self.assertEqual(x, x_exp) |
| self.assertEqual(LU, LU_exp) |
| |
| # basic correctness test |
| A = cast(torch.randn(3, 5, 5)) |
| b = cast(torch.randn(3, 5, 10)) |
| x, LU = torch.gesv(b, A) |
| self.assertEqual(torch.matmul(A, x), b) |
| |
| # Test non-contiguous inputs. |
| if not TEST_NUMPY: |
| return |
| import numpy |
| from numpy.linalg import solve |
| A = cast(torch.randn(2, 2, 2)).permute(1, 0, 2) |
| b = cast(torch.randn(2, 2, 2)).permute(2, 1, 0) |
| x, _ = torch.gesv(b, A) |
| x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) |
| self.assertEqual(x.data, cast(x_exp)) |
| |
| @skipIfNoLapack |
| def test_gesv_batched(self): |
| self._test_gesv_batched(self, lambda t: t) |
| |
| @staticmethod |
| def _test_gesv_batched_dims(self, cast): |
| if not TEST_NUMPY: |
| return |
| |
| import numpy |
| from numpy.linalg import solve |
| |
| # test against numpy.linalg.solve |
| A = cast(torch.randn(2, 1, 3, 4, 4)) |
| b = cast(torch.randn(2, 1, 3, 4, 6)) |
| x, _ = torch.gesv(b, A) |
| x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) |
| self.assertEqual(x.data, cast(x_exp)) |
| |
| # test column major format |
| A = cast(torch.randn(2, 1, 3, 4, 4)).transpose(-2, -1) |
| b = cast(torch.randn(2, 1, 3, 6, 4)).transpose(-2, -1) |
| assert not A.is_contiguous() |
| assert not b.is_contiguous() |
| x, _ = torch.gesv(b, A) |
| x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) |
| self.assertEqual(x.data, cast(x_exp)) |
| |
| # broadcasting b |
| A = cast(torch.randn(2, 1, 3, 4, 4)) |
| b = cast(torch.randn(4, 6)) |
| x, _ = torch.gesv(b, A) |
| x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) |
| self.assertEqual(x.data, cast(x_exp)) |
| |
| # broadcasting A |
| A = cast(torch.randn(4, 4)) |
| b = cast(torch.randn(2, 1, 3, 4, 2)) |
| x, _ = torch.gesv(b, A) |
| x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) |
| self.assertEqual(x.data, cast(x_exp)) |
| |
| # broadcasting both A & b |
| A = cast(torch.randn(1, 3, 1, 4, 4)) |
| b = cast(torch.randn(2, 1, 3, 4, 5)) |
| x, _ = torch.gesv(b, A) |
| x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())) |
| self.assertEqual(x.data, cast(x_exp)) |
| |
| @skipIfNoLapack |
| def test_gesv_batched_dims(self): |
| self._test_gesv_batched_dims(self, lambda t: t) |
| |
| @skipIfNoLapack |
| def test_qr(self): |
| |
| # Since the QR decomposition is unique only up to the signs of the rows of |
| # R, we must ensure these are positive before doing the comparison. |
| def canonicalize(q, r): |
| d = r.diag().sign().diag() |
| return torch.mm(q, d), torch.mm(d, r) |
| |
| def canon_and_check(q, r, expected_q, expected_r): |
| q_canon, r_canon = canonicalize(q, r) |
| expected_q_canon, expected_r_canon = canonicalize(expected_q, expected_r) |
| self.assertEqual(q_canon, expected_q_canon) |
| self.assertEqual(r_canon, expected_r_canon) |
| |
| def check_qr(a, expected_q, expected_r): |
| # standard invocation |
| q, r = torch.qr(a) |
| canon_and_check(q, r, expected_q, expected_r) |
| |
| # in-place |
| q, r = torch.Tensor(), torch.Tensor() |
| torch.qr(a, out=(q, r)) |
| canon_and_check(q, r, expected_q, expected_r) |
| |
| # manually calculate qr using geqrf and orgqr |
| m = a.size(0) |
| n = a.size(1) |
| k = min(m, n) |
| result, tau = torch.geqrf(a) |
| self.assertEqual(result.size(0), m) |
| self.assertEqual(result.size(1), n) |
| self.assertEqual(tau.size(0), k) |
| r = torch.triu(result.narrow(0, 0, k)) |
| q = torch.orgqr(result, tau) |
| q, r = q.narrow(1, 0, k), r |
| canon_and_check(q, r, expected_q, expected_r) |
| |
| # check square case |
| a = torch.Tensor(((1, 2, 3), (4, 5, 6), (7, 8, 10))) |
| |
| expected_q = torch.Tensor(( |
| (-1.230914909793328e-01, 9.045340337332914e-01, 4.082482904638621e-01), |
| (-4.923659639173310e-01, 3.015113445777629e-01, -8.164965809277264e-01), |
| (-8.616404368553292e-01, -3.015113445777631e-01, 4.082482904638634e-01))) |
| expected_r = torch.Tensor(( |
| (-8.124038404635959e+00, -9.601136296387955e+00, -1.193987e+01), |
| (0.000000000000000e+00, 9.045340337332926e-01, 1.507557e+00), |
| (0.000000000000000e+00, 0.000000000000000e+00, 4.082483e-01))) |
| |
| check_qr(a, expected_q, expected_r) |
| |
| # check rectangular thin |
| a = torch.Tensor(( |
| (1, 2, 3), |
| (4, 5, 6), |
| (7, 8, 9), |
| (10, 11, 13), |
| )) |
| expected_q = torch.Tensor(( |
| (-0.0776150525706334, -0.833052161400748, 0.3651483716701106), |
| (-0.3104602102825332, -0.4512365874254053, -0.1825741858350556), |
| (-0.5433053679944331, -0.0694210134500621, -0.7302967433402217), |
| (-0.7761505257063329, 0.3123945605252804, 0.5477225575051663) |
| )) |
| expected_r = torch.Tensor(( |
| (-12.8840987267251261, -14.5916298832790581, -17.0753115655393231), |
| (0, -1.0413152017509357, -1.770235842976589), |
| (0, 0, 0.5477225575051664) |
| )) |
| |
| check_qr(a, expected_q, expected_r) |
| |
| # check rectangular fat |
| a = torch.Tensor(( |
| (1, 2, 3, 4), |
| (5, 6, 7, 8), |
| (9, 10, 11, 13) |
| )) |
| expected_q = torch.Tensor(( |
| (-0.0966736489045663, 0.907737593658436, 0.4082482904638653), |
| (-0.4833682445228317, 0.3157348151855452, -0.8164965809277254), |
| (-0.870062840141097, -0.2762679632873518, 0.4082482904638621) |
| )) |
| expected_r = torch.Tensor(( |
| (-1.0344080432788603e+01, -1.1794185166357092e+01, |
| -1.3244289899925587e+01, -1.5564457473635180e+01), |
| (0.0000000000000000e+00, 9.4720444555662542e-01, |
| 1.8944088911132546e+00, 2.5653453733825331e+00), |
| (0.0000000000000000e+00, 0.0000000000000000e+00, |
| 1.5543122344752192e-15, 4.0824829046386757e-01) |
| )) |
| check_qr(a, expected_q, expected_r) |
| |
| # check big matrix |
| a = torch.randn(1000, 1000) |
| q, r = torch.qr(a) |
| a_qr = torch.mm(q, r) |
| self.assertEqual(a, a_qr, prec=1e-3) |
| |
| @skipIfNoLapack |
| def test_ormqr(self): |
| mat1 = torch.randn(10, 10) |
| mat2 = torch.randn(10, 10) |
| q, r = torch.qr(mat1) |
| m, tau = torch.geqrf(mat1) |
| |
| res1 = torch.mm(q, mat2) |
| res2 = torch.ormqr(m, tau, mat2) |
| self.assertEqual(res1, res2) |
| |
| res1 = torch.mm(mat2, q) |
| res2 = torch.ormqr(m, tau, mat2, False) |
| self.assertEqual(res1, res2) |
| |
| res1 = torch.mm(q.t(), mat2) |
| res2 = torch.ormqr(m, tau, mat2, True, True) |
| self.assertEqual(res1, res2) |
| |
| res1 = torch.mm(mat2, q.t()) |
| res2 = torch.ormqr(m, tau, mat2, False, True) |
| self.assertEqual(res1, res2) |
| |
| @staticmethod |
| def _test_trtrs(self, cast): |
| a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), |
| (-6.05, -3.30, 5.36, -4.44, 1.08), |
| (-0.45, 2.58, -2.70, 0.27, 9.04), |
| (8.32, 2.71, 4.35, -7.17, 2.14), |
| (-9.67, -5.14, -7.26, 6.08, -6.87))).t() |
| b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03), |
| (-1.56, 4.00, -8.67, 1.75, 2.86), |
| (9.81, -4.09, -4.57, -8.61, 8.99))).t() |
| |
| a = cast(a) |
| b = cast(b) |
| |
| U = torch.triu(a) |
| L = torch.tril(a) |
| |
| # solve Ux = b |
| x = torch.trtrs(b, U)[0] |
| self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12) |
| x = torch.trtrs(b, U, True, False, False)[0] |
| self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12) |
| |
| # solve Lx = b |
| x = torch.trtrs(b, L, False)[0] |
| self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12) |
| x = torch.trtrs(b, L, False, False, False)[0] |
| self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12) |
| |
| # solve U'x = b |
| x = torch.trtrs(b, U, True, True)[0] |
| self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12) |
| x = torch.trtrs(b, U, True, True, False)[0] |
| self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12) |
| |
| # solve U'x = b by manual transposition |
| y = torch.trtrs(b, U.t(), False, False)[0] |
| self.assertLessEqual(x.dist(y), 1e-12) |
| |
| # solve L'x = b |
| x = torch.trtrs(b, L, False, True)[0] |
| self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12) |
| x = torch.trtrs(b, L, False, True, False)[0] |
| self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12) |
| |
| # solve L'x = b by manual transposition |
| y = torch.trtrs(b, L.t(), True, False)[0] |
| self.assertLessEqual(x.dist(y), 1e-12) |
| |
| # test reuse |
| res1 = torch.trtrs(b, a)[0] |
| ta = cast(torch.Tensor()) |
| tb = cast(torch.Tensor()) |
| torch.trtrs(b, a, out=(tb, ta)) |
| self.assertEqual(res1, tb, 0) |
| tb.zero_() |
| torch.trtrs(b, a, out=(tb, ta)) |
| self.assertEqual(res1, tb, 0) |
| |
| @skipIfNoLapack |
| def test_trtrs(self): |
| self._test_trtrs(self, lambda t: t) |
| |
| @skipIfNoLapack |
| def test_gels(self): |
| def _test_underdetermined(a, b, expectedNorm): |
| m = a.size()[0] |
| n = a.size()[1] |
| assert(m <= n) |
| |
| a_copy = a.clone() |
| b_copy = b.clone() |
| res1 = torch.gels(b, a)[0] |
| self.assertEqual(a, a_copy, 0) |
| self.assertEqual(b, b_copy, 0) |
| self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8) |
| |
| ta = torch.Tensor() |
| tb = torch.Tensor() |
| res2 = torch.gels(b, a, out=(tb, ta))[0] |
| self.assertEqual(a, a_copy, 0) |
| self.assertEqual(b, b_copy, 0) |
| self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8) |
| |
| res3 = torch.gels(b, a, out=(b, a))[0] |
| self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8) |
| self.assertEqual(res1, tb, 0) |
| self.assertEqual(res1, b, 0) |
| self.assertEqual(res1, res2, 0) |
| self.assertEqual(res1, res3, 0) |
| |
| def _test_overdetermined(a, b, expectedNorm): |
| m = a.size()[0] |
| n = a.size()[1] |
| assert(m > n) |
| |
| def check_norm(a, b, expected_norm, gels_result): |
| # Checks |ax - b| and the residual info from the result |
| n = a.size()[1] |
| |
| # The first n rows is the least square solution. |
| # Rows n to m-1 contain residual information. |
| x = gels_result[:n] |
| resid_info = gels_result[n:] |
| |
| resid_norm = (torch.mm(a, x) - b).norm() |
| self.assertEqual(resid_norm, expectedNorm, 1e-8) |
| self.assertEqual(resid_info.norm(), resid_norm, 1e-8) |
| |
| a_copy = a.clone() |
| b_copy = b.clone() |
| res1 = torch.gels(b, a)[0] |
| self.assertEqual(a, a_copy, 0) |
| self.assertEqual(b, b_copy, 0) |
| check_norm(a, b, expectedNorm, res1) |
| |
| ta = torch.Tensor() |
| tb = torch.Tensor() |
| res2 = torch.gels(b, a, out=(tb, ta))[0] |
| self.assertEqual(a, a_copy, 0) |
| self.assertEqual(b, b_copy, 0) |
| check_norm(a, b, expectedNorm, res2) |
| |
| res3 = torch.gels(b, a, out=(b, a))[0] |
| check_norm(a_copy, b_copy, expectedNorm, res3) |
| |
| self.assertEqual(res1, tb, 0) |
| self.assertEqual(res1, b, 0) |
| self.assertEqual(res1, res2, 0) |
| self.assertEqual(res1, res3, 0) |
| |
| # basic test |
| expectedNorm = 0 |
| a = torch.Tensor(((1.44, -9.96, -7.55, 8.34), |
| (-7.84, -0.28, 3.24, 8.09), |
| (-4.39, -3.24, 6.27, 5.28), |
| (4.53, 3.83, -6.64, 2.06))).t() |
| b = torch.Tensor(((8.58, 8.26, 8.48, -5.28), |
| (9.35, -4.43, -0.70, -0.26))).t() |
| _test_underdetermined(a, b, expectedNorm) |
| |
| # test overderemined |
| expectedNorm = 17.390200628863 |
| a = torch.Tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45), |
| (-7.84, -0.28, 3.24, 8.09, 2.52, -5.70), |
| (-4.39, -3.24, 6.27, 5.28, 0.74, -1.19), |
| (4.53, 3.83, -6.64, 2.06, -2.47, 4.70))).t() |
| b = torch.Tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93), |
| (9.35, -4.43, -0.70, -0.26, -7.36, -2.52))).t() |
| _test_overdetermined(a, b, expectedNorm) |
| |
| # test underdetermined |
| expectedNorm = 0 |
| a = torch.Tensor(((1.44, -9.96, -7.55), |
| (-7.84, -0.28, 3.24), |
| (-4.39, -3.24, 6.27), |
| (4.53, 3.83, -6.64))).t() |
| b = torch.Tensor(((8.58, 8.26, 8.48), |
| (9.35, -4.43, -0.70))).t() |
| _test_underdetermined(a, b, expectedNorm) |
| |
| # test reuse |
| expectedNorm = 0 |
| a = torch.Tensor(((1.44, -9.96, -7.55, 8.34), |
| (-7.84, -0.28, 3.24, 8.09), |
| (-4.39, -3.24, 6.27, 5.28), |
| (4.53, 3.83, -6.64, 2.06))).t() |
| b = torch.Tensor(((8.58, 8.26, 8.48, -5.28), |
| (9.35, -4.43, -0.70, -0.26))).t() |
| ta = torch.Tensor() |
| tb = torch.Tensor() |
| torch.gels(b, a, out=(tb, ta)) |
| self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) |
| torch.gels(b, a, out=(tb, ta)) |
| self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) |
| torch.gels(b, a, out=(tb, ta)) |
| self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) |
| |
| @skipIfNoLapack |
| def test_eig(self): |
| a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00), |
| (-6.49, 3.80, 0.00, 0.00, 0.00), |
| (-0.47, -6.39, 4.17, 0.00, 0.00), |
| (-7.20, 1.50, -1.51, 5.70, 0.00), |
| (-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous() |
| e = torch.eig(a)[0] |
| ee, vv = torch.eig(a, True) |
| te = torch.Tensor() |
| tv = torch.Tensor() |
| eee, vvv = torch.eig(a, True, out=(te, tv)) |
| self.assertEqual(e, ee, 1e-12) |
| self.assertEqual(ee, eee, 1e-12) |
| self.assertEqual(ee, te, 1e-12) |
| self.assertEqual(vv, vvv, 1e-12) |
| self.assertEqual(vv, tv, 1e-12) |
| |
| # test reuse |
| X = torch.randn(4, 4) |
| X = torch.mm(X.t(), X) |
| e, v = torch.zeros(4, 2), torch.zeros(4, 4) |
| torch.eig(X, True, out=(e, v)) |
| Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t()) |
| self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') |
| self.assertFalse(v.is_contiguous(), 'V is contiguous') |
| |
| torch.eig(X, True, out=(e, v)) |
| Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t())) |
| self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') |
| self.assertFalse(v.is_contiguous(), 'V is contiguous') |
| |
| # test non-contiguous |
| X = torch.randn(4, 4) |
| X = torch.mm(X.t(), X) |
| e = torch.zeros(4, 2, 2)[:, 1] |
| v = torch.zeros(4, 2, 4)[:, 1] |
| self.assertFalse(v.is_contiguous(), 'V is contiguous') |
| self.assertFalse(e.is_contiguous(), 'E is contiguous') |
| torch.eig(X, True, out=(e, v)) |
| Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t()) |
| self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') |
| |
| @skipIfNoLapack |
| def test_symeig(self): |
| xval = torch.rand(100, 3) |
| cov = torch.mm(xval.t(), xval) |
| rese = torch.zeros(3) |
| resv = torch.zeros(3, 3) |
| |
| # First call to symeig |
| self.assertTrue(resv.is_contiguous(), 'resv is not contiguous') |
| torch.symeig(cov.clone(), True, out=(rese, resv)) |
| ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t()) |
| self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong') |
| |
| # Second call to symeig |
| self.assertFalse(resv.is_contiguous(), 'resv is contiguous') |
| torch.symeig(cov.clone(), True, out=(rese, resv)) |
| ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t()) |
| self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong') |
| |
| # test non-contiguous |
| X = torch.rand(5, 5) |
| X = X.t() * X |
| e = torch.zeros(4, 2).select(1, 1) |
| v = torch.zeros(4, 2, 4)[:, 1] |
| self.assertFalse(v.is_contiguous(), 'V is contiguous') |
| self.assertFalse(e.is_contiguous(), 'E is contiguous') |
| torch.symeig(X, True, out=(e, v)) |
| Xhat = torch.mm(torch.mm(v, torch.diag(e)), v.t()) |
| self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') |
| |
| @skipIfNoLapack |
| def test_svd(self): |
| a = torch.Tensor(((8.79, 6.11, -9.15, 9.57, -3.49, 9.84), |
| (9.93, 6.91, -7.93, 1.64, 4.02, 0.15), |
| (9.83, 5.04, 4.86, 8.83, 9.80, -8.99), |
| (5.45, -0.27, 4.85, 0.74, 10.00, -6.02), |
| (3.16, 7.98, 3.01, 5.80, 4.27, -5.31))).t().clone() |
| u, s, v = torch.svd(a) |
| uu = torch.Tensor() |
| ss = torch.Tensor() |
| vv = torch.Tensor() |
| uuu, sss, vvv = torch.svd(a, out=(uu, ss, vv)) |
| self.assertEqual(u, uu, 0, 'torch.svd') |
| self.assertEqual(u, uuu, 0, 'torch.svd') |
| self.assertEqual(s, ss, 0, 'torch.svd') |
| self.assertEqual(s, sss, 0, 'torch.svd') |
| self.assertEqual(v, vv, 0, 'torch.svd') |
| self.assertEqual(v, vvv, 0, 'torch.svd') |
| |
| # test reuse |
| X = torch.randn(4, 4) |
| U, S, V = torch.svd(X) |
| Xhat = torch.mm(U, torch.mm(S.diag(), V.t())) |
| self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong') |
| |
| self.assertFalse(U.is_contiguous(), 'U is contiguous') |
| torch.svd(X, out=(U, S, V)) |
| Xhat = torch.mm(U, torch.mm(S.diag(), V.t())) |
| self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong') |
| |
| # test non-contiguous |
| X = torch.randn(5, 5) |
| U = torch.zeros(5, 2, 5)[:, 1] |
| S = torch.zeros(5, 2)[:, 1] |
| V = torch.zeros(5, 2, 5)[:, 1] |
| |
| self.assertFalse(U.is_contiguous(), 'U is contiguous') |
| self.assertFalse(S.is_contiguous(), 'S is contiguous') |
| self.assertFalse(V.is_contiguous(), 'V is contiguous') |
| torch.svd(X, out=(U, S, V)) |
| Xhat = torch.mm(U, torch.mm(S.diag(), V.t())) |
| self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong') |
| |
| @staticmethod |
| def _test_signal_window_functions(self, device='cpu'): |
| if not TEST_SCIPY: |
| raise unittest.SkipTest('Scipy not found') |
| |
| def test(name): |
| torch_method = getattr(torch, name + '_window') |
| for size in [1, 2, 5, 10, 50, 100, 1024, 2048]: |
| for periodic in [True, False]: |
| res = torch_method(size, periodic=periodic, device=device) |
| ref = torch.from_numpy(signal.get_window(name, size, fftbins=periodic)) |
| self.assertEqual(res, ref) |
| with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): |
| torch_method(3, layout=torch.sparse_coo) |
| with self.assertRaisesRegex(RuntimeError, r'floating point'): |
| torch_method(3, dtype=torch.long) |
| self.assertTrue(torch_method(3, requires_grad=True).requires_grad) |
| self.assertFalse(torch_method(3).requires_grad) |
| |
| for window in ['hann', 'hamming', 'bartlett', 'blackman']: |
| test(window) |
| |
| def test_signal_window_functions(self): |
| self._test_signal_window_functions(self) |
| |
| @skipIfNoLapack |
| def test_inverse(self): |
| M = torch.randn(5, 5) |
| MI = torch.inverse(M) |
| E = torch.eye(5) |
| self.assertFalse(MI.is_contiguous(), 'MI is contiguous') |
| self.assertEqual(E, torch.mm(M, MI), 1e-8, 'inverse value') |
| self.assertEqual(E, torch.mm(MI, M), 1e-8, 'inverse value') |
| |
| MII = torch.Tensor(5, 5) |
| torch.inverse(M, out=MII) |
| self.assertFalse(MII.is_contiguous(), 'MII is contiguous') |
| self.assertEqual(MII, MI, 0, 'inverse value in-place') |
| # second call, now that MII is transposed |
| torch.inverse(M, out=MII) |
| self.assertFalse(MII.is_contiguous(), 'MII is contiguous') |
| self.assertEqual(MII, MI, 0, 'inverse value in-place') |
| |
| @staticmethod |
| def _test_det_logdet_slogdet(self, conv_fn): |
| def reference_det(M): |
| # naive row reduction |
| M = M.clone() |
| l = M.size(0) |
| multiplier = 1 |
| for i in range(l): |
| if M[i, 0] != 0: |
| if i != 0: |
| M[0], M[i] = M[i], M[0] |
| multiplier = -1 |
| break |
| else: |
| return 0 |
| for i in range(1, l): |
| row = M[i] |
| for j in range(i): |
| row -= row[j] / M[j, j] * M[j] |
| M[i] = row |
| return M.diag().prod() * multiplier |
| |
| def test_single_det(M, target, desc): |
| det = M.det() |
| logdet = M.logdet() |
| sdet, logabsdet = M.slogdet() |
| self.assertEqual(det, target, 1e-7, '{} (det)'.format(desc)) |
| if det.item() < 0: |
| self.assertTrue(logdet.item() != logdet.item(), '{} (logdet negative case)'.format(desc)) |
| self.assertTrue(sdet.item() == -1, '{} (slogdet sign negative case)'.format(desc)) |
| self.assertEqual(logabsdet.exp(), det.abs(), 1e-7, '{} (slogdet logabsdet negative case)'.format(desc)) |
| elif det.item() == 0: |
| self.assertEqual(logdet.exp().item(), 0, 1e-7, '{} (logdet zero case)'.format(desc)) |
| self.assertTrue(sdet.item() == 0, '{} (slogdet sign zero case)'.format(desc)) |
| self.assertEqual(logabsdet.exp().item(), 0, 1e-7, '{} (slogdet logabsdet zero case)'.format(desc)) |
| else: |
| self.assertEqual(logdet.exp(), det, 1e-7, '{} (logdet positive case)'.format(desc)) |
| self.assertTrue(sdet.item() == 1, '{} (slogdet sign positive case)'.format(desc)) |
| self.assertEqual(logabsdet.exp(), det, 1e-7, '{} (slogdet logabsdet positive case)'.format(desc)) |
| |
| eye = conv_fn(torch.eye(5)) |
| test_single_det(eye, torch.tensor(1, dtype=eye.dtype), 'identity') |
| |
| def test(M): |
| assert M.size(0) >= 5, 'this helper fn assumes M to be at least 5x5' |
| M = conv_fn(M) |
| M_det = M.det() |
| ref_M_det = reference_det(M) |
| |
| test_single_det(M, ref_M_det, 'basic') |
| if abs(ref_M_det.item()) >= 1e-10: # skip singular |
| test_single_det(M, M.inverse().det().pow_(-1), 'inverse') |
| test_single_det(M, M.t().det(), 'transpose') |
| |
| for x in [0, 2, 4]: |
| for scale in [-2, -0.1, 0, 10]: |
| target = M_det * scale |
| # dim 0 |
| M_clone = M.clone() |
| M_clone[:, x] *= scale |
| test_single_det(M_clone, target, 'scale a row') |
| # dim 1 |
| M_clone = M.clone() |
| M_clone[x, :] *= scale |
| test_single_det(M_clone, target, 'scale a column') |
| |
| for x1, x2 in [(0, 3), (4, 1), (3, 2)]: |
| assert x1 != x2, 'x1 and x2 needs to be different for this test' |
| target = M_det.clone().zero_() |
| # dim 0 |
| M_clone = M.clone() |
| M_clone[:, x2] = M_clone[:, x1] |
| test_single_det(M_clone, target, 'two rows are same') |
| # dim 1 |
| M_clone = M.clone() |
| M_clone[x2, :] = M_clone[x1, :] |
| test_single_det(M_clone, target, 'two columns are same') |
| |
| for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]: |
| target = -M_det * scale1 * scale2 |
| # dim 0 |
| M_clone = M.clone() |
| t = M_clone[:, x1] * scale1 |
| M_clone[:, x1] += M_clone[:, x2] * scale2 |
| M_clone[:, x2] = t |
| test_single_det(M_clone, target, 'exchanging rows') |
| # dim 1 |
| M_clone = M.clone() |
| t = M_clone[x1, :] * scale1 |
| M_clone[x1, :] += M_clone[x2, :] * scale2 |
| M_clone[x2, :] = t |
| test_single_det(M_clone, target, 'exchanging columns') |
| |
| def get_random_mat_scale(n): |
| # For matrices with values i.i.d. with 0 mean, unit variance, and |
| # subexponential tail, we have: |
| # E[log det(A^2)] \approx log((n-1)!) |
| # |
| # Notice: |
| # log Var[det(A)] = log E[det(A^2)] >= E[log det(A^2)] |
| # |
| # So: |
| # stddev[det(A)] >= sqrt( (n-1)! ) |
| # |
| # We use this as an intuitive guideline to scale random generated |
| # matrices so our closeness tests can work more robustly: |
| # scale by sqrt( (n-1)! )^(-1/n) = ( (n-1)! )^(-1/(2n)) |
| # |
| # source: https://arxiv.org/pdf/1112.0752.pdf |
| return math.factorial(n - 1) ** (-1.0 / (2 * n)) |
| |
| for n in [5, 10, 25]: |
| scale = get_random_mat_scale(n) |
| test(torch.randn(n, n) * scale) |
| r = torch.randn(n, n) * scale |
| # symmetric psd |
| test(r.mm(r.t())) |
| # symmetric pd |
| r = torch.randn(n, n) * scale |
| test(r.mm(r.t()) + torch.eye(n) * 1e-6) |
| # symmetric |
| r = torch.randn(n, n) * scale |
| for i in range(n): |
| for j in range(i): |
| r[i, j] = r[j, i] |
| test(r) |
| # non-contiguous |
| test((torch.randn(n, n, n + 1) * scale)[:, 2, 1:]) |
| # det = 0 |
| r = torch.randn(n, n) * scale |
| u, s, v = r.svd() |
| if reference_det(u) < 0: |
| u = -u |
| if reference_det(v) < 0: |
| v = -v |
| s[0] *= -1 |
| s[-1] = 0 |
| test(u.mm(s.diag()).mm(v)) |
| |
| @skipIfNoLapack |
| def test_det_logdet_slogdet(self): |
| self._test_det_logdet_slogdet(self, lambda x: x) |
| |
| @staticmethod |
| def _test_fft_ifft_rfft_irfft(self, device='cpu'): |
| def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x): |
| x = prepro_fn(torch.randn(*sizes, device=device)) |
| for normalized in (True, False): |
| res = x.fft(signal_ndim, normalized=normalized) |
| rec = res.ifft(signal_ndim, normalized=normalized) |
| self.assertEqual(x, rec, 1e-8, 'fft and ifft') |
| res = x.ifft(signal_ndim, normalized=normalized) |
| rec = res.fft(signal_ndim, normalized=normalized) |
| self.assertEqual(x, rec, 1e-8, 'ifft and fft') |
| |
| def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x): |
| x = prepro_fn(torch.randn(*sizes, device=device)) |
| signal_numel = 1 |
| signal_sizes = x.size()[-signal_ndim:] |
| for normalized, onesided in product((True, False), repeat=2): |
| res = x.rfft(signal_ndim, normalized=normalized, onesided=onesided) |
| if not onesided: # check Hermitian symmetry |
| def test_one_sample(res, test_num=10): |
| idxs_per_dim = [torch.LongTensor(test_num).random_(s).tolist() for s in signal_sizes] |
| for idx in zip(*idxs_per_dim): |
| reflected_idx = tuple((s - i) % s for i, s in zip(idx, res.size())) |
| idx_val = res.__getitem__(idx) |
| reflected_val = res.__getitem__(reflected_idx) |
| self.assertEqual(idx_val[0], reflected_val[0], 'rfft hermitian symmetry on real part') |
| self.assertEqual(idx_val[1], -reflected_val[1], 'rfft hermitian symmetry on imaginary part') |
| if len(sizes) == signal_ndim: |
| test_one_sample(res) |
| else: |
| output_non_batch_shape = res.size()[-(signal_ndim + 1):] |
| flatten_batch_res = res.view(-1, *output_non_batch_shape) |
| nb = flatten_batch_res.size(0) |
| test_idxs = torch.LongTensor(min(nb, 4)).random_(nb) |
| for test_idx in test_idxs.tolist(): |
| test_one_sample(flatten_batch_res[test_idx]) |
| # compare with C2C |
| xc = torch.stack([x, torch.zeros_like(x)], -1) |
| xc_res = xc.fft(signal_ndim, normalized=normalized) |
| self.assertEqual(res, xc_res) |
| test_input_signal_sizes = [signal_sizes] |
| rec = res.irfft(signal_ndim, normalized=normalized, |
| onesided=onesided, signal_sizes=signal_sizes) |
| self.assertEqual(x, rec, 1e-8, 'rfft and irfft') |
| if not onesided: # check that we can use C2C ifft |
| rec = res.ifft(signal_ndim, normalized=normalized) |
| self.assertEqual(x, rec.select(-1, 0), 1e-8, 'twosided rfft and ifft real') |
| self.assertEqual(rec.select(-1, 1).data.abs().mean(), 0, 1e-8, 'twosided rfft and ifft imaginary') |
| |
| # contiguous case |
| _test_real((100,), 1) |
| _test_real((10, 1, 10, 100), 1) |
| _test_real((100, 100), 2) |
| _test_real((2, 2, 5, 80, 60), 2) |
| _test_real((50, 40, 70), 3) |
| _test_real((30, 1, 50, 25, 20), 3) |
| |
| _test_complex((100, 2), 1) |
| _test_complex((100, 100, 2), 1) |
| _test_complex((100, 100, 2), 2) |
| _test_complex((1, 20, 80, 60, 2), 2) |
| _test_complex((50, 40, 70, 2), 3) |
| _test_complex((6, 5, 50, 25, 20, 2), 3) |
| |
| # non-contiguous case |
| _test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type |
| _test_real((100, 100, 3), 1, lambda x: x[:, :, 0]) |
| _test_real((100, 100), 2, lambda x: x.t()) |
| _test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60]) |
| _test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80]) |
| _test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3)) |
| |
| _test_complex((2, 100), 1, lambda x: x.t()) |
| _test_complex((100, 2), 1, lambda x: x.expand(100, 100, 2)) |
| _test_complex((300, 200, 3), 2, lambda x: x[:100, :100, 1:]) # input is not aligned to complex type |
| _test_complex((20, 90, 110, 2), 2, lambda x: x[:, 5:85].narrow(2, 5, 100)) |
| _test_complex((40, 60, 3, 80, 2), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:]) |
| _test_complex((30, 55, 50, 22, 2), 3, lambda x: x[:, 3:53, 15:40, 1:21]) |
| |
| # non-contiguous with strides not representable as aligned with complex type |
| _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [3, 2, 1])) |
| _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 2, 2])) |
| _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 3, 1])) |
| _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [3, 3, 1])) |
| _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 2, 2])) |
| _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 3, 1])) |
| |
| @unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support") |
| def test_fft_ifft_rfft_irfft(self): |
| self._test_fft_ifft_rfft_irfft(self) |
| |
| @staticmethod |
| def _test_stft(self, device='cpu'): |
| def naive_stft(x, frame_length, hop, fft_size=None, normalized=False, |
| onesided=True, window=None, pad_end=0): |
| if fft_size is None: |
| fft_size = frame_length |
| x = x.clone() |
| if window is None: |
| window = x.new_ones(frame_length) |
| else: |
| window = window.clone() |
| input_1d = x.dim() == 1 |
| if input_1d: |
| x = x.view(1, -1) |
| batch = x.size(0) |
| if pad_end > 0: |
| x_pad = x.new(batch, pad_end).fill_(0) |
| x = torch.cat([x, x_pad], 1) |
| length = x.size(1) |
| if TEST_NUMPY and TEST_SCIPY: |
| sp_result = signal.stft( |
| x, |
| nperseg=frame_length, |
| noverlap=frame_length - hop, |
| window=window, |
| nfft=fft_size, |
| return_onesided=onesided, |
| boundary=None, |
| padded=False, |
| )[2].transpose((0, 2, 1)) * np.abs(window.sum().item()) |
| result = torch.Tensor(np.stack([sp_result.real, sp_result.imag], -1)) |
| else: |
| if onesided: |
| return_size = int(fft_size / 2) + 1 |
| else: |
| return_size = fft_size |
| result = x.new(batch, int((length - frame_length) / float(hop)) + 1, return_size, 2) |
| for w in range(return_size): # freq |
| radians = torch.arange(float(frame_length)) * w * 2 * math.pi / fft_size |
| radians = radians.type_as(x) |
| re_kernel = radians.cos().mul_(window) |
| im_kernel = -radians.sin().mul_(window) |
| for b in range(batch): |
| for i, t in enumerate(range(0, length - frame_length + 1, hop)): |
| seg = x[b, t:(t + frame_length)] |
| re = seg.dot(re_kernel) |
| im = seg.dot(im_kernel) |
| result[b, i, w, 0] = re |
| result[b, i, w, 1] = im |
| if normalized: |
| result /= frame_length ** 0.5 |
| if input_1d: |
| result = result[0] |
| return result |
| |
| def _test(sizes, frame_length, hop, fft_size=None, normalized=False, |
| onesided=True, window_sizes=None, pad_end=0, expected_error=None): |
| x = torch.randn(*sizes, device=device) |
| if window_sizes is not None: |
| window = torch.randn(*window_sizes, device=device) |
| else: |
| window = None |
| if expected_error is None: |
| result = x.stft(frame_length, hop, fft_size, normalized, onesided, window, pad_end) |
| ref_result = naive_stft(x, frame_length, hop, fft_size, normalized, onesided, window, pad_end) |
| self.assertEqual(result.data, ref_result, 7e-6, 'stft result') |
| else: |
| self.assertRaises(expected_error, |
| lambda: x.stft(frame_length, hop, fft_size, normalized, onesided, window, pad_end)) |
| |
| _test((2, 5), 4, 2, pad_end=1) |
| _test((4, 150), 90, 45, pad_end=0) |
| _test((10,), 7, 2, pad_end=0) |
| _test((10, 4000), 1024, 512, pad_end=0) |
| |
| _test((2, 5), 4, 2, window_sizes=(4,), pad_end=1) |
| _test((4, 150), 90, 45, window_sizes=(90,), pad_end=0) |
| _test((10,), 7, 2, window_sizes=(7,), pad_end=0) |
| _test((10, 4000), 1024, 512, window_sizes=(1024,), pad_end=0) |
| |
| _test((2, 5), 4, 2, fft_size=5, window_sizes=(4,), pad_end=1) |
| _test((4, 150), 90, 45, fft_size=100, window_sizes=(90,), pad_end=0) |
| _test((10,), 7, 2, fft_size=33, window_sizes=(7,), pad_end=0) |
| _test((10, 4000), 1024, 512, fft_size=1500, window_sizes=(1024,), pad_end=0) |
| |
| _test((2, 5), 4, 2, fft_size=5, onesided=False, window_sizes=(4,), pad_end=1) |
| _test((4, 150), 90, 45, fft_size=100, onesided=False, window_sizes=(90,), pad_end=0) |
| _test((10,), 7, 2, fft_size=33, onesided=False, window_sizes=(7,), pad_end=0) |
| _test((10, 4000), 1024, 512, fft_size=1500, onesided=False, window_sizes=(1024,), pad_end=0) |
| |
| _test((2, 5), 4, 2, fft_size=5, normalized=True, onesided=False, window_sizes=(4,), pad_end=1) |
| _test((4, 150), 90, 45, fft_size=100, normalized=True, onesided=False, window_sizes=(90,), pad_end=0) |
| _test((10,), 7, 2, fft_size=33, normalized=True, onesided=False, window_sizes=(7,), pad_end=0) |
| _test((10, 4000), 1024, 512, fft_size=1500, normalized=True, onesided=False, window_sizes=(1024,), pad_end=0) |
| |
| _test((10, 4, 2), 1, 1, expected_error=RuntimeError) |
| _test((10,), 11, 1, expected_error=RuntimeError) |
| _test((10,), 0, 1, pad_end=4, expected_error=RuntimeError) |
| _test((10,), 15, 1, pad_end=4, expected_error=RuntimeError) |
| _test((10,), 5, -4, expected_error=RuntimeError) |
| _test((10,), 5, 4, window_sizes=(11,), expected_error=RuntimeError) |
| _test((10,), 5, 4, window_sizes=(1, 1), expected_error=RuntimeError) |
| |
| def test_stft(self): |
| self._test_stft(self) |
| |
| @unittest.skip("Not implemented yet") |
| def test_conv2(self): |
| x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100))) |
| k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20))) |
| imvc = torch.conv2(x, k) |
| imvc2 = torch.conv2(x, k, 'V') |
| imfc = torch.conv2(x, k, 'F') |
| |
| ki = k.clone() |
| ks = k.storage() |
| kis = ki.storage() |
| for i in range(ks.size() - 1, 0, -1): |
| kis[ks.size() - i + 1] = ks[i] |
| # for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end |
| imvx = torch.xcorr2(x, ki) |
| imvx2 = torch.xcorr2(x, ki, 'V') |
| imfx = torch.xcorr2(x, ki, 'F') |
| |
| self.assertEqual(imvc, imvc2, 0, 'torch.conv2') |
| self.assertEqual(imvc, imvx, 0, 'torch.conv2') |
| self.assertEqual(imvc, imvx2, 0, 'torch.conv2') |
| self.assertEqual(imfc, imfx, 0, 'torch.conv2') |
| self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2') |
| |
| xx = torch.Tensor(2, x.size(1), x.size(2)) |
| xx[1].copy_(x) |
| xx[2].copy_(x) |
| kk = torch.Tensor(2, k.size(1), k.size(2)) |
| kk[1].copy_(k) |
| kk[2].copy_(k) |
| |
| immvc = torch.conv2(xx, kk) |
| immvc2 = torch.conv2(xx, kk, 'V') |
| immfc = torch.conv2(xx, kk, 'F') |
| |
| self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2') |
| self.assertEqual(immvc[0], imvc, 0, 'torch.conv2') |
| self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2') |
| self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2') |
| self.assertEqual(immfc[0], imfc, 0, 'torch.conv2') |
| |
| @unittest.skip("Not implemented yet") |
| def test_conv3(self): |
| x = torch.rand(math.floor(torch.uniform(20, 40)), |
| math.floor(torch.uniform(20, 40)), |
| math.floor(torch.uniform(20, 40))) |
| k = torch.rand(math.floor(torch.uniform(5, 10)), |
| math.floor(torch.uniform(5, 10)), |
| math.floor(torch.uniform(5, 10))) |
| imvc = torch.conv3(x, k) |
| imvc2 = torch.conv3(x, k, 'V') |
| imfc = torch.conv3(x, k, 'F') |
| |
| ki = k.clone() |
| ks = k.storage() |
| kis = ki.storage() |
| for i in range(ks.size() - 1, 0, -1): |
| kis[ks.size() - i + 1] = ks[i] |
| imvx = torch.xcorr3(x, ki) |
| imvx2 = torch.xcorr3(x, ki, 'V') |
| imfx = torch.xcorr3(x, ki, 'F') |
| |
| self.assertEqual(imvc, imvc2, 0, 'torch.conv3') |
| self.assertEqual(imvc, imvx, 0, 'torch.conv3') |
| self.assertEqual(imvc, imvx2, 0, 'torch.conv3') |
| self.assertEqual(imfc, imfx, 0, 'torch.conv3') |
| self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3') |
| |
| xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3)) |
| xx[1].copy_(x) |
| xx[2].copy_(x) |
| kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3)) |
| kk[1].copy_(k) |
| kk[2].copy_(k) |
| |
| immvc = torch.conv3(xx, kk) |
| immvc2 = torch.conv3(xx, kk, 'V') |
| immfc = torch.conv3(xx, kk, 'F') |
| |
| self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3') |
| self.assertEqual(immvc[0], imvc, 0, 'torch.conv3') |
| self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3') |
| self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3') |
| self.assertEqual(immfc[0], imfc, 0, 'torch.conv3') |
| |
| @unittest.skip("Not implemented yet") |
| def _test_conv_corr_eq(self, fn, fn_2_to_3): |
| ix = math.floor(random.randint(20, 40)) |
| iy = math.floor(random.randint(20, 40)) |
| iz = math.floor(random.randint(20, 40)) |
| kx = math.floor(random.randint(5, 10)) |
| ky = math.floor(random.randint(5, 10)) |
| kz = math.floor(random.randint(5, 10)) |
| |
| x = torch.rand(ix, iy, iz) |
| k = torch.rand(kx, ky, kz) |
| |
| o3 = fn(x, k) |
| o32 = torch.zeros(o3.size()) |
| fn_2_to_3(x, k, o3, o32) |
| self.assertEqual(o3, o32) |
| |
| @unittest.skip("Not implemented yet") |
| def test_xcorr3_xcorr2_eq(self): |
| def reference(x, k, o3, o32): |
| for i in range(o3.size(1)): |
| for j in range(k.size(1)): |
| o32[i].add(torch.xcorr2(x[i + j - 1], k[j])) |
| self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k), reference) |
| |
| @unittest.skip("Not implemented yet") |
| def test_xcorr3_xcorr2_eq_full(self): |
| def reference(x, k, o3, o32): |
| for i in range(x.size(1)): |
| for j in range(k.size(1)): |
| o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F')) |
| self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference) |
| |
| @unittest.skip("Not implemented yet") |
| def test_conv3_conv2_eq_valid(self): |
| def reference(x, k, o3, o32): |
| for i in range(o3.size(1)): |
| for j in range(k.size(1)): |
| o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1])) |
| self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k), reference) |
| |
| @unittest.skip("Not implemented yet") |
| def test_fconv3_fconv2_eq(self): |
| def reference(x, k, o3, o32): |
| for i in range(o3.size(1)): |
| for j in range(k.size(1)): |
| o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F')) |
| self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference) |
| |
| def test_logical(self): |
| x = torch.rand(100, 100) * 2 - 1 |
| |
| xgt = torch.gt(x, 1) |
| xlt = torch.lt(x, 1) |
| |
| xeq = torch.eq(x, 1) |
| xne = torch.ne(x, 1) |
| |
| neqs = xgt + xlt |
| all = neqs + xeq |
| self.assertEqual(neqs.long().sum(), xne.long().sum(), 0) |
| self.assertEqual(x.nelement(), all.long().sum()) |
| |
| def test_isnan(self): |
| x = torch.Tensor([1, float('nan'), 2]) |
| self.assertEqual(torch.isnan(x), torch.ByteTensor([0, 1, 0])) |
| |
| def test_RNGState(self): |
| state = torch.get_rng_state() |
| stateCloned = state.clone() |
| before = torch.rand(1000) |
| |
| self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0) |
| |
| torch.set_rng_state(state) |
| after = torch.rand(1000) |
| self.assertEqual(before, after, 0) |
| |
| def test_RNGStateAliasing(self): |
| # Fork the random number stream at this point |
| gen = torch.Generator() |
| gen.set_state(torch.get_rng_state()) |
| self.assertEqual(gen.get_state(), torch.get_rng_state()) |
| |
| target_value = torch.rand(1000) |
| # Dramatically alter the internal state of the main generator |
| _ = torch.rand(100000) |
| forked_value = torch.rand(1000, generator=gen) |
| self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.") |
| |
| def test_RNG_after_pickle(self): |
| torch.random.manual_seed(100) |
| before = torch.rand(10) |
| |
| torch.random.manual_seed(100) |
| buf = io.BytesIO() |
| tensor = torch.Tensor([1, 2, 3]) |
| ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(tensor) |
| after = torch.rand(10) |
| |
| self.assertEqual(before, after, 0) |
| |
| def test_boxMullerState(self): |
| torch.manual_seed(123) |
| odd_number = 101 |
| seeded = torch.randn(odd_number) |
| state = torch.get_rng_state() |
| midstream = torch.randn(odd_number) |
| torch.set_rng_state(state) |
| repeat_midstream = torch.randn(odd_number) |
| torch.manual_seed(123) |
| reseeded = torch.randn(odd_number) |
| self.assertEqual(midstream, repeat_midstream, 0, |
| 'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers') |
| self.assertEqual(seeded, reseeded, 0, |
| 'repeated calls to manual_seed not generating same sequence of normally distributed numbers') |
| |
| def test_manual_seed(self): |
| rng_state = torch.get_rng_state() |
| torch.manual_seed(2) |
| x = torch.randn(100) |
| self.assertEqual(torch.initial_seed(), 2) |
| torch.manual_seed(2) |
| y = torch.randn(100) |
| self.assertEqual(x, y) |
| torch.set_rng_state(rng_state) |
| |
| @skipIfNoLapack |
| def test_cholesky(self): |
| x = torch.rand(10, 10) + 1e-1 |
| A = torch.mm(x, x.t()) |
| |
| # default Case |
| C = torch.potrf(A) |
| B = torch.mm(C.t(), C) |
| self.assertEqual(A, B, 1e-14) |
| |
| # test Upper Triangular |
| U = torch.potrf(A, True) |
| B = torch.mm(U.t(), U) |
| self.assertEqual(A, B, 1e-14, 'potrf (upper) did not allow rebuilding the original matrix') |
| |
| # test Lower Triangular |
| L = torch.potrf(A, False) |
| B = torch.mm(L, L.t()) |
| self.assertEqual(A, B, 1e-14, 'potrf (lower) did not allow rebuilding the original matrix') |
| |
| @skipIfNoLapack |
| def test_potrs(self): |
| a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), |
| (-6.05, -3.30, 5.36, -4.44, 1.08), |
| (-0.45, 2.58, -2.70, 0.27, 9.04), |
| (8.32, 2.71, 4.35, -7.17, 2.14), |
| (-9.67, -5.14, -7.26, 6.08, -6.87))).t() |
| b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03), |
| (-1.56, 4.00, -8.67, 1.75, 2.86), |
| (9.81, -4.09, -4.57, -8.61, 8.99))).t() |
| |
| # make sure 'a' is symmetric PSD |
| a = torch.mm(a, a.t()) |
| |
| # upper Triangular Test |
| U = torch.potrf(a) |
| x = torch.potrs(b, U) |
| self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12) |
| |
| # lower Triangular Test |
| L = torch.potrf(a, False) |
| x = torch.potrs(b, L, False) |
| self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12) |
| |
| @skipIfNoLapack |
| def tset_potri(self): |
| a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23), |
| (-6.05, -3.30, 5.36, -4.44, 1.08), |
| (-0.45, 2.58, -2.70, 0.27, 9.04), |
| (8.32, 2.71, 4.35, -7.17, 2.14), |
| (-9.67, -5.14, -7.26, 6.08, -6.87))).t() |
| |
| # make sure 'a' is symmetric PSD |
| a = a * a.t() |
| |
| # compute inverse directly |
| inv0 = torch.inverse(a) |
| |
| # default case |
| chol = torch.potrf(a) |
| inv1 = torch.potri(chol) |
| self.assertLessEqual(inv0.dist(inv1), 1e-12) |
| |
| # upper Triangular Test |
| chol = torch.potrf(a, 'U') |
| inv1 = torch.potri(chol, 'U') |
| self.assertLessEqual(inv0.dist(inv1), 1e-12) |
| |
| # lower Triangular Test |
| chol = torch.potrf(a, 'L') |
| inv1 = torch.potri(chol, 'L') |
| self.assertLessEqual(inv0.dist(inv1), 1e-12) |
| |
| @skipIfNoLapack |
| def test_pstrf(self): |
| def checkPsdCholesky(a, uplo, inplace): |
| if inplace: |
| u = torch.empty_like(a) |
| piv = a.new(a.size(0)).int() |
| kwargs = {'out': (u, piv)} |
| else: |
| kwargs = {} |
| args = [a] |
| |
| if uplo is not None: |
| args += [uplo] |
| |
| u, piv = torch.pstrf(*args, **kwargs) |
| |
| if uplo is False: |
| a_reconstructed = torch.mm(u, u.t()) |
| else: |
| a_reconstructed = torch.mm(u.t(), u) |
| |
| piv = piv.long() |
| a_permuted = a.index_select(0, piv).index_select(1, piv) |
| self.assertEqual(a_permuted, a_reconstructed, 1e-14) |
| |
| dimensions = ((5, 1), (5, 3), (5, 5), (10, 10)) |
| for dim in dimensions: |
| m = torch.Tensor(*dim).uniform_() |
| a = torch.mm(m, m.t()) |
| # add a small number to the diagonal to make the matrix numerically positive semidefinite |
| for i in range(m.size(0)): |
| a[i][i] = a[i][i] + 1e-7 |
| for inplace in (True, False): |
| for uplo in (None, True, False): |
| checkPsdCholesky(a, uplo, inplace) |
| |
| def test_numel(self): |
| b = torch.ByteTensor(3, 100, 100) |
| self.assertEqual(b.nelement(), 3 * 100 * 100) |
| self.assertEqual(b.numel(), 3 * 100 * 100) |
| |
| def _consecutive(self, size, start=1): |
| sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0) |
| sequence.add_(start - 1) |
| return sequence.resize_(*size) |
| |
| @staticmethod |
| def _test_index(self, conv_fn): |
| |
| def consec(size, start=1): |
| sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0) |
| sequence.add_(start - 1) |
| return sequence.view(*size) |
| |
| reference = conv_fn(consec((3, 3, 3))) |
| |
| # empty tensor indexing |
| self.assertEqual(reference[conv_fn(torch.LongTensor())], reference.new()) |
| |
| self.assertEqual(reference[0], consec((3, 3)), 0) |
| self.assertEqual(reference[1], consec((3, 3), 10), 0) |
| self.assertEqual(reference[2], consec((3, 3), 19), 0) |
| self.assertEqual(reference[0, 1], consec((3,), 4), 0) |
| self.assertEqual(reference[0:2], consec((2, 3, 3)), 0) |
| self.assertEqual(reference[2, 2, 2], 27, 0) |
| self.assertEqual(reference[:], consec((3, 3, 3)), 0) |
| |
| # indexing with Ellipsis |
| self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9], |
| [12, 15, 18], |
| [21, 24, 27]]), 0) |
| self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0) |
| self.assertEqual(reference[..., 2], reference[:, :, 2], 0) |
| self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0) |
| self.assertEqual(reference[0, 2, ...], reference[0, 2], 0) |
| self.assertEqual(reference[..., 2, 2, 2], 27, 0) |
| self.assertEqual(reference[2, ..., 2, 2], 27, 0) |
| self.assertEqual(reference[2, 2, ..., 2], 27, 0) |
| self.assertEqual(reference[2, 2, 2, ...], 27, 0) |
| self.assertEqual(reference[...], reference, 0) |
| |
| reference_5d = conv_fn(consec((3, 3, 3, 3, 3))) |
| self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0) |
| self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0) |
| self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0) |
| self.assertEqual(reference_5d[...], reference_5d, 0) |
| |
| # LongTensor indexing |
| reference = conv_fn(consec((5, 5, 5))) |
| idx = conv_fn(torch.LongTensor([2, 4])) |
| self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]])) |
| # TODO: enable one indexing is implemented like in numpy |
| # self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]])) |
| # self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1]) |
| |
| # None indexing |
| self.assertEqual(reference[2, None], reference[2].unsqueeze(0)) |
| self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0)) |
| self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1)) |
| self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0)) |
| self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2)) |
| |
| # indexing 0-length slice |
| self.assertEqual(torch.tensor([]), reference[slice(0)]) |
| self.assertEqual(torch.tensor([]), reference[slice(0), 2]) |
| self.assertEqual(torch.tensor([]), reference[2, slice(0)]) |
| self.assertEqual(torch.tensor([]), reference[2, 1:1, 2]) |
| |
| # indexing with step |
| reference = consec((10, 10, 10)) |
| self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0)) |
| self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0)) |
| self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0)) |
| self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1)) |
| self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0)) |
| self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0)) |
| self.assertEqual(reference[:, 2, 1:6:2], |
| torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1)) |
| |
| lst = [list(range(i, i + 10)) for i in range(0, 100, 10)] |
| tensor = conv_fn(torch.DoubleTensor(lst)) |
| for _i in range(100): |
| idx1_start = random.randrange(10) |
| idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1) |
| idx1_step = random.randrange(1, 8) |
| idx1 = slice(idx1_start, idx1_end, idx1_step) |
| if random.randrange(2) == 0: |
| idx2_start = random.randrange(10) |
| idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1) |
| idx2_step = random.randrange(1, 8) |
| idx2 = slice(idx2_start, idx2_end, idx2_step) |
| lst_indexed = list(map(lambda l: l[idx2], lst[idx1])) |
| tensor_indexed = tensor[idx1, idx2] |
| else: |
| lst_indexed = lst[idx1] |
| tensor_indexed = tensor[idx1] |
| self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed) |
| |
| self.assertRaises(ValueError, lambda: reference[1:9:0]) |
| self.assertRaises(ValueError, lambda: reference[1:9:-1]) |
| |
| self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1]) |
| self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1]) |
| self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3]) |
| |
| self.assertRaises(IndexError, lambda: reference[0.0]) |
| self.assertRaises(TypeError, lambda: reference[0.0:2.0]) |
| self.assertRaises(IndexError, lambda: reference[0.0, 0.0:2.0]) |
| self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0:2.0]) |
| self.assertRaises(IndexError, lambda: reference[0.0, ..., 0.0:2.0]) |
| self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0]) |
| |
| def test_index(self): |
| self._test_index(self, lambda x: x) |
| |
| @staticmethod |
| def _test_advancedindex(self, conv_fn): |
| # Tests for Integer Array Indexing, Part I - Purely integer array |
| # indexing |
| |
| def consec(size, start=1): |
| numel = reduce(lambda x, y: x * y, size, 1) |
| sequence = torch.ones(numel).cumsum(0) |
| sequence.add_(start - 1) |
| return sequence.view(*size) |
| |
| # pick a random valid indexer type |
| def ri(indices): |
| choice = random.randint(0, 2) |
| if choice == 0: |
| return conv_fn(torch.LongTensor(indices)) |
| elif choice == 1: |
| return list(indices) |
| else: |
| return tuple(indices) |
| |
| # First, we will test indexing to generate return values |
| |
| # Case 1: Purely Integer Array Indexing |
| reference = conv_fn(consec((10,))) |
| self.assertEqual(reference[[0]], consec((1,))) |
| self.assertEqual(reference[ri([0]), ], consec((1,))) |
| self.assertEqual(reference[ri([3]), ], consec((1,), 4)) |
| self.assertEqual(reference[[2, 3, 4]], consec((3,), 3)) |
| self.assertEqual(reference[ri([2, 3, 4]), ], consec((3,), 3)) |
| self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([1, 3, 5])) |
| |
| # setting values |
| reference[[0]] = -2 |
| self.assertEqual(reference[[0]], torch.Tensor([-2])) |
| reference[[0]] = -1 |
| self.assertEqual(reference[ri([0]), ], torch.Tensor([-1])) |
| reference[[2, 3, 4]] = 4 |
| self.assertEqual(reference[[2, 3, 4]], torch.Tensor([4, 4, 4])) |
| reference[ri([2, 3, 4]), ] = 3 |
| self.assertEqual(reference[ri([2, 3, 4]), ], torch.Tensor([3, 3, 3])) |
| reference[ri([0, 2, 4]), ] = conv_fn(torch.Tensor([5, 4, 3])) |
| self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([5, 4, 3])) |
| |
| # Tensor with stride != 1 |
| |
| # strided is [1, 3, 5, 7] |
| reference = conv_fn(consec((10,))) |
| strided = conv_fn(torch.Tensor()) |
| strided.set_(reference.storage(), storage_offset=0, |
| size=torch.Size([4]), stride=[2]) |
| |
| self.assertEqual(strided[[0]], torch.Tensor([1])) |
| self.assertEqual(strided[ri([0]), ], torch.Tensor([1])) |
| self.assertEqual(strided[ri([3]), ], torch.Tensor([7])) |
| self.assertEqual(strided[[1, 2]], torch.Tensor([3, 5])) |
| self.assertEqual(strided[ri([1, 2]), ], torch.Tensor([3, 5])) |
| self.assertEqual(strided[ri([[2, 1], [0, 3]]), ], |
| torch.Tensor([[5, 3], [1, 7]])) |
| |
| # stride is [4, 8] |
| strided = conv_fn(torch.Tensor()) |
| strided.set_(reference.storage(), storage_offset=4, |
| size=torch.Size([2]), stride=[4]) |
| self.assertEqual(strided[[0]], torch.Tensor([5])) |
| self.assertEqual(strided[ri([0]), ], torch.Tensor([5])) |
| self.assertEqual(strided[ri([1]), ], torch.Tensor([9])) |
| self.assertEqual(strided[[0, 1]], torch.Tensor([5, 9])) |
| self.assertEqual(strided[ri([0, 1]), ], torch.Tensor([5, 9])) |
| self.assertEqual(strided[ri([[0, 1], [1, 0]]), ], |
| torch.Tensor([[5, 9], [9, 5]])) |
| |
| # reference is 1 2 |
| # 3 4 |
| # 5 6 |
| reference = conv_fn(consec((3, 2))) |
| self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([1, 3, 5])) |
| self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([2, 4, 6])) |
| self.assertEqual(reference[ri([0]), ri([0])], consec((1,))) |
| self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6)) |
| self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([1, 2])) |
| self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]], |
| torch.Tensor([2, 4, 4, 2, 6])) |
| self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], |
| torch.Tensor([1, 2, 3, 3])) |
| |
| rows = ri([[0, 0], |
| [1, 2]]) |
| columns = [0], |
| self.assertEqual(reference[rows, columns], torch.Tensor([[1, 1], |
| [3, 5]])) |
| |
| rows = ri([[0, 0], |
| [1, 2]]) |
| columns = ri([1, 0]) |
| self.assertEqual(reference[rows, columns], torch.Tensor([[2, 1], |
| [4, 5]])) |
| rows = ri([[0, 0], |
| [1, 2]]) |
| columns = ri([[0, 1], |
| [1, 0]]) |
| self.assertEqual(reference[rows, columns], torch.Tensor([[1, 2], |
| [4, 5]])) |
| |
| # setting values |
| reference[ri([0]), ri([1])] = -1 |
| self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1])) |
| reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4])) |
| self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1, |
| 2, -4])) |
| reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]])) |
| self.assertEqual(reference[rows, columns], |
| torch.Tensor([[4, 6], [2, 3]])) |
| |
| # Verify still works with Transposed (i.e. non-contiguous) Tensors |
| |
| reference = conv_fn(torch.Tensor([[0, 1, 2, 3], |
| [4, 5, 6, 7], |
| [8, 9, 10, 11]])).t_() |
| |
| # Transposed: [[0, 4, 8], |
| # [1, 5, 9], |
| # [2, 6, 10], |
| # [3, 7, 11]] |
| |
| self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([0, 1, |
| 2])) |
| self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([4, 5, |
| 6])) |
| self.assertEqual(reference[ri([0]), ri([0])], torch.Tensor([0])) |
| self.assertEqual(reference[ri([2]), ri([1])], torch.Tensor([6])) |
| self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([0, 4])) |
| self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]], |
| torch.Tensor([4, 5, 5, 4, 7])) |
| self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], |
| torch.Tensor([0, 4, 1, 1])) |
| |
| rows = ri([[0, 0], |
| [1, 2]]) |
| columns = [0], |
| self.assertEqual(reference[rows, columns], torch.Tensor([[0, 0], |
| [1, 2]])) |
| |
| rows = ri([[0, 0], |
| [1, 2]]) |
| columns = ri([1, 0]) |
| self.assertEqual(reference[rows, columns], torch.Tensor([[4, 0], |
| [5, 2]])) |
| rows = ri([[0, 0], |
| [1, 3]]) |
| columns = ri([[0, 1], |
| [1, 2]]) |
| self.assertEqual(reference[rows, columns], torch.Tensor([[0, 4], |
| [5, 11]])) |
| |
| # setting values |
| reference[ri([0]), ri([1])] = -1 |
| self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1])) |
| reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4])) |
| self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1, |
| 2, -4])) |
| reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]])) |
| self.assertEqual(reference[rows, columns], |
| torch.Tensor([[4, 6], [2, 3]])) |
| |
| # stride != 1 |
| |
| # strided is [[1 3 5 7], |
| # [9 11 13 15]] |
| |
| reference = conv_fn(torch.arange(0., 24).view(3, 8)) |
| strided = conv_fn(torch.Tensor()) |
| strided.set_(reference.storage(), 1, size=torch.Size([2, 4]), |
| stride=[8, 2]) |
| |
| self.assertEqual(strided[ri([0, 1]), ri([0])], torch.Tensor([1, 9])) |
| self.assertEqual(strided[ri([0, 1]), ri([1])], torch.Tensor([3, 11])) |
| self.assertEqual(strided[ri([0]), ri([0])], torch.Tensor([1])) |
| self.assertEqual(strided[ri([1]), ri([3])], torch.Tensor([15])) |
| self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]], torch.Tensor([1, 7])) |
| self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]], |
| torch.Tensor([9, 11, 11, 9, 15])) |
| self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], |
| torch.Tensor([1, 3, 9, 9])) |
| |
| rows = ri([[0, 0], |
| [1, 1]]) |
| columns = [0], |
| self.assertEqual(strided[rows, columns], torch.Tensor([[1, 1], |
| [9, 9]])) |
| |
| rows = ri([[0, 1], |
| [1, 0]]) |
| columns = ri([1, 2]) |
| self.assertEqual(strided[rows, columns], torch.Tensor([[3, 13], |
| [11, 5]])) |
| rows = ri([[0, 0], |
| [1, 1]]) |
| columns = ri([[0, 1], |
| [1, 2]]) |
| self.assertEqual(strided[rows, columns], torch.Tensor([[1, 3], |
| [11, 13]])) |
| |
| # setting values |
| |
| # strided is [[10, 11], |
| # [17, 18]] |
| |
| reference = conv_fn(torch.arange(0., 24).view(3, 8)) |
| strided = conv_fn(torch.Tensor()) |
| strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), |
| stride=[7, 1]) |
| self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([11])) |
| strided[ri([0]), ri([1])] = -1 |
| self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([-1])) |
| |
| reference = conv_fn(torch.arange(0., 24).view(3, 8)) |
| strided = conv_fn(torch.Tensor()) |
| strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), |
| stride=[7, 1]) |
| self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([11, |
| 17])) |
| strided[ri([0, 1]), ri([1, 0])] = conv_fn(torch.Tensor([-1, 2])) |
| self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([-1, |
| 2])) |
| |
| reference = conv_fn(torch.arange(0., 24).view(3, 8)) |
| strided = conv_fn(torch.Tensor()) |
| strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), |
| stride=[7, 1]) |
| |
| rows = ri([[0], |
| [1]]) |
| columns = ri([[0, 1], |
| [0, 1]]) |
| self.assertEqual(strided[rows, columns], |
| torch.Tensor([[10, 11], [17, 18]])) |
| strided[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]])) |
| self.assertEqual(strided[rows, columns], |
| torch.Tensor([[4, 6], [2, 3]])) |
| |
| # Tests using less than the number of dims, and ellipsis |
| |
| # reference is 1 2 |
| # 3 4 |
| # 5 6 |
| reference = conv_fn(consec((3, 2))) |
| self.assertEqual(reference[ri([0, 2]), ], torch.Tensor([[1, 2], [5, 6]])) |
| self.assertEqual(reference[ri([1]), ...], torch.Tensor([[3, 4]])) |
| self.assertEqual(reference[..., ri([1])], torch.Tensor([[2], [4], [6]])) |
| |
| # verify too many indices fails |
| with self.assertRaises(IndexError): |
| reference[ri([1]), ri([0, 2]), ri([3])] |
| |
| # test invalid index fails |
| reference = conv_fn(torch.empty(10)) |
| # can't test cuda because it is a device assert |
| if not reference.is_cuda: |
| for err_idx in (10, -11): |
| with self.assertRaisesRegex(IndexError, r'out of'): |
| reference[err_idx] |
| with self.assertRaisesRegex(RuntimeError, r'out of'): |
| reference[conv_fn(torch.LongTensor([err_idx]))] |
| with self.assertRaisesRegex(RuntimeError, r'out of'): |
| reference[[err_idx]] |
| |
| if TEST_NUMPY: |
| # we use numpy to compare against, to verify that our advanced |
| # indexing semantics are the same, and also for ease of test |
| # writing |
| |
| def tensor_indices_to_np(tensor, indices): |
| # convert the Torch Tensor to a numpy array |
| if (tensor.is_cuda): |
| tensor = tensor.cpu() |
| npt = tensor.numpy() |
| |
| # convert indices |
| idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else |
| i for i in indices) |
| |
| return npt, idxs |
| |
| def get_numpy(tensor, indices): |
| npt, idxs = tensor_indices_to_np(tensor, indices) |
| |
| # index and return as a Torch Tensor |
| return torch.Tensor(npt[idxs]) |
| |
| def set_numpy(tensor, indices, value): |
| if not isinstance(value, int): |
| if value.is_cuda: |
| value = value.cpu() |
| value = value.numpy() |
| |
| npt, idxs = tensor_indices_to_np(tensor, indices) |
| npt[idxs] = value |
| return npt |
| |
| def assert_get_eq(tensor, indexer): |
| self.assertEqual(tensor[indexer], |
| conv_fn(get_numpy(tensor, indexer))) |
| |
| def assert_set_eq(tensor, indexer, val): |
| pyt = tensor.clone() |
| numt = tensor.clone() |
| pyt[indexer] = val |
| numt = conv_fn(torch.Tensor(set_numpy(numt, indexer, val))) |
| self.assertEqual(pyt, numt) |
| |
| def get_set_tensor(indexed, indexer): |
| set_size = indexed[indexer].size() |
| set_count = indexed[indexer].numel() |
| set_tensor = conv_fn(torch.randperm(set_count).view(set_size).double()) |
| return set_tensor |
| |
| # Tensor is 0 1 2 3 4 |
| # 5 6 7 8 9 |
| # 10 11 12 13 14 |
| # 15 16 17 18 19 |
| reference = conv_fn(torch.arange(0., 20).view(4, 5)) |
| |
| indices_to_test = [ |
| # grab the second, fourth columns |
| [slice(None), [1, 3]], |
| |
| # first, third rows, |
| [[0, 2], slice(None)], |
| |
| # weird shape |
| [slice(None), [[0, 1], |
| [2, 3]]], |
| # negatives |
| [[-1], [0]], |
| [[0, 2], [-1]], |
| [slice(None), [-1]], |
| ] |
| |
| # only test dupes on gets |
| get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]] |
| |
| for indexer in get_indices_to_test: |
| assert_get_eq(reference, indexer) |
| |
| for indexer in indices_to_test: |
| assert_set_eq(reference, indexer, 44) |
| assert_set_eq(reference, |
| indexer, |
| get_set_tensor(reference, indexer)) |
| |
| reference = conv_fn(torch.arange(0., 160).view(4, 8, 5)) |
| |
| indices_to_test = [ |
| [slice(None), slice(None), [0, 3, 4]], |
| [slice(None), [2, 4, 5, 7], slice(None)], |
| [[2, 3], slice(None), slice(None)], |
| [slice(None), [0, 2, 3], [1, 3, 4]], |
| [slice(None), [0], [1, 2, 4]], |
| [slice(None), [0, 1, 3], [4]], |
| [slice(None), [[0, 1], [1, 0]], [[2, 3]]], |
| [slice(None), [[0, 1], [2, 3]], [[0]]], |
| [slice(None), [[5, 6]], [[0, 3], [4, 4]]], |
| [[0, 2, 3], [1, 3, 4], slice(None)], |
| [[0], [1, 2, 4], slice(None)], |
| [[0, 1, 3], [4], slice(None)], |
| [[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)], |
| [[[0, 1], [1, 0]], [[2, 3]], slice(None)], |
| [[[0, 1], [2, 3]], [[0]], slice(None)], |
| [[[2, 1]], [[0, 3], [4, 4]], slice(None)], |
| [[[2]], [[0, 3], [4, 1]], slice(None)], |
| |
| # less dim, ellipsis |
| [[0, 2], ], |
| [[0, 2], slice(None)], |
| [[0, 2], Ellipsis], |
| [[0, 2], slice(None), Ellipsis], |
| [[0, 2], Ellipsis, slice(None)], |
| [[0, 2], [1, 3]], |
| [[0, 2], [1, 3], Ellipsis], |
| [Ellipsis, [1, 3], [2, 3]], |
| [Ellipsis, [2, 3, 4]], |
| [Ellipsis, slice(None), [2, 3, 4]], |
| [slice(None), Ellipsis, [2, 3, 4]], |
| |
| # ellipsis counts for nothing |
| [Ellipsis, slice(None), slice(None), [0, 3, 4]], |
| [slice(None), Ellipsis, slice(None), [0, 3, 4]], |
| [slice(None), slice(None), Ellipsis, [0, 3, 4]], |
| [slice(None), slice(None), [0, 3, 4], Ellipsis], |
| [Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)], |
| [[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)], |
| [[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis], |
| ] |
| |
| for indexer in indices_to_test: |
| assert_get_eq(reference, indexer) |
| assert_set_eq(reference, indexer, 212) |
| assert_set_eq(reference, |
| indexer, |
| get_set_tensor(reference, indexer)) |
| |
| reference = conv_fn(torch.arange(0., 1296).view(3, 9, 8, 6)) |
| |
| indices_to_test = [ |
| [slice(None), slice(None), slice(None), [0, 3, 4]], |
| [slice(None), slice(None), [2, 4, 5, 7], slice(None)], |
| [slice(None), [2, 3], slice(None), slice(None)], |
| [[1, 2], slice(None), slice(None), slice(None)], |
| [slice(None), slice(None), [0, 2, 3], [1, 3, 4]], |
| [slice(None), slice(None), [0], [1, 2, 4]], |
| [slice(None), slice(None), [0, 1, 3], [4]], |
| [slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]], |
| [slice(None), slice(None), [[0, 1], [2, 3]], [[0]]], |
| [slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]], |
| [slice(None), [0, 2, 3], [1, 3, 4], slice(None)], |
| [slice(None), [0], [1, 2, 4], slice(None)], |
| [slice(None), [0, 1, 3], [4], slice(None)], |
| [slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)], |
| [slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)], |
| [slice(None), [[0, 1], [3, 2]], [[0]], slice(None)], |
| [slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)], |
| [slice(None), [[2]], [[0, 3], [4, 2]], slice(None)], |
| [[0, 1, 2], [1, 3, 4], slice(None), slice(None)], |
| [[0], [1, 2, 4], slice(None), slice(None)], |
| [[0, 1, 2], [4], slice(None), slice(None)], |
| [[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)], |
| [[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)], |
| [[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)], |
| [[[2]], [[0, 3], [4, 5]], slice(None), slice(None)], |
| [slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]], |
| [slice(None), [2, 3, 4], [1, 3, 4], [4]], |
| [slice(None), [0, 1, 3], [4], [1, 3, 4]], |
| [slice(None), [6], [0, 2, 3], [1, 3, 4]], |
| [slice(None), [2, 3, 5], [3], [4]], |
| [slice(None), [0], [4], [1, 3, 4]], |
| [slice(None), [6], [0, 2, 3], [1]], |
| [slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]], |
| [[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)], |
| [[2, 0, 1], [1, 2, 3], [4], slice(None)], |
| [[0, 1, 2], [4], [1, 3, 4], slice(None)], |
| [[0], [0, 2, 3], [1, 3, 4], slice(None)], |
| [[0, 2, 1], [3], [4], slice(None)], |
| [[0], [4], [1, 3, 4], slice(None)], |
| [[1], [0, 2, 3], [1], slice(None)], |
| [[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)], |
| |
| # less dim, ellipsis |
| [Ellipsis, [0, 3, 4]], |
| [Ellipsis, slice(None), [0, 3, 4]], |
| [Ellipsis, slice(None), slice(None), [0, 3, 4]], |
| [slice(None), Ellipsis, [0, 3, 4]], |
| [slice(None), slice(None), Ellipsis, [0, 3, 4]], |
| [slice(None), [0, 2, 3], [1, 3, 4]], |
| [slice(None), [0, 2, 3], [1, 3, 4], Ellipsis], |
| [Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)], |
| [[0], [1, 2, 4]], |
| [[0], [1, 2, 4], slice(None)], |
| [[0], [1, 2, 4], Ellipsis], |
| [[0], [1, 2, 4], Ellipsis, slice(None)], |
| [[1], ], |
| [[0, 2, 1], [3], [4]], |
| [[0, 2, 1], [3], [4], slice(None)], |
| [[0, 2, 1], [3], [4], Ellipsis], |
| [Ellipsis, [0, 2, 1], [3], [4]], |
| ] |
| |
| for indexer in indices_to_test: |
| assert_get_eq(reference, indexer) |
| assert_set_eq(reference, indexer, 1333) |
| assert_set_eq(reference, |
| indexer, |
| get_set_tensor(reference, indexer)) |
| indices_to_test += [ |
| [slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]], |
| [slice(None), slice(None), [[2]], [[0, 3], [4, 4]]], |
| ] |
| for indexer in indices_to_test: |
| assert_get_eq(reference, indexer) |
| assert_set_eq(reference, indexer, 1333) |
| |
| def test_advancedindex(self): |
| self._test_advancedindex(self, lambda x: x) |
| |
| @staticmethod |
| def _test_advancedindex_big(self, conv_fn): |
| reference = conv_fn(torch.arange(0, 123344).int()) |
| |
| self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ], |
| torch.LongTensor([0, 123, 44488, 68807, 123343])) |
| |
| def test_advancedindex_big(self): |
| self._test_advancedindex_big(self, lambda x: x) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_newaxis_numpy_comparison(self): |
| def run_test(tensor, *idx): |
| npt = tensor.numpy() |
| self.assertEqual(tensor[idx], npt[idx]) |
| |
| # 1D Tensor Tests |
| x = torch.arange(0, 10) |
| cases = [ |
| [None], |
| [None, None], |
| [Ellipsis, None], |
| [None, Ellipsis], |
| [2, None], |
| [None, 2], |
| [Ellipsis, None, 2], |
| [Ellipsis, 2, None], |
| [2, Ellipsis, None], |
| [2, None, Ellipsis], |
| [None, 2, Ellipsis], |
| [None, Ellipsis, 2], |
| ] |
| |
| for case in cases: |
| run_test(x, *case) |
| |
| # 2D Tensor Tests |
| x = torch.arange(0, 12).view(3, 4) |
| cases = [ |
| [None], |
| [None, None], |
| [None, None, None], |
| [Ellipsis, None], |
| [Ellipsis, None, None], |
| [None, Ellipsis], |
| [None, Ellipsis, None], |
| [None, None, Ellipsis], |
| [2, None], |
| [2, None, Ellipsis], |
| [2, Ellipsis, None], |
| [None, 2, Ellipsis], |
| [Ellipsis, 2, None], |
| [Ellipsis, None, 2], |
| [None, Ellipsis, 2], |
| [1, 2, None], |
| [1, 2, Ellipsis, None], |
| [1, Ellipsis, 2, None], |
| [Ellipsis, 1, None, 2], |
| [Ellipsis, 1, 2, None], |
| [1, None, 2, Ellipsis], |
| [None, 1, Ellipsis, 2], |
| [None, 1, 2, Ellipsis], |
| ] |
| |
| for case in cases: |
| run_test(x, *case) |
| |
| def test_newindex(self): |
| reference = self._consecutive((3, 3, 3)) |
| # This relies on __index__() being correct - but we have separate tests for that |
| |
| def checkPartialAssign(index): |
| reference = torch.zeros(3, 3, 3) |
| reference[index] = self._consecutive((3, 3, 3))[index] |
| self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0) |
| reference[index] = 0 |
| self.assertEqual(reference, torch.zeros(3, 3, 3), 0) |
| |
| checkPartialAssign(0) |
| checkPartialAssign(1) |
| checkPartialAssign(2) |
| checkPartialAssign((0, 1)) |
| checkPartialAssign((1, 2)) |
| checkPartialAssign((0, 2)) |
| checkPartialAssign(torch.LongTensor((0, 2))) |
| |
| with self.assertRaises(IndexError): |
| reference[1, 1, 1, 1] = 1 |
| with self.assertRaises(IndexError): |
| reference[1, 1, 1, (1, 1)] = 1 |
| with self.assertRaises(IndexError): |
| reference[3, 3, 3, 3, 3, 3, 3, 3] = 1 |
| with self.assertRaises(IndexError): |
| reference[0.0] = 1 |
| with self.assertRaises(TypeError): |
| reference[0.0:2.0] = 1 |
| with self.assertRaises(IndexError): |
| reference[0.0, 0.0:2.0] = 1 |
| with self.assertRaises(IndexError): |
| reference[0.0, :, 0.0:2.0] = 1 |
| with self.assertRaises(IndexError): |
| reference[0.0, ..., 0.0:2.0] = 1 |
| with self.assertRaises(IndexError): |
| reference[0.0, :, 0.0] = 1 |
| |
| def test_index_copy(self): |
| num_copy, num_dest = 3, 20 |
| dest = torch.randn(num_dest, 4, 5) |
| src = torch.randn(num_copy, 4, 5) |
| idx = torch.randperm(num_dest).narrow(0, 0, num_copy) |
| dest2 = dest.clone() |
| dest.index_copy_(0, idx, src) |
| for i in range(idx.size(0)): |
| dest2[idx[i]] = src[i] |
| self.assertEqual(dest, dest2, 0) |
| |
| dest = torch.randn(num_dest) |
| src = torch.randn(num_copy) |
| idx = torch.randperm(num_dest).narrow(0, 0, num_copy) |
| dest2 = dest.clone() |
| dest.index_copy_(0, idx, src) |
| for i in range(idx.size(0)): |
| dest2[idx[i]] = src[i] |
| self.assertEqual(dest, dest2, 0) |
| |
| def test_index_add(self): |
| num_copy, num_dest = 3, 3 |
| dest = torch.randn(num_dest, 4, 5) |
| src = torch.randn(num_copy, 4, 5) |
| idx = torch.randperm(num_dest).narrow(0, 0, num_copy) |
| dest2 = dest.clone() |
| dest.index_add_(0, idx, src) |
| for i in range(idx.size(0)): |
| dest2[idx[i]] += src[i] |
| self.assertEqual(dest, dest2) |
| |
| dest = torch.randn(num_dest) |
| src = torch.randn(num_copy) |
| idx = torch.randperm(num_dest).narrow(0, 0, num_copy) |
| dest2 = dest.clone() |
| dest.index_add_(0, idx, src) |
| for i in range(idx.size(0)): |
| dest2[idx[i]] = dest2[idx[i]] + src[i] |
| self.assertEqual(dest, dest2) |
| |
| def test_index_select(self): |
| src = torch.randn(3, 4, 5) |
| # Index can be duplicated. |
| idx = torch.LongTensor([2, 1, 0, 1, 2]) |
| dest = torch.index_select(src, 0, idx) |
| self.assertEqual(dest.shape, (5, 4, 5)) |
| for i in range(idx.size(0)): |
| self.assertEqual(dest[i], src[idx[i]]) |
| |
| # Check that 'out' is used correctly. |
| out = torch.randn(5 * 4 * 5) |
| dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5)) |
| self.assertEqual(dest.shape, (5, 4, 5)) |
| for i in range(idx.size(0)): |
| self.assertEqual(dest[i], src[idx[i]]) |
| out.fill_(0.123) |
| self.assertEqual(out, dest.view(-1)) # Must point to the same storage. |
| |
| def test_take(self): |
| def check(src, idx): |
| expected = src.contiguous().view(-1).index_select( |
| 0, idx.contiguous().view(-1)).view_as(idx) |
| actual = src.take(idx) |
| self.assertEqual(actual.size(), idx.size()) |
| self.assertEqual(expected, actual) |
| |
| src = torch.randn(2, 3, 5) |
| idx = torch.LongTensor([[0, 2], [3, 4]]) |
| check(src, idx) |
| check(src.transpose(1, 2), idx) |
| |
| def test_put_(self): |
| def check(dst, idx, value): |
| expected = dst.clone().view(-1).index_copy_( |
| 0, idx.contiguous().view(-1), value.contiguous().view(-1)) |
| expected = expected.view_as(dst) |
| dst.put_(idx, value) |
| self.assertEqual(expected, dst) |
| |
| dst = torch.randn(2, 3, 5) |
| idx = torch.LongTensor([[0, 2], [3, 4]]) |
| values = torch.randn(2, 2) |
| check(dst, idx, values) |
| check(dst.transpose(1, 2), idx, values) |
| |
| def test_put_accumulate(self): |
| dst = torch.ones(2, 2) |
| idx = torch.LongTensor([[0, 1], [0, 1]]) |
| src = torch.Tensor([1, 2, 3, 4]) |
| dst.put_(idx, src, accumulate=True) |
| self.assertEqual(dst.tolist(), [[5, 7], [1, 1]]) |
| |
| # Fill idx with valid indices. |
| @staticmethod |
| def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o): |
| for i in range(1 if dim == 0 else m): |
| for j in range(1 if dim == 1 else n): |
| for k in range(1 if dim == 2 else o): |
| ii = [i, j, k] |
| ii[dim] = slice(0, idx.size(dim) + 1) |
| idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row] |
| |
| def test_flatten(self): |
| src = torch.randn(5, 5, 5, 5) |
| flat = src.flatten(0, -1) |
| self.assertEqual(flat.shape, torch.Size([625])) |
| self.assertEqual(src.view(-1), flat.view(-1)) |
| |
| flat = src.flatten(0, 2) |
| self.assertEqual(flat.shape, torch.Size([125, 5])) |
| self.assertEqual(src.view(-1), flat.view(-1)) |
| |
| flat = src.flatten(0, 1) |
| self.assertEqual(flat.shape, torch.Size([25, 5, 5])) |
| self.assertEqual(src.view(-1), flat.view(-1)) |
| |
| flat = src.flatten(1, 2) |
| self.assertEqual(flat.shape, torch.Size([5, 25, 5])) |
| self.assertEqual(src.view(-1), flat.view(-1)) |
| |
| flat = src.flatten(2, 3) |
| self.assertEqual(flat.shape, torch.Size([5, 5, 25])) |
| self.assertEqual(src.view(-1), flat.view(-1)) |
| |
| flat = src.flatten(-2, -1) |
| self.assertEqual(flat.shape, torch.Size([5, 5, 25])) |
| self.assertEqual(src.view(-1), flat.view(-1)) |
| |
| flat = src.flatten(2, 2) |
| self.assertEqual(flat, src) |
| |
| # out of bounds index |
| with self.assertRaisesRegex(RuntimeError, 'Dimension out of range'): |
| src.flatten(5, 10) |
| |
| # invalid start and end |
| with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'): |
| src.flatten(2, 0) |
| |
| @staticmethod |
| def _test_gather(self, cast, test_bounds=True): |
| m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) |
| elems_per_row = random.randint(1, 10) |
| dim = random.randrange(3) |
| |
| src = torch.randn(m, n, o) |
| idx_size = [m, n, o] |
| idx_size[dim] = elems_per_row |
| idx = torch.LongTensor().resize_(*idx_size) |
| TestTorch._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o) |
| |
| src = cast(src) |
| idx = cast(idx) |
| |
| actual = torch.gather(src, dim, idx) |
| expected = cast(torch.Tensor().resize_(*idx_size)) |
| for i in range(idx_size[0]): |
| for j in range(idx_size[1]): |
| for k in range(idx_size[2]): |
| ii = [i, j, k] |
| ii[dim] = idx[i, j, k] |
| expected[i, j, k] = src[tuple(ii)] |
| self.assertEqual(actual, expected, 0) |
| |
| if test_bounds: |
| idx[0][0][0] = 23 |
| self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx)) |
| |
| src = cast(torch.randn(3, 4, 5)) |
| expected, idx = src.max(2, True) |
| expected = cast(expected) |
| idx = cast(idx) |
| actual = torch.gather(src, 2, idx) |
| self.assertEqual(actual, expected, 0) |
| |
| def test_gather(self): |
| self._test_gather(self, lambda t: t) |
| |
| @staticmethod |
| def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True): |
| m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) |
| elems_per_row = random.randint(1, 10) |
| dim = random.randrange(3) |
| |
| idx_size = [m, n, o] |
| idx_size[dim] = elems_per_row |
| idx = cast(torch.LongTensor().resize_(*idx_size)) |
| TestTorch._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o) |
| |
| if is_scalar: |
| src = random.random() |
| else: |
| src = cast(torch.Tensor(*idx_size).normal_()) |
| |
| base = cast(torch.randn(m, n, o)) |
| actual = getattr(base.clone(), method)(dim, idx, src) |
| expected = base.clone() |
| for i in range(idx_size[0]): |
| for j in range(idx_size[1]): |
| for k in range(idx_size[2]): |
| ii = [i, j, k] |
| ii[dim] = idx[i, j, k] |
| if method == 'scatter_' and not is_scalar: |
| expected[tuple(ii)] = src[i, j, k] |
| elif method == 'scatter_add_': |
| expected[tuple(ii)] += src[i, j, k] |
| else: |
| expected[tuple(ii)] = src |
| self.assertEqual(actual, expected, 0) |
| |
| if test_bounds: |
| idx[0][0][0] = 34 |
| with self.assertRaises(RuntimeError): |
| getattr(base.clone(), method)(dim, idx, src) |
| |
| def test_scatter(self): |
| self._test_scatter_base(self, lambda t: t, 'scatter_') |
| |
| def test_scatterAdd(self): |
| self._test_scatter_base(self, lambda t: t, 'scatter_add_') |
| |
| def test_scatterFill(self): |
| self._test_scatter_base(self, lambda t: t, 'scatter_', True) |
| |
| def test_masked_scatter(self): |
| num_copy, num_dest = 3, 10 |
| dest = torch.randn(num_dest) |
| src = torch.randn(num_copy) |
| mask = torch.ByteTensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0)) |
| dest2 = dest.clone() |
| dest.masked_scatter_(mask, src) |
| j = 0 |
| for i in range(num_dest): |
| if mask[i]: |
| dest2[i] = src[j] |
| j += 1 |
| self.assertEqual(dest, dest2, 0) |
| |
| # make source bigger than number of 1s in mask |
| src = torch.randn(num_dest) |
| dest.masked_scatter_(mask, src) |
| |
| # make src smaller. this should fail |
| src = torch.randn(num_copy - 1) |
| with self.assertRaises(RuntimeError): |
| dest.masked_scatter_(mask, src) |
| |
| def test_masked_select(self): |
| num_src = 10 |
| src = torch.randn(num_src) |
| mask = torch.rand(num_src).clamp(0, 1).mul(2).floor().byte() |
| dst = src.masked_select(mask) |
| dst2 = [] |
| for i in range(num_src): |
| if mask[i]: |
| dst2 += [src[i]] |
| self.assertEqual(dst, torch.Tensor(dst2), 0) |
| |
| def test_masked_fill(self): |
| num_dest = 10 |
| dst = torch.randn(num_dest) |
| mask = torch.rand(num_dest).mul(2).floor().byte() |
| val = random.random() |
| dst2 = dst.clone() |
| dst.masked_fill_(mask, val) |
| for i in range(num_dest): |
| if mask[i]: |
| dst2[i] = val |
| self.assertEqual(dst, dst2, 0) |
| |
| def test_abs(self): |
| size = 1000 |
| max_val = 1000 |
| original = torch.rand(size).mul(max_val) |
| # Tensor filled with values from {-1, 1} |
| switch = torch.rand(size).mul(2).floor().mul(2).add(-1) |
| |
| types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', |
| 'torch.IntTensor', 'torch.ShortTensor'] |
| for t in types: |
| data = original.type(t) |
| switch = switch.type(t) |
| res = torch.mul(data, switch) |
| # abs is used in assertEqual so we use the slow version instead |
| self.assertTensorsSlowEqual(res.abs(), data, 1e-16) |
| |
| # Checking that the right abs function is called for LongTensor |
| bignumber = 2 ^ 31 + 1 |
| res = torch.LongTensor((-bignumber,)) |
| self.assertGreater(res.abs()[0], 0) |
| |
| def test_hardshrink(self): |
| data_original = torch.tensor([1, 0.5, 0.3, 0.6]).view(2, 2) |
| float_types = [ |
| 'torch.DoubleTensor', |
| 'torch.FloatTensor' |
| ] |
| for t in float_types: |
| data = data_original.type(t) |
| self.assertEqual(torch.tensor([1, 0.5, 0, 0.6]).view(2, 2), data.hardshrink(0.3)) |
| self.assertEqual(torch.tensor([1, 0, 0, 0.6]).view(2, 2), data.hardshrink(0.5)) |
| |
| # test default lambd=0.5 |
| self.assertEqual(data.hardshrink(), data.hardshrink(0.5)) |
| |
| # test non-contiguous case |
| self.assertEqual(torch.tensor([1, 0, 0.5, 0.6]).view(2, 2), data.t().hardshrink(0.3)) |
| |
| def test_unbiased(self): |
| tensor = torch.randn(100) |
| self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True)) |
| self.assertEqual(tensor.var(), tensor.var(unbiased=True)) |
| self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)) |
| |
| tensor = torch.FloatTensor([1.0, 2.0]) |
| self.assertEqual(tensor.var(unbiased=True), 0.5) |
| self.assertEqual(tensor.var(unbiased=False), 0.25) |
| |
| tensor = torch.FloatTensor([1.0, 2.0, 3.0]) |
| self.assertEqual(tensor.var(unbiased=True), 1.0) |
| self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0) |
| |
| tensor = torch.randn(100) |
| self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True)) |
| self.assertEqual(tensor.std(), tensor.std(unbiased=True)) |
| self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)) |
| |
| def test_var_stability(self): |
| tensor = torch.FloatTensor([2281.5, 2281.25]) |
| self.assertEqual(tensor.var(dim=0), 0.03125) |
| self.assertEqual(tensor.var(), 0.03125) |
| |
| @staticmethod |
| def _test_view(self, cast): |
| tensor = cast(torch.rand(15)) |
| template = cast(torch.rand(3, 5)) |
| empty = cast(torch.Tensor()) |
| target = template.size() |
| self.assertEqual(tensor.view_as(template).size(), target) |
| self.assertEqual(tensor.view(3, 5).size(), target) |
| self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target) |
| self.assertEqual(tensor.view(-1, 5).size(), target) |
| self.assertEqual(tensor.view(3, -1).size(), target) |
| tensor_view = tensor.view(5, 3) |
| tensor_view.fill_(random.uniform(0, 1)) |
| self.assertEqual(empty.view_as(empty), empty) |
| self.assertEqual(empty.view(0), empty) |
| self.assertRaises(RuntimeError, lambda: tensor.view(15, 0)) |
| self.assertRaises(RuntimeError, lambda: tensor.view(7, -1)) |
| self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1)) |
| # test view when tensor is not contiguous in every dimension, but only |
| # contiguous dimensions are touched. |
| tensor = cast(torch.rand(4, 2, 5, 1, 6, 2, 9, 3)).transpose(-1, 2).transpose(-2, 3) |
| # size: [ 4, 2, 3, 9, 6, 2, 1, 5] |
| # stride: [3840, 1620, 1, 3, 54, 27, 324, 324] |
| # contiguous dim chunks: [__________, ____, ____, __________, ____, ____] |
| # merging 1 to chunk after: [__________, ____, ____, __________, __________] |
| contig_tensor = tensor.clone() |
| # [4, 2] => [8, 1] |
| # [3] => [3] |
| # [9] => [3, 3] |
| # [6, 2] => [4, 1, 3] |
| # [1, 5] => [5] |
| view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5] |
| self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) |
| # [4, 2] => [2, 4] |
| # [3] => [3] |
| # [9] => [1, 9] |
| # [6, 2] => [2, 2, 3] |
| # [1, 5] => [5, 1] |
| view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1] |
| self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) |
| # adding size 1 dims |
| view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1] |
| self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) |
| |
| # invalid views |
| self.assertRaises(RuntimeError, lambda: tensor.view(-1)) |
| # crossing [4, 2], [3] |
| self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5)) |
| # crossing [6, 2], [1, 5] |
| self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10)) |
| # crossing [9], [6, 2] |
| self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5)) |
| |
| # view with stride 0 dims |
| tensor = cast(torch.Tensor(1, 1)).expand(3, 4) # all dims are contiguous |
| contig_tensor = tensor.clone() |
| self.assertEqual(tensor.view(-1), contig_tensor.view(-1)) |
| self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1)) |
| self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1)) |
| self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1)) |
| self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1)) |
| |
| def test_view(self): |
| TestTorch._test_view(self, lambda x: x) |
| |
| def test_reshape(self): |
| x = torch.randn(3, 3) |
| self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr()) |
| self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr()) |
| self.assertEqual(torch.reshape(x, (9,)), x.reshape(9)) |
| self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1)) |
| |
| y = torch.randn(4, 4, 4)[:, 0, :] |
| self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr()) |
| self.assertEqual(y.contiguous().view(-1), y.reshape(-1)) |
| self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr()) |
| |
| s = torch.randn(()) |
| self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr()) |
| self.assertEqual(s.reshape(-1).shape, (1,)) |
| self.assertRaises(RuntimeError, lambda: s.reshape(2)) |
| |
| empty = torch.tensor([]) |
| self.assertEqual(empty, empty.reshape(-1)) |
| self.assertEqual(empty, empty.reshape([0])) |
| # TODO: fix these once we have multi-dimensional empty tensors |
| self.assertEqual(empty.reshape([0, 1]).shape, (0,)) |
| self.assertEqual(empty.reshape([1, -1]).shape, (0,)) |
| self.assertRaises(RuntimeError, lambda: empty.reshape(1)) |
| |
| def test_expand(self): |
| tensor = torch.rand(1, 8, 1) |
| tensor2 = torch.rand(5) |
| template = torch.rand(4, 8, 5) |
| target = template.size() |
| self.assertEqual(tensor.expand_as(template).size(), target) |
| self.assertEqual(tensor.expand(4, 8, 5).size(), target) |
| self.assertEqual(tensor.expand(target).size(), target) |
| self.assertEqual(tensor2.expand_as(template).size(), target) |
| self.assertEqual(tensor2.expand(4, 8, 5).size(), target) |
| self.assertEqual(tensor2.expand(target).size(), target) |
| |
| # test double expand |
| self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1)) |
| |
| # test non-contiguous |
| noncontig = torch.randn(5, 2, 1, 3)[:, 0] |
| self.assertFalse(noncontig.is_contiguous()) |
| self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1)) |
| |
| # make sure it's compatible with unsqueeze |
| expanded = tensor2.expand(1, 1, 5) |
| unsqueezed = tensor2.unsqueeze(0).unsqueeze(1) |
| self.assertEqual(expanded, unsqueezed) |
| self.assertEqual(expanded.stride(), unsqueezed.stride()) |
| |
| # test -1 as target size |
| self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5)) |
| self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1)) |
| |
| # test expanding empty to empty |
| self.assertEqual(torch.zeros(0).expand((0,)), torch.zeros(0)) |
| |
| def test_repeat(self): |
| |
| initial_shape = (8, 4) |
| tensor = torch.rand(*initial_shape) |
| |
| size = (3, 1, 1) |
| torchSize = torch.Size(size) |
| target = [3, 8, 4] |
| self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat') |
| self.assertEqual(tensor.repeat(torchSize).size(), target, |
| 'Error in repeat using LongStorage') |
| result = tensor.repeat(*size) |
| self.assertEqual(result.size(), target, 'Error in repeat using result') |
| result = tensor.repeat(torchSize) |
| self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage') |
| self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)') |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_repeat_tile(self): |
| |
| initial_shape = (8, 4) |
| |
| repeats = ((3, 1, 1), |
| (3, 3, 3), |
| (1, 2, 1), |
| (2, 2, 2, 2)) |
| |
| def _generate_noncontiguous_input(): |
| |
| out = np.broadcast_to(np.random.random((1, 4)), |
| initial_shape) |
| |
| assert not (out.flags.c_contiguous or out.flags.f_contiguous) |
| |
| return out |
| |
| for repeat in repeats: |
| for tensor in (torch.from_numpy(np.random.random(initial_shape)), |
| torch.from_numpy(_generate_noncontiguous_input()),): |
| |
| self.assertEqual(tensor.repeat(*repeat).numpy(), |
| np.tile(tensor.numpy(), repeat)) |
| |
| def test_is_same_size(self): |
| t1 = torch.Tensor(3, 4, 9, 10) |
| t2 = torch.Tensor(3, 4) |
| t3 = torch.Tensor(1, 9, 3, 3) |
| t4 = torch.Tensor(3, 4, 9, 10) |
| |
| self.assertFalse(t1.is_same_size(t2)) |
| self.assertFalse(t1.is_same_size(t3)) |
| self.assertTrue(t1.is_same_size(t4)) |
| |
| def test_is_set_to(self): |
| t1 = torch.Tensor(3, 4, 9, 10) |
| t2 = torch.Tensor(3, 4, 9, 10) |
| t3 = torch.Tensor().set_(t1) |
| t4 = t3.clone().resize_(12, 90) |
| self.assertFalse(t1.is_set_to(t2)) |
| self.assertTrue(t1.is_set_to(t3)) |
| self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric") |
| self.assertFalse(t1.is_set_to(t4)) |
| self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()), |
| "Tensors with no storages should not appear to be set " |
| "to each other") |
| |
| def test_tensor_set(self): |
| t1 = torch.Tensor() |
| t2 = torch.Tensor(3, 4, 9, 10).uniform_() |
| t1.set_(t2) |
| self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) |
| size = torch.Size([9, 3, 4, 10]) |
| t1.set_(t2.storage(), 0, size) |
| self.assertEqual(t1.size(), size) |
| t1.set_(t2.storage(), 0, tuple(size)) |
| self.assertEqual(t1.size(), size) |
| self.assertEqual(t1.stride(), (120, 40, 10, 1)) |
| stride = (10, 360, 90, 1) |
| t1.set_(t2.storage(), 0, size, stride) |
| self.assertEqual(t1.stride(), stride) |
| t1.set_(t2.storage(), 0, size=size, stride=stride) |
| self.assertEqual(t1.size(), size) |
| self.assertEqual(t1.stride(), stride) |
| |
| # test argument names |
| t1 = torch.Tensor() |
| # 1. case when source is tensor |
| t1.set_(source=t2) |
| self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) |
| # 2. case when source is storage |
| t1.set_(source=t2.storage()) |
| self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) |
| # 3. case when source is storage, and other args also specified |
| t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride) |
| self.assertEqual(t1.size(), size) |
| self.assertEqual(t1.stride(), stride) |
| |
| def test_equal(self): |
| # Contiguous, 1D |
| t1 = torch.Tensor((3, 4, 9, 10)) |
| t2 = t1.contiguous() |
| t3 = torch.Tensor((1, 9, 3, 10)) |
| t4 = torch.Tensor((3, 4, 9)) |
| t5 = torch.Tensor() |
| self.assertTrue(t1.equal(t2)) |
| self.assertFalse(t1.equal(t3)) |
| self.assertFalse(t1.equal(t4)) |
| self.assertFalse(t1.equal(t5)) |
| self.assertTrue(torch.equal(t1, t2)) |
| self.assertFalse(torch.equal(t1, t3)) |
| self.assertFalse(torch.equal(t1, t4)) |
| self.assertFalse(torch.equal(t1, t5)) |
| |
| # Non contiguous, 2D |
| s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8))) |
| s1 = s[:, 1:3] |
| s2 = s1.clone() |
| s3 = torch.Tensor(((2, 3), (6, 7))) |
| s4 = torch.Tensor(((0, 0), (0, 0))) |
| |
| self.assertFalse(s1.is_contiguous()) |
| self.assertTrue(s1.equal(s2)) |
| self.assertTrue(s1.equal(s3)) |
| self.assertFalse(s1.equal(s4)) |
| self.assertTrue(torch.equal(s1, s2)) |
| self.assertTrue(torch.equal(s1, s3)) |
| self.assertFalse(torch.equal(s1, s4)) |
| |
| def test_element_size(self): |
| byte = torch.ByteStorage().element_size() |
| char = torch.CharStorage().element_size() |
| short = torch.ShortStorage().element_size() |
| int = torch.IntStorage().element_size() |
| long = torch.LongStorage().element_size() |
| float = torch.FloatStorage().element_size() |
| double = torch.DoubleStorage().element_size() |
| |
| self.assertEqual(byte, torch.ByteTensor().element_size()) |
| self.assertEqual(char, torch.CharTensor().element_size()) |
| self.assertEqual(short, torch.ShortTensor().element_size()) |
| self.assertEqual(int, torch.IntTensor().element_size()) |
| self.assertEqual(long, torch.LongTensor().element_size()) |
| self.assertEqual(float, torch.FloatTensor().element_size()) |
| self.assertEqual(double, torch.DoubleTensor().element_size()) |
| |
| self.assertGreater(byte, 0) |
| self.assertGreater(char, 0) |
| self.assertGreater(short, 0) |
| self.assertGreater(int, 0) |
| self.assertGreater(long, 0) |
| self.assertGreater(float, 0) |
| self.assertGreater(double, 0) |
| |
| # These tests are portable, not necessarily strict for your system. |
| self.assertEqual(byte, 1) |
| self.assertEqual(char, 1) |
| self.assertGreaterEqual(short, 2) |
| self.assertGreaterEqual(int, 2) |
| self.assertGreaterEqual(int, short) |
| self.assertGreaterEqual(long, 4) |
| self.assertGreaterEqual(long, int) |
| self.assertGreaterEqual(double, float) |
| |
| def test_split(self): |
| tensor = torch.rand(7, 4) |
| split_size = 3 |
| dim = 0 |
| target_sizes = ([3, 4], [3, 4], [1, 4]) |
| splits = tensor.split(split_size, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) |
| start = start + target_size[dim] |
| |
| # Variable sections split |
| tensor = torch.randn(20, 10) |
| dim = 0 |
| split_sizes = [5, 5, 10] |
| target_sizes = ([[5, 10], [5, 10], [10, 10]]) |
| splits = tensor.split(split_sizes, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) |
| start = start + target_size[dim] |
| |
| split_sizes = [2, 2, 6] |
| target_sizes = ([20, 2], [20, 2], [20, 6]) |
| dim = 1 |
| splits = tensor.split(split_sizes, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) |
| start = start + target_size[dim] |
| |
| def test_chunk(self): |
| tensor = torch.rand(4, 7) |
| num_chunks = 3 |
| dim = 1 |
| target_sizes = ([4, 3], [4, 3], [4, 1]) |
| splits = tensor.chunk(num_chunks, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) |
| start = start + target_size[dim] |
| |
| # Invalid chunk sizes |
| error_regex = 'chunk expects.*greater than 0' |
| with self.assertRaisesRegex(RuntimeError, error_regex): |
| tensor.chunk(0) |
| with self.assertRaisesRegex(RuntimeError, error_regex): |
| tensor.chunk(-2) |
| |
| def test_tolist(self): |
| list0D = [] |
| tensor0D = torch.Tensor(list0D) |
| self.assertEqual(tensor0D.tolist(), list0D) |
| |
| table1D = [1, 2, 3] |
| tensor1D = torch.Tensor(table1D) |
| storage = torch.Storage(table1D) |
| self.assertEqual(tensor1D.tolist(), table1D) |
| self.assertEqual(storage.tolist(), table1D) |
| self.assertEqual(tensor1D.tolist(), table1D) |
| self.assertEqual(storage.tolist(), table1D) |
| |
| table2D = [[1, 2], [3, 4]] |
| tensor2D = torch.Tensor(table2D) |
| self.assertEqual(tensor2D.tolist(), table2D) |
| |
| tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) |
| tensorNonContig = tensor3D.select(1, 1) |
| self.assertFalse(tensorNonContig.is_contiguous()) |
| self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]]) |
| |
| def test_permute(self): |
| orig = [1, 2, 3, 4, 5, 6, 7] |
| perm = torch.randperm(7).tolist() |
| x = torch.Tensor(*orig).fill_(0) |
| new = list(map(lambda x: x - 1, x.permute(*perm).size())) |
| self.assertEqual(perm, new) |
| self.assertEqual(x.size(), orig) |
| |
| @staticmethod |
| def _test_flip(self, use_cuda=False): |
| if use_cuda: |
| cuda = torch.device("cuda") |
| data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8], device=cuda).view(2, 2, 2) |
| # large data testing |
| large_data = torch.arange(0, 100000000, device=cuda).view(10000, 10000) |
| large_data.flip([0, 1]) |
| else: |
| data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2) |
| |
| self.assertEqual(torch.tensor([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2), data.flip(0)) |
| self.assertEqual(torch.tensor([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2), data.flip(1)) |
| self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(2)) |
| self.assertEqual(torch.tensor([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2), data.flip(0, 1)) |
| self.assertEqual(torch.tensor([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2), data.flip(0, 1, 2)) |
| |
| # check for permute |
| self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(0, 2)) |
| self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(2, 0)) |
| |
| # not allow flip on the same dim more than once |
| self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1)) |
| # not allow empty list as input |
| self.assertRaises(TypeError, lambda: data.flip()) |
| # not allow size of flip dim > total dims |
| self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 2, 3)) |
| # not allow dim < 0 |
| self.assertRaises(RuntimeError, lambda: data.flip(-1)) |
| # not allow dim > max dim |
| self.assertRaises(RuntimeError, lambda: data.flip(3)) |
| |
| # test for non-contiguous case |
| if use_cuda: |
| expanded_data = torch.arange(1, 4, device=cuda).view(3, 1).expand(3, 2) |
| tranposed_data = torch.arange(1, 9, device=cuda).view(2, 2, 2).transpose(0, 1) |
| else: |
| expanded_data = torch.arange(1, 4).view(3, 1).expand(3, 2) |
| tranposed_data = torch.arange(1, 9).view(2, 2, 2).transpose(0, 1) |
| self.assertEqual(torch.tensor([3, 3, 2, 2, 1, 1]).view(3, 2), expanded_data.flip(0)) |
| self.assertEqual(torch.tensor([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2), tranposed_data.flip(0, 1, 2)) |
| |
| def test_flip(self): |
| self._test_flip(self, use_cuda=False) |
| |
| def test_storage(self): |
| v = torch.randn(3, 5) |
| self.assertEqual(v.storage()[0], v.data[0][0]) |
| self.assertEqual(v.storage()[14], v.data[2][4]) |
| |
| def test_storageview(self): |
| s1 = torch.LongStorage((3, 4, 5)) |
| s2 = torch.LongStorage(s1, 1) |
| |
| self.assertEqual(s2.size(), 2) |
| self.assertEqual(s2[0], s1[1]) |
| self.assertEqual(s2[1], s1[2]) |
| |
| s2[1] = 13 |
| self.assertEqual(13, s1[2]) |
| |
| def test_nonzero(self): |
| num_src = 12 |
| |
| types = [ |
| 'torch.ByteTensor', |
| 'torch.CharTensor', |
| 'torch.ShortTensor', |
| 'torch.IntTensor', |
| 'torch.FloatTensor', |
| 'torch.DoubleTensor', |
| 'torch.LongTensor', |
| ] |
| |
| shapes = [ |
| torch.Size((12,)), |
| torch.Size((12, 1)), |
| torch.Size((1, 12)), |
| torch.Size((6, 2)), |
| torch.Size((3, 2, 2)), |
| ] |
| |
| for t in types: |
| while True: |
| tensor = torch.rand(num_src).mul(2).floor().type(t) |
| if tensor.sum() > 0: |
| break |
| for shape in shapes: |
| tensor = tensor.clone().resize_(shape) |
| dst1 = torch.nonzero(tensor) |
| dst2 = tensor.nonzero() |
| dst3 = torch.LongTensor() |
| torch.nonzero(tensor, out=dst3) |
| if len(shape) == 1: |
| dst = [] |
| for i in range(num_src): |
| if tensor[i] != 0: |
| dst += [i] |
| |
| self.assertEqual(dst1.select(1, 0), torch.LongTensor(dst), 0) |
| self.assertEqual(dst2.select(1, 0), torch.LongTensor(dst), 0) |
| self.assertEqual(dst3.select(1, 0), torch.LongTensor(dst), 0) |
| elif len(shape) == 2: |
| # This test will allow through some False positives. It only checks |
| # that the elements flagged positive are indeed non-zero. |
| for i in range(dst1.size(0)): |
| self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]].item(), 0) |
| elif len(shape) == 3: |
| # This test will allow through some False positives. It only checks |
| # that the elements flagged positive are indeed non-zero. |
| for i in range(dst1.size(0)): |
| self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]].item(), 0) |
| |
| def test_nonzero_empty(self): |
| if not torch._C._use_zero_size_dim(): |
| return |
| |
| devices = ['cpu'] if not torch.cuda.is_available() else ['cpu', 'cuda'] |
| for device in devices: |
| x = torch.randn(0, 2, 0, 5, 0, device=device) |
| y = torch.nonzero(x) |
| self.assertEqual(0, y.numel()) |
| self.assertEqual(torch.Size([0, 5]), y.shape) |
| |
| def test_deepcopy(self): |
| from copy import deepcopy |
| a = torch.randn(5, 5) |
| b = torch.randn(5, 5) |
| c = a.view(25) |
| q = [a, [a.storage(), b.storage()], b, c] |
| w = deepcopy(q) |
| self.assertEqual(w[0], q[0], 0) |
| self.assertEqual(w[1][0], q[1][0], 0) |
| self.assertEqual(w[1][1], q[1][1], 0) |
| self.assertEqual(w[1], q[1], 0) |
| self.assertEqual(w[2], q[2], 0) |
| |
| # Check that deepcopy preserves sharing |
| w[0].add_(1) |
| for i in range(a.numel()): |
| self.assertEqual(w[1][0][i], q[1][0][i] + 1) |
| self.assertEqual(w[3], c + 1) |
| w[2].sub_(1) |
| for i in range(a.numel()): |
| self.assertEqual(w[1][1][i], q[1][1][i] - 1) |
| |
| def test_deepcopy_scalar(self): |
| from copy import deepcopy |
| a = torch.tensor(5) |
| self.assertEqual(a.size(), deepcopy(a).size()) |
| self.assertEqual(a, deepcopy(a)) |
| |
| def test_copy(self): |
| from copy import copy |
| a = torch.randn(5, 5) |
| a_clone = a.clone() |
| b = copy(a) |
| b.fill_(1) |
| # copy is a shallow copy, only copies the tensor view, |
| # not the data |
| self.assertEqual(a, b) |
| |
| def test_pickle(self): |
| if sys.version_info[0] == 2: |
| import cPickle as pickle |
| else: |
| import pickle |
| a = torch.randn(5, 5) |
| serialized = pickle.dumps(a) |
| b = pickle.loads(serialized) |
| self.assertEqual(a, b) |
| |
| def test_pickle_parameter(self): |
| if sys.version_info[0] == 2: |
| import cPickle as pickle |
| else: |
| import pickle |
| a = torch.nn.Parameter(torch.randn(5, 5)) |
| serialized = pickle.dumps(a) |
| b = pickle.loads(serialized) |
| self.assertTrue(isinstance(b, torch.nn.Parameter)) |
| self.assertEqual(a.requires_grad, b.requires_grad) |
| self.assertEqual(a, b) |
| |
| def test_pickle_parameter_no_requires_grad(self): |
| if sys.version_info[0] == 2: |
| import cPickle as pickle |
| else: |
| import pickle |
| a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False) |
| serialized = pickle.dumps(a) |
| b = pickle.loads(serialized) |
| self.assertTrue(isinstance(b, torch.nn.Parameter)) |
| self.assertEqual(a.requires_grad, b.requires_grad) |
| self.assertEqual(a, b) |
| |
| def test_norm_fastpaths(self): |
| x = torch.randn(3, 5) |
| |
| # slow path |
| result = torch.norm(x, 4.5, 1) |
| expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5) |
| self.assertEqual(result, expected) |
| |
| # fast 0-norm |
| result = torch.norm(x, 0, 1) |
| expected = (x != 0).type_as(x).sum(1) |
| self.assertEqual(result, expected) |
| |
| # fast 1-norm |
| result = torch.norm(x, 1, 1) |
| expected = x.abs().sum(1) |
| self.assertEqual(result, expected) |
| |
| # fast 2-norm |
| result = torch.norm(x, 2, 1) |
| expected = torch.sqrt(x.pow(2).sum(1)) |
| self.assertEqual(result, expected) |
| |
| # fast 3-norm |
| result = torch.norm(x, 3, 1) |
| expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0) |
| self.assertEqual(result, expected) |
| |
| def test_bernoulli(self): |
| t = torch.ByteTensor(10, 10) |
| |
| def isBinary(t): |
| return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum() == 0 |
| |
| p = 0.5 |
| t.bernoulli_(p) |
| self.assertTrue(isBinary(t)) |
| |
| p = torch.rand(10, 10) |
| t.bernoulli_(p) |
| self.assertTrue(isBinary(t)) |
| |
| q = torch.rand(5, 5) |
| self.assertTrue(isBinary(q.bernoulli())) |
| |
| def test_normal(self): |
| q = torch.Tensor(100, 100) |
| q.normal_() |
| self.assertEqual(q.mean(), 0, 0.2) |
| self.assertEqual(q.std(), 1, 0.2) |
| |
| q.normal_(2, 3) |
| self.assertEqual(q.mean(), 2, 0.3) |
| self.assertEqual(q.std(), 3, 0.3) |
| |
| mean = torch.Tensor(100, 100) |
| std = torch.Tensor(100, 100) |
| mean[:50] = 0 |
| mean[50:] = 1 |
| std[:, :50] = 4 |
| std[:, 50:] = 1 |
| |
| r = torch.normal(mean) |
| self.assertEqual(r[:50].mean(), 0, 0.2) |
| self.assertEqual(r[50:].mean(), 1, 0.2) |
| self.assertEqual(r.std(), 1, 0.2) |
| |
| r = torch.normal(mean, 3) |
| self.assertEqual(r[:50].mean(), 0, 0.2) |
| self.assertEqual(r[50:].mean(), 1, 0.2) |
| self.assertEqual(r.std(), 3, 0.2) |
| |
| r = torch.normal(2, std) |
| self.assertEqual(r.mean(), 2, 0.2) |
| self.assertEqual(r[:, :50].std(), 4, 0.3) |
| self.assertEqual(r[:, 50:].std(), 1, 0.2) |
| |
| r = torch.normal(mean, std) |
| self.assertEqual(r[:50].mean(), 0, 0.2) |
| self.assertEqual(r[50:].mean(), 1, 0.2) |
| self.assertEqual(r[:, :50].std(), 4, 0.3) |
| self.assertEqual(r[:, 50:].std(), 1, 0.2) |
| |
| def test_parsing_int64(self): |
| # accepts integer arguments |
| x = torch.cumsum(torch.ones(5, 5), 0) |
| self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0))) |
| # doesn't accept floating point variables |
| self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.))) |
| |
| def test_parsing_double(self): |
| # accepts floating point and integer arguments |
| x = torch.randn(2, 3) |
| torch.isclose(x, x, 1, 1) |
| self.assertTrue(torch.isclose(x, x, 1, 1).all()) |
| self.assertTrue(torch.isclose(x, x, 1.5, 1.).all()) |
| # accepts floating point and integer tensors |
| self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all()) |
| self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all()) |
| # doesn't accept variables with requires_grad |
| self.assertRaises(TypeError, |
| lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all()) |
| |
| def test_parsing_intlist(self): |
| # parse with integer variables |
| self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape) |
| self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape) |
| # parse with numpy integers |
| if TEST_NUMPY: |
| self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape) |
| self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape) |
| self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape) |
| self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape) |
| |
| # fail parse with float variables |
| self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4)))) |
| # fail parse with numpy floats |
| if TEST_NUMPY: |
| self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4)))) |
| self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4)))) |
| |
| # fail parse with > 1 element variables |
| self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3))) |
| self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3)))) |
| if TEST_NUMPY: |
| self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3))) |
| self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3)))) |
| |
| def _test_serialization_data(self): |
| a = [torch.randn(5, 5).float() for i in range(2)] |
| b = [a[i % 2] for i in range(4)] |
| b += [a[0].storage()] |
| b += [a[0].storage()[1:4]] |
| b += [torch.arange(1, 11).int()] |
| t1 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,)) |
| t2 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,)) |
| b += [(t1.storage(), t1.storage(), t2.storage())] |
| b += [a[0].storage()[0:2]] |
| return b |
| |
| def _test_serialization_assert(self, b, c): |
| self.assertEqual(b, c, 0) |
| self.assertTrue(isinstance(c[0], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[1], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[2], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[3], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[4], torch.FloatStorage)) |
| c[0].fill_(10) |
| self.assertEqual(c[0], c[2], 0) |
| self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0) |
| c[1].fill_(20) |
| self.assertEqual(c[1], c[3], 0) |
| self.assertEqual(c[4][1:4], c[5], 0) |
| |
| # check that serializing the same storage view object unpickles |
| # it as one object not two (and vice versa) |
| views = c[7] |
| self.assertEqual(views[0]._cdata, views[1]._cdata) |
| self.assertEqual(views[0], views[2]) |
| self.assertNotEqual(views[0]._cdata, views[2]._cdata) |
| |
| rootview = c[8] |
| self.assertEqual(rootview.data_ptr(), c[0].data_ptr()) |
| |
| def test_serialization(self): |
| # Test serialization with a real file |
| b = self._test_serialization_data() |
| for use_name in (False, True): |
| # Passing filename to torch.save(...) will cause the file to be opened twice, |
| # which is not supported on Windows |
| if sys.platform == "win32" and use_name: |
| continue |
| with tempfile.NamedTemporaryFile() as f: |
| handle = f if not use_name else f.name |
| torch.save(b, handle) |
| f.seek(0) |
| c = torch.load(handle) |
| self._test_serialization_assert(b, c) |
| |
| def test_serialization_filelike(self): |
| # Test serialization (load and save) with a filelike object |
| b = self._test_serialization_data() |
| with BytesIOContext() as f: |
| torch.save(b, f) |
| f.seek(0) |
| c = torch.load(f) |
| self._test_serialization_assert(b, c) |
| |
| def test_serialization_gzip(self): |
| # Test serialization with gzip file |
| b = self._test_serialization_data() |
| f1 = tempfile.NamedTemporaryFile(delete=False) |
| f2 = tempfile.NamedTemporaryFile(delete=False) |
| torch.save(b, f1) |
| with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out: |
| shutil.copyfileobj(f_in, f_out) |
| |
| with gzip.open(f2.name, 'rb') as f: |
| c = torch.load(f) |
| self._test_serialization_assert(b, c) |
| |
| def test_serialization_offset(self): |
| a = torch.randn(5, 5) |
| i = 41 |
| for use_name in (False, True): |
| # Passing filename to torch.save(...) will cause the file to be opened twice, |
| # which is not supported on Windows |
| if sys.platform == "win32" and use_name: |
| continue |
| with tempfile.NamedTemporaryFile() as f: |
| handle = f if not use_name else f.name |
| pickle.dump(i, f) |
| torch.save(a, f) |
| f.seek(0) |
| j = pickle.load(f) |
| b = torch.load(f) |
| self.assertTrue(torch.equal(a, b)) |
| self.assertEqual(i, j) |
| |
| def test_serialization_offset_filelike(self): |
| a = torch.randn(5, 5) |
| i = 41 |
| with BytesIOContext() as f: |
| pickle.dump(i, f) |
| torch.save(a, f) |
| f.seek(0) |
| j = pickle.load(f) |
| b = torch.load(f) |
| self.assertTrue(torch.equal(a, b)) |
| self.assertEqual(i, j) |
| |
| def test_serialization_offset_gzip(self): |
| a = torch.randn(5, 5) |
| i = 41 |
| f1 = tempfile.NamedTemporaryFile(delete=False) |
| f2 = tempfile.NamedTemporaryFile(delete=False) |
| with open(f1.name, 'wb') as f: |
| pickle.dump(i, f) |
| torch.save(a, f) |
| with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out: |
| shutil.copyfileobj(f_in, f_out) |
| |
| with gzip.open(f2.name, 'rb') as f: |
| j = pickle.load(f) |
| b = torch.load(f) |
| self.assertTrue(torch.equal(a, b)) |
| self.assertEqual(i, j) |
| |
| def test_half_tensor(self): |
| x = torch.randn(5, 5).float() |
| y = torch.randn(5, 5).float() |
| xh, yh = x.half(), y.half() |
| |
| self.assertEqual(x.half().float(), x, 1e-3) |
| |
| z = torch.Tensor(5, 5) |
| self.assertEqual(z.copy_(xh), x, 1e-3) |
| |
| with tempfile.NamedTemporaryFile() as f: |
| torch.save(xh, f) |
| f.seek(0) |
| xh2 = torch.load(f) |
| self.assertEqual(xh.float(), xh2.float()) |
| |
| def test_serialize_device(self): |
| device_str = ['cpu', 'cpu:0', 'cuda', 'cuda:0'] |
| device_obj = [torch.device(d) for d in device_str] |
| for device in device_obj: |
| device_copied = copy.deepcopy(device) |
| self.assertEqual(device, device_copied) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_half_tensor_cuda(self): |
| x = torch.randn(5, 5).half() |
| self.assertEqual(x.cuda(), x) |
| |
| xc = x.cuda() |
| with tempfile.NamedTemporaryFile() as f: |
| torch.save(xc, f) |
| f.seek(0) |
| xc2 = torch.load(f) |
| self.assertIsInstance(xc2, type(xc)) |
| self.assertEqual(xc.float(), xc2.float()) |
| |
| def _test_serialization_cuda(self, filecontext_lambda): |
| device_count = torch.cuda.device_count() |
| t0 = torch.cuda.FloatTensor(5).fill_(1) |
| torch.cuda.set_device(device_count - 1) |
| tn = torch.cuda.FloatTensor(3).fill_(2) |
| torch.cuda.set_device(0) |
| b = (t0, tn) |
| with filecontext_lambda() as f: |
| torch.save(b, f) |
| f.seek(0) |
| c = torch.load(f) |
| self.assertEqual(b, c, 0) |
| u0, un = c |
| self.assertEqual(u0.get_device(), 0) |
| self.assertEqual(un.get_device(), device_count - 1) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_serialization_cuda(self): |
| self._test_serialization_cuda(tempfile.NamedTemporaryFile) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_serialization_cuda_filelike(self): |
| self._test_serialization_cuda(BytesIOContext) |
| |
| def test_serialization_backwards_compat(self): |
| a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)] |
| b = [a[i % 2] for i in range(4)] |
| b += [a[0].storage()] |
| b += [a[0].storage()[1:4]] |
| path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt') |
| c = torch.load(path) |
| self.assertEqual(b, c, 0) |
| self.assertTrue(isinstance(c[0], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[1], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[2], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[3], torch.FloatTensor)) |
| self.assertTrue(isinstance(c[4], torch.FloatStorage)) |
| c[0].fill_(10) |
| self.assertEqual(c[0], c[2], 0) |
| self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0) |
| c[1].fill_(20) |
| self.assertEqual(c[1], c[3], 0) |
| self.assertEqual(c[4][1:4], c[5], 0) |
| |
| # test some old tensor serialization mechanism |
| class OldTensorBase(object): |
| def __init__(self, new_tensor): |
| self.new_tensor = new_tensor |
| |
| def __getstate__(self): |
| return (self.new_tensor.storage(), |
| self.new_tensor.storage_offset(), |
| tuple(self.new_tensor.size()), |
| self.new_tensor.stride()) |
| |
| class OldTensorV1(OldTensorBase): |
| def __reduce__(self): |
| return (torch.Tensor, (), self.__getstate__()) |
| |
| class OldTensorV2(OldTensorBase): |
| def __reduce__(self): |
| return (_rebuild_tensor, self.__getstate__()) |
| |
| x = torch.randn(30).as_strided([2, 3], [9, 3], 2) |
| for old_cls in [OldTensorV1, OldTensorV2]: |
| with tempfile.NamedTemporaryFile() as f: |
| old_x = old_cls(x) |
| torch.save(old_x, f) |
| f.seek(0) |
| load_x = torch.load(f) |
| self.assertEqual(x.storage(), load_x.storage()) |
| self.assertEqual(x.storage_offset(), load_x.storage_offset()) |
| self.assertEqual(x.size(), load_x.size()) |
| self.assertEqual(x.stride(), load_x.stride()) |
| |
| # unique_key is necessary because on Python 2.7, if a warning passed to |
| # the warning module is the same, it is not raised again. |
| def _test_serialization_container(self, unique_key, filecontext_lambda): |
| tmpmodule_name = 'tmpmodule{}'.format(unique_key) |
| |
| def import_module(name, filename): |
| if sys.version_info >= (3, 5): |
| import importlib.util |
| spec = importlib.util.spec_from_file_location(name, filename) |
| module = importlib.util.module_from_spec(spec) |
| spec.loader.exec_module(module) |
| else: |
| import imp |
| module = imp.load_source(name, filename) |
| sys.modules[module.__name__] = module |
| return module |
| |
| with filecontext_lambda() as checkpoint: |
| fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network1.py') |
| module = import_module(tmpmodule_name, fname) |
| torch.save(module.Net(), checkpoint) |
| |
| # First check that the checkpoint can be loaded without warnings |
| checkpoint.seek(0) |
| with warnings.catch_warnings(record=True) as w: |
| loaded = torch.load(checkpoint) |
| self.assertTrue(isinstance(loaded, module.Net)) |
| if can_retrieve_source: |
| self.assertEquals(len(w), 0) |
| |
| # Replace the module with different source |
| fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network2.py') |
| module = import_module(tmpmodule_name, fname) |
| checkpoint.seek(0) |
| with warnings.catch_warnings(record=True) as w: |
| loaded = torch.load(checkpoint) |
| self.assertTrue(isinstance(loaded, module.Net)) |
| if can_retrieve_source: |
| self.assertEquals(len(w), 1) |
| self.assertTrue(w[0].category, 'SourceChangeWarning') |
| |
| def test_serialization_container(self): |
| self._test_serialization_container('file', tempfile.NamedTemporaryFile) |
| |
| def test_serialization_container_filelike(self): |
| self._test_serialization_container('filelike', BytesIOContext) |
| |
| def test_serialization_map_location(self): |
| test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt') |
| |
| def map_location(storage, loc): |
| return storage |
| |
| def load_bytes(): |
| with open(test_file_path, 'rb') as f: |
| return io.BytesIO(f.read()) |
| |
| fileobject_lambdas = [lambda: test_file_path, load_bytes] |
| cpu_map_locations = [ |
| map_location, |
| {'cuda:0': 'cpu'}, |
| 'cpu', |
| torch.device('cpu'), |
| ] |
| gpu_0_map_locations = [ |
| {'cuda:0': 'cuda:0'}, |
| 'cuda', |
| 'cuda:0', |
| torch.device('cuda'), |
| torch.device('cuda', 0) |
| ] |
| gpu_last_map_locations = [ |
| 'cuda:{}'.format(torch.cuda.device_count() - 1), |
| ] |
| |
| def check_map_locations(map_locations, tensor_class, intended_device): |
| for fileobject_lambda in fileobject_lambdas: |
| for map_location in map_locations: |
| tensor = torch.load(fileobject_lambda(), map_location=map_location) |
| |
| self.assertEqual(tensor.device, intended_device) |
| self.assertIsInstance(tensor, tensor_class) |
| self.assertEqual(tensor, tensor_class([[1.0, 2.0], [3.0, 4.0]])) |
| |
| check_map_locations(cpu_map_locations, torch.FloatTensor, torch.device('cpu')) |
| if torch.cuda.is_available(): |
| check_map_locations(gpu_0_map_locations, torch.cuda.FloatTensor, torch.device('cuda', 0)) |
| check_map_locations( |
| gpu_last_map_locations, |
| torch.cuda.FloatTensor, |
| torch.device('cuda', torch.cuda.device_count() - 1) |
| ) |
| |
| @unittest.skipIf(torch.cuda.is_available(), "Testing torch.load on CPU-only machine") |
| @unittest.skipIf(not PY3, "Test tensors were serialized using python 3") |
| def test_load_nonexistent_device(self): |
| # Setup: create a serialized file object with a 'cuda:0' restore location |
| # The following was generated by saving a torch.randn(2, device='cuda') tensor. |
| serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9' |
| b'\x03.\x80\x02}q\x00(X\x10\x00\x00\x00protocol_versionq' |
| b'\x01M\xe9\x03X\r\x00\x00\x00little_endianq\x02\x88X\n' |
| b'\x00\x00\x00type_sizesq\x03}q\x04(X\x05\x00\x00\x00shortq' |
| b'\x05K\x02X\x03\x00\x00\x00intq\x06K\x04X\x04\x00\x00\x00' |
| b'longq\x07K\x04uu.\x80\x02ctorch._utils\n_rebuild_tensor_v2' |
| b'\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nFloatStorage' |
| b'\nq\x02X\x0e\x00\x00\x0094919395964320q\x03X\x06\x00\x00' |
| b'\x00cuda:0q\x04K\x02Ntq\x05QK\x00K\x02\x85q\x06K\x01\x85q' |
| b'\x07\x89Ntq\x08Rq\t.\x80\x02]q\x00X\x0e\x00\x00\x00' |
| b'94919395964320q\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\xbb' |
| b'\x1f\x82\xbe\xea\x81\xd1>') |
| |
| buf = io.BytesIO(serialized) |
| |
| error_msg = r'Attempting to deserialize object on a CUDA device' |
| with self.assertRaisesRegex(RuntimeError, error_msg): |
| _ = torch.load(buf) |
| |
| def test_serialization_filelike_api_requirements(self): |
| filemock = FilelikeMock(b'', has_readinto=False) |
| tensor = torch.randn(3, 5) |
| torch.save(tensor, filemock) |
| expected_superset = set(['write', 'flush']) |
| self.assertTrue(expected_superset.issuperset(filemock.calls)) |
| |
| # Reset between save and load |
| filemock.seek(0) |
| filemock.calls.clear() |
| |
| _ = torch.load(filemock) |
| expected_superset = set(['read', 'readline', 'seek', 'tell']) |
| self.assertTrue(expected_superset.issuperset(filemock.calls)) |
| |
| def _test_serialization_filelike(self, tensor, mock, desc): |
| f = mock(b'') |
| torch.save(tensor, f) |
| f.seek(0) |
| data = mock(f.read()) |
| |
| msg = 'filelike serialization with {}' |
| |
| b = torch.load(data) |
| self.assertTrue(torch.equal(tensor, b), msg.format(desc)) |
| |
| def test_serialization_filelike_missing_attrs(self): |
| # Test edge cases where filelike objects are missing attributes. |
| # The Python io docs suggests that these attributes should really exist |
| # and throw io.UnsupportedOperation, but that isn't always the case. |
| mocks = [ |
| ('no readinto', lambda x: FilelikeMock(x)), |
| ('has readinto', lambda x: FilelikeMock(x, has_readinto=True)), |
| ('no fileno', lambda x: FilelikeMock(x, has_fileno=False)), |
| ] |
| |
| to_serialize = torch.randn(3, 10) |
| for desc, mock in mocks: |
| self._test_serialization_filelike(to_serialize, mock, desc) |
| |
| def test_serialization_filelike_stress(self): |
| a = torch.randn(11 * (2 ** 9) + 1, 5 * (2 ** 9)) |
| |
| # This one should call python read multiple times |
| self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=False), |
| 'read() stress test') |
| self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=True), |
| 'readinto() stress test') |
| |
| def test_serialization_filelike_uses_readinto(self): |
| # For maximum effiency, when reading a file-like object, |
| # ensure the C API calls readinto instead of read. |
| a = torch.randn(5, 4) |
| |
| f = io.BytesIO() |
| torch.save(a, f) |
| f.seek(0) |
| data = FilelikeMock(f.read(), has_readinto=True) |
| |
| b = torch.load(data) |
| self.assertTrue(data.was_called('readinto')) |
| |
| def test_load_error_msg(self): |
| expected_err_msg = (".*You can only torch.load from a file that is seekable. " + |
| "Please pre-load the data into a buffer like io.BytesIO and " + |
| "try to load from it instead.") |
| if PY3: |
| import urllib.request |
| import io |
| resource = urllib.request.urlopen('https://download.pytorch.org/test_data/linear.pt') |
| self.assertRaisesRegex(io.UnsupportedOperation, expected_err_msg, lambda: torch.load(resource)) |
| else: |
| import urllib |
| resource = urllib.urlopen('https://download.pytorch.org/test_data/linear.pt') |
| self.assertRaisesRegex(AttributeError, expected_err_msg, lambda: torch.load(resource)) |
| |
| def test_from_buffer(self): |
| a = bytearray([1, 2, 3, 4]) |
| self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4]) |
| shorts = torch.ShortStorage.from_buffer(a, 'big') |
| self.assertEqual(shorts.size(), 2) |
| self.assertEqual(shorts.tolist(), [258, 772]) |
| ints = torch.IntStorage.from_buffer(a, 'little') |
| self.assertEqual(ints.size(), 1) |
| self.assertEqual(ints[0], 67305985) |
| f = bytearray([0x40, 0x10, 0x00, 0x00]) |
| floats = torch.FloatStorage.from_buffer(f, 'big') |
| self.assertEqual(floats.size(), 1) |
| self.assertEqual(floats[0], 2.25) |
| |
| @unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows") |
| def test_from_file(self): |
| size = 10000 |
| with tempfile.NamedTemporaryFile() as f: |
| s1 = torch.FloatStorage.from_file(f.name, True, size) |
| t1 = torch.FloatTensor(s1).copy_(torch.randn(size)) |
| |
| # check mapping |
| s2 = torch.FloatStorage.from_file(f.name, True, size) |
| t2 = torch.FloatTensor(s2) |
| self.assertEqual(t1, t2, 0) |
| |
| # check changes to t1 from t2 |
| rnum = random.uniform(-1, 1) |
| t1.fill_(rnum) |
| self.assertEqual(t1, t2, 0) |
| |
| # check changes to t2 from t1 |
| rnum = random.uniform(-1, 1) |
| t2.fill_(rnum) |
| self.assertEqual(t1, t2, 0) |
| |
| def test_print(self): |
| default_type = torch.Tensor().type() |
| for t in torch._tensor_classes: |
| if t == torch.HalfTensor: |
| continue # HalfTensor does not support fill |
| if t.is_sparse: |
| continue |
| if t.is_cuda and not torch.cuda.is_available(): |
| continue |
| obj = t(100, 100).fill_(1) |
| obj.__repr__() |
| str(obj) |
| for t in torch._storage_classes: |
| if t.is_cuda and not torch.cuda.is_available(): |
| continue |
| obj = t(100).fill_(1) |
| obj.__repr__() |
| str(obj) |
| |
| # test big integer |
| x = torch.tensor(2341234123412341) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='bigint') |
| |
| # test scientific notation |
| x = torch.tensor([1e28, 1e-28]) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='scimode') |
| |
| # test no leading space if all elements positive |
| x = torch.tensor([1, 2]) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='posint') |
| |
| # test for leading space if there are negative elements |
| x = torch.tensor([1, -2]) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='negint') |
| |
| # test inf and nan |
| x = torch.tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1]) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='nonfinite') |
| |
| # test dtype |
| torch.set_default_dtype(torch.float) |
| x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='dtype') |
| |
| # test changing default dtype |
| torch.set_default_dtype(torch.float64) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='default_dtype') |
| |
| # test summary |
| x = torch.zeros(10000) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='summary') |
| |
| # test device |
| if torch.cuda.is_available(): |
| x = torch.tensor([123], device='cuda:0') |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='device') |
| |
| # test changing default to cuda |
| torch.set_default_tensor_type(torch.cuda.FloatTensor) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='default_device') |
| torch.set_default_tensor_type(default_type) |
| |
| # test integral floats and requires_grad |
| x = torch.tensor([123.], requires_grad=True) |
| self.assertEqual(x.__repr__(), str(x)) |
| self.assertExpected(str(x), subname='requires_grad') |
| |
| def test_sizeof(self): |
| sizeof_empty = torch.randn(0).storage().__sizeof__() |
| sizeof_10 = torch.randn(10).storage().__sizeof__() |
| sizeof_100 = torch.randn(100).storage().__sizeof__() |
| self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10) |
| self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0) |
| |
| sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__() |
| sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__() |
| sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__() |
| self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10) |
| self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0) |
| |
| def test_unsqueeze(self): |
| x = torch.randn(2, 3, 4) |
| y = x.unsqueeze(1) |
| self.assertEqual(y, x.view(2, 1, 3, 4)) |
| y = x.clone().unsqueeze_(2) |
| self.assertEqual(y, x.view(2, 3, 1, 4)) |
| |
| x = x[:, 1] |
| self.assertFalse(x.is_contiguous()) |
| y = x.unsqueeze(1) |
| self.assertEqual(y, x.contiguous().view(2, 1, 4)) |
| y = x.clone().unsqueeze_(2) |
| self.assertEqual(y, x.contiguous().view(2, 4, 1)) |
| |
| self.assertRaises(RuntimeError, lambda: torch.Tensor().unsqueeze(0)) |
| |
| def test_iter(self): |
| x = torch.randn(5, 5) |
| for i, sub in enumerate(x): |
| self.assertEqual(sub, x[i]) |
| |
| x = torch.Tensor() |
| self.assertEqual(list(x), []) |
| |
| def test_accreal_type(self): |
| x = torch.ones(2, 3, 4) |
| self.assertIsInstance(x.double().sum().item(), float) |
| self.assertIsInstance(x.float().sum().item(), float) |
| self.assertIsInstance(x.long().sum().item(), int) |
| self.assertIsInstance(x.int().sum().item(), int) |
| self.assertIsInstance(x.short().sum().item(), int) |
| self.assertIsInstance(x.char().sum().item(), int) |
| self.assertIsInstance(x.byte().sum().item(), int) |
| |
| def test_assertEqual(self): |
| x = torch.FloatTensor([0]) |
| self.assertEqual(x, 0) |
| xv = torch.autograd.Variable(x) |
| self.assertEqual(xv, 0) |
| self.assertEqual(x, xv) |
| self.assertEqual(xv, x) |
| |
| def test_new(self): |
| x = torch.autograd.Variable(torch.Tensor()) |
| y = torch.autograd.Variable(torch.randn(4, 4)) |
| z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) |
| self.assertEqual(x.new().shape, [0]) |
| self.assertEqual(x.new(), x) |
| self.assertEqual(x.new(1, 2).shape, [1, 2]) |
| self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4]) |
| self.assertEqual(x.new([3, 4]).shape, [2]) |
| self.assertEqual(x.new([3, 4]).tolist(), [3, 4]) |
| self.assertEqual(x.new((3, 4)).tolist(), [3, 4]) |
| if TEST_NUMPY: |
| self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4]) |
| self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4]) |
| self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4]) |
| self.assertEqual(x.new(size=(3, 4)).shape, [3, 4]) |
| self.assertEqual(x.new(tuple()).shape, [0]) |
| self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr()) |
| self.assertEqual(x.new(y).data_ptr(), y.data_ptr()) |
| self.assertIsNot(x.new(y), y) |
| |
| self.assertRaises(TypeError, lambda: x.new(z)) |
| # TypeError would be better |
| self.assertRaises(RuntimeError, lambda: x.new(z.storage())) |
| |
| def test_empty_like(self): |
| x = torch.autograd.Variable(torch.Tensor()) |
| y = torch.autograd.Variable(torch.randn(4, 4)) |
| z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) |
| for a in (x, y, z): |
| self.assertEqual(torch.empty_like(a).shape, a.shape) |
| self.assertEqual(torch.empty_like(a).type(), a.type()) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_pin_memory(self): |
| x = torch.randn(3, 5) |
| self.assertFalse(x.is_pinned()) |
| pinned = x.pin_memory() |
| self.assertTrue(pinned.is_pinned()) |
| self.assertEqual(pinned, x) |
| self.assertNotEqual(pinned.data_ptr(), x.data_ptr()) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_numpy_unresizable(self): |
| x = np.zeros((2, 2)) |
| y = torch.from_numpy(x) |
| with self.assertRaises(ValueError): |
| x.resize((5, 5)) |
| |
| z = torch.randn(5, 5) |
| w = z.numpy() |
| with self.assertRaises(RuntimeError): |
| z.resize_(10, 10) |
| with self.assertRaises(ValueError): |
| w.resize((10, 10)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_toNumpy(self): |
| types = [ |
| 'torch.ByteTensor', |
| 'torch.IntTensor', |
| 'torch.HalfTensor', |
| 'torch.FloatTensor', |
| 'torch.DoubleTensor', |
| 'torch.LongTensor', |
| ] |
| for tp in types: |
| # 1D |
| sz = 10 |
| x = torch.randn(sz).mul(255).type(tp) |
| y = x.numpy() |
| for i in range(sz): |
| self.assertEqual(x[i], y[i]) |
| |
| # 1D > 0 storage offset |
| xm = torch.randn(sz * 2).mul(255).type(tp) |
| x = xm.narrow(0, sz - 1, sz) |
| self.assertTrue(x.storage_offset() > 0) |
| y = x.numpy() |
| for i in range(sz): |
| self.assertEqual(x[i], y[i]) |
| |
| def check2d(x, y): |
| for i in range(sz1): |
| for j in range(sz2): |
| self.assertEqual(x[i][j], y[i][j]) |
| |
| # empty |
| x = torch.Tensor().type(tp) |
| y = x.numpy() |
| self.assertEqual(y.size, 0) |
| |
| # contiguous 2D |
| sz1 = 3 |
| sz2 = 5 |
| x = torch.randn(sz1, sz2).mul(255).type(tp) |
| y = x.numpy() |
| check2d(x, y) |
| self.assertTrue(y.flags['C_CONTIGUOUS']) |
| |
| # with storage offset |
| xm = torch.randn(sz1 * 2, sz2).mul(255).type(tp) |
| x = xm.narrow(0, sz1 - 1, sz1) |
| y = x.numpy() |
| self.assertTrue(x.storage_offset() > 0) |
| check2d(x, y) |
| self.assertTrue(y.flags['C_CONTIGUOUS']) |
| |
| # non-contiguous 2D |
| x = torch.randn(sz2, sz1).mul(255).type(tp).t() |
| y = x.numpy() |
| check2d(x, y) |
| self.assertFalse(y.flags['C_CONTIGUOUS']) |
| |
| # with storage offset |
| xm = torch.randn(sz2 * 2, sz1).mul(255).type(tp) |
| x = xm.narrow(0, sz2 - 1, sz2).t() |
| y = x.numpy() |
| self.assertTrue(x.storage_offset() > 0) |
| check2d(x, y) |
| |
| # non-contiguous 2D with holes |
| xm = torch.randn(sz2 * 2, sz1 * 2).mul(255).type(tp) |
| x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t() |
| y = x.numpy() |
| self.assertTrue(x.storage_offset() > 0) |
| check2d(x, y) |
| |
| if tp != 'torch.HalfTensor': |
| # check writeable |
| x = torch.randn(3, 4).mul(255).type(tp) |
| y = x.numpy() |
| self.assertTrue(y.flags.writeable) |
| y[0][1] = 3 |
| self.assertTrue(x[0][1] == 3) |
| y = x.t().numpy() |
| self.assertTrue(y.flags.writeable) |
| y[0][1] = 3 |
| self.assertTrue(x[0][1] == 3) |
| |
| def test_dlpack_conversion(self): |
| x = torch.randn(1, 2, 3, 4).type('torch.FloatTensor') |
| z = from_dlpack(to_dlpack(x)) |
| self.assertEqual(z, x) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "No CUDA") |
| def test_dlpack_cuda(self): |
| x = torch.randn(1, 2, 3, 4).cuda() |
| z = from_dlpack(to_dlpack(x)) |
| self.assertEqual(z, x) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_from_numpy(self): |
| dtypes = [ |
| np.double, |
| np.float, |
| np.float16, |
| np.int64, |
| np.int32, |
| np.int16, |
| np.uint8, |
| np.longlong, |
| ] |
| for dtype in dtypes: |
| array = np.array([1, 2, 3, 4], dtype=dtype) |
| tensor_from_array = torch.from_numpy(array) |
| # TODO: change to tensor equality check once HalfTensor |
| # implements `==` |
| for i in range(len(array)): |
| self.assertEqual(tensor_from_array[i], array[i]) |
| |
| # check storage offset |
| x = np.linspace(1, 125, 125) |
| x.shape = (5, 5, 5) |
| x = x[1] |
| expected = torch.arange(1, 126).view(5, 5, 5)[1] |
| self.assertEqual(torch.from_numpy(x), expected) |
| |
| # check noncontiguous |
| x = np.linspace(1, 25, 25) |
| x.shape = (5, 5) |
| expected = torch.arange(1, 26).view(5, 5).t() |
| self.assertEqual(torch.from_numpy(x.T), expected) |
| |
| # check noncontiguous with holes |
| x = np.linspace(1, 125, 125) |
| x.shape = (5, 5, 5) |
| x = x[:, 1] |
| expected = torch.arange(1, 126).view(5, 5, 5)[:, 1] |
| self.assertEqual(torch.from_numpy(x), expected) |
| |
| # check zero dimensional |
| x = np.zeros((0, 2)) |
| if torch._C._use_zero_size_dim(): |
| self.assertEqual(torch.from_numpy(x).shape, (0, 2)) |
| else: |
| self.assertEqual(torch.from_numpy(x).shape, (0,)) |
| |
| # check ill-sized strides raise exception |
| x = np.array([3., 5., 8.]) |
| x.strides = (3,) |
| self.assertRaises(ValueError, lambda: torch.from_numpy(x)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_ctor_with_numpy_array(self): |
| dtypes = [ |
| np.double, |
| np.float, |
| np.float16, |
| np.int64, |
| np.int32, |
| np.int16, |
| np.uint8 |
| ] |
| for dtype in dtypes: |
| array = np.array([1, 2, 3, 4], dtype=dtype) |
| |
| # Upcast |
| tensor = torch.DoubleTensor(array) |
| for i in range(len(array)): |
| self.assertEqual(tensor[i], array[i]) |
| |
| if torch.cuda.is_available(): |
| tensor = torch.cuda.DoubleTensor(array) |
| for i in range(len(array)): |
| self.assertEqual(tensor[i], array[i]) |
| |
| # Downcast (sometimes) |
| tensor = torch.FloatTensor(array) |
| for i in range(len(array)): |
| self.assertEqual(tensor[i], array[i]) |
| |
| tensor = torch.HalfTensor(array) |
| for i in range(len(array)): |
| self.assertEqual(tensor[i], array[i]) |
| |
| if torch.cuda.is_available(): |
| tensor = torch.cuda.FloatTensor(array) |
| for i in range(len(array)): |
| self.assertEqual(tensor[i], array[i]) |
| |
| tensor = torch.cuda.HalfTensor(array) |
| for i in range(len(array)): |
| self.assertEqual(tensor[i], array[i]) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_numpy_index(self): |
| i = np.int32([0, 1, 2]) |
| x = torch.randn(5, 5) |
| for idx in i: |
| self.assertFalse(isinstance(idx, int)) |
| self.assertEqual(x[idx], x[int(idx)]) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_numpy_array_interface(self): |
| types = [ |
| torch.DoubleTensor, |
| torch.FloatTensor, |
| torch.HalfTensor, |
| torch.LongTensor, |
| torch.IntTensor, |
| torch.ShortTensor, |
| torch.ByteTensor, |
| ] |
| dtypes = [ |
| np.float64, |
| np.float32, |
| np.float16, |
| np.int64, |
| np.int32, |
| np.int16, |
| np.uint8, |
| ] |
| for tp, dtype in zip(types, dtypes): |
| if np.dtype(dtype).kind == 'u': |
| x = torch.Tensor([1, 2, 3, 4]).type(tp) |
| array = np.array([1, 2, 3, 4], dtype=dtype) |
| else: |
| x = torch.Tensor([1, -2, 3, -4]).type(tp) |
| array = np.array([1, -2, 3, -4], dtype=dtype) |
| |
| # Test __array__ w/o dtype argument |
| asarray = np.asarray(x) |
| self.assertIsInstance(asarray, np.ndarray) |
| self.assertEqual(asarray.dtype, dtype) |
| for i in range(len(x)): |
| self.assertEqual(asarray[i], x[i]) |
| |
| # Test __array_wrap__, same dtype |
| abs_x = np.abs(x) |
| abs_array = np.abs(array) |
| self.assertIsInstance(abs_x, tp) |
| for i in range(len(x)): |
| self.assertEqual(abs_x[i], abs_array[i]) |
| |
| # Test __array__ with dtype argument |
| for dtype in dtypes: |
| x = torch.IntTensor([1, -2, 3, -4]) |
| asarray = np.asarray(x, dtype=dtype) |
| self.assertEqual(asarray.dtype, dtype) |
| if np.dtype(dtype).kind == 'u': |
| wrapped_x = np.array([1, -2, 3, -4], dtype=dtype) |
| for i in range(len(x)): |
| self.assertEqual(asarray[i], wrapped_x[i]) |
| else: |
| for i in range(len(x)): |
| self.assertEqual(asarray[i], x[i]) |
| |
| # Test some math functions with float types |
| float_types = [torch.DoubleTensor, torch.FloatTensor] |
| float_dtypes = [np.float64, np.float32] |
| for tp, dtype in zip(float_types, float_dtypes): |
| x = torch.Tensor([1, 2, 3, 4]).type(tp) |
| array = np.array([1, 2, 3, 4], dtype=dtype) |
| for func in ['sin', 'sqrt', 'ceil']: |
| ufunc = getattr(np, func) |
| res_x = ufunc(x) |
| res_array = ufunc(array) |
| self.assertIsInstance(res_x, tp) |
| for i in range(len(x)): |
| self.assertEqual(res_x[i], res_array[i]) |
| |
| # Test functions with boolean return value |
| for tp, dtype in zip(types, dtypes): |
| x = torch.Tensor([1, 2, 3, 4]).type(tp) |
| array = np.array([1, 2, 3, 4], dtype=dtype) |
| geq2_x = np.greater_equal(x, 2) |
| geq2_array = np.greater_equal(array, 2).astype('uint8') |
| self.assertIsInstance(geq2_x, torch.ByteTensor) |
| for i in range(len(x)): |
| self.assertEqual(geq2_x[i], geq2_array[i]) |
| |
| def test_error_msg_type_translation(self): |
| with self.assertRaisesRegex( |
| RuntimeError, |
| # message includes both torch.DoubleTensor and torch.LongTensor |
| '(?=.*torch\.DoubleTensor)(?=.*torch\.LongTensor)'): |
| |
| # Calls model with a DoubleTensor input but LongTensor weights |
| input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double()) |
| weight = torch.zeros(1, 1, 1, 3).long() |
| model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False) |
| model.weight.data = weight |
| out = model(input) |
| |
| def test_tensor_from_sequence(self): |
| class MockSequence(object): |
| def __init__(self, lst): |
| self.lst = lst |
| |
| def __len__(self): |
| return len(self.lst) |
| |
| def __getitem__(self, item): |
| raise TypeError |
| |
| class GoodMockSequence(MockSequence): |
| def __getitem__(self, item): |
| return self.lst[item] |
| |
| bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) |
| good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) |
| with self.assertRaisesRegex(ValueError, 'could not determine the shape'): |
| torch.Tensor(bad_mock_seq) |
| self.assertEqual(torch.Tensor([1.0, 2.0, 3.0]), torch.Tensor(good_mock_seq)) |
| |
| def test_comparison_ops(self): |
| x = torch.randn(5, 5) |
| y = torch.randn(5, 5) |
| |
| eq = x == y |
| for idx in iter_indices(x): |
| self.assertEqual(x[idx] == y[idx], eq[idx] == 1) |
| |
| ne = x != y |
| for idx in iter_indices(x): |
| self.assertEqual(x[idx] != y[idx], ne[idx] == 1) |
| |
| lt = x < y |
| for idx in iter_indices(x): |
| self.assertEqual(x[idx] < y[idx], lt[idx] == 1) |
| |
| le = x <= y |
| for idx in iter_indices(x): |
| self.assertEqual(x[idx] <= y[idx], le[idx] == 1) |
| |
| gt = x > y |
| for idx in iter_indices(x): |
| self.assertEqual(x[idx] > y[idx], gt[idx] == 1) |
| |
| ge = x >= y |
| for idx in iter_indices(x): |
| self.assertEqual(x[idx] >= y[idx], ge[idx] == 1) |
| |
| def test_bitwise_ops(self): |
| x = torch.randn(5, 5).gt(0) |
| y = torch.randn(5, 5).gt(0) |
| |
| and_result = x & y |
| for idx in iter_indices(x): |
| if and_result[idx]: |
| self.assertTrue(x[idx] and y[idx]) |
| else: |
| self.assertFalse(x[idx] and y[idx]) |
| |
| or_result = x | y |
| for idx in iter_indices(x): |
| if or_result[idx]: |
| self.assertTrue(x[idx] or y[idx]) |
| else: |
| self.assertFalse(x[idx] or y[idx]) |
| |
| xor_result = x ^ y |
| for idx in iter_indices(x): |
| if xor_result[idx]: |
| self.assertTrue(x[idx] ^ y[idx]) |
| else: |
| self.assertFalse(x[idx] ^ y[idx]) |
| |
| invert_result = ~x |
| for idx in iter_indices(x): |
| self.assertEqual(1 - x[idx], invert_result[idx]) |
| |
| x_clone = x.clone() |
| x_clone &= y |
| self.assertEqual(x_clone, and_result) |
| |
| x_clone = x.clone() |
| x_clone |= y |
| self.assertEqual(x_clone, or_result) |
| |
| x_clone = x.clone() |
| x_clone ^= y |
| self.assertEqual(x_clone, xor_result) |
| |
| def test_invert(self): |
| x = torch.ByteTensor([0, 1, 1]) |
| self.assertEqual((~x).tolist(), [1, 0, 0]) |
| |
| def test_apply(self): |
| x = torch.arange(1, 6) |
| res = x.clone().apply_(lambda k: k + k) |
| self.assertEqual(res, x * 2) |
| self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str")) |
| |
| def test_map(self): |
| x = torch.autograd.Variable(torch.randn(3, 3)) |
| y = torch.autograd.Variable(torch.randn(3)) |
| res = x.clone() |
| res.map_(y, lambda a, b: a + b) |
| self.assertEqual(res, x + y) |
| self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str")) |
| |
| def test_map2(self): |
| x = torch.autograd.Variable(torch.randn(3, 3)) |
| y = torch.autograd.Variable(torch.randn(3)) |
| z = torch.autograd.Variable(torch.randn(1, 3)) |
| res = x.clone() |
| res.map2_(y, z, lambda a, b, c: a + b * c) |
| self.assertEqual(res, x + y * z) |
| z.requires_grad = True |
| self.assertRaisesRegex( |
| RuntimeError, "requires grad", |
| lambda: res.map2_(y, z, lambda a, b, c: a + b * c)) |
| |
| def test_Size(self): |
| x = torch.Size([1, 2, 3]) |
| self.assertIsInstance(x, tuple) |
| self.assertEqual(x[0], 1) |
| self.assertEqual(x[1], 2) |
| self.assertEqual(x[2], 3) |
| self.assertEqual(len(x), 3) |
| self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3))) |
| |
| self.assertIsInstance(x * 2, torch.Size) |
| self.assertIsInstance(x[:-1], torch.Size) |
| self.assertIsInstance(x + x, torch.Size) |
| |
| def test_Size_scalar(self): |
| three = torch.tensor(3) |
| two = torch.tensor(2) |
| x = torch.Size([0, 1, two, three, 4]) |
| for i in range(1, 5): |
| self.assertEqual(x[i], i) |
| |
| def test_Size_iter(self): |
| for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]: |
| x = torch.Size(sizes) |
| for i in range(0, 5): |
| self.assertEqual(x[i], i + 1) |
| |
| def test_t_not_2d_error(self): |
| self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t()) |
| self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_()) |
| |
| # unit test for THTensor_(copyTranspose) |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_big_transpose(self): |
| t = torch.rand(456, 789) |
| t1 = t.t().contiguous() |
| t2 = torch.from_numpy(t.numpy().transpose()) |
| self.assertEqual(t1, t2) |
| |
| def test_inplace_division(self): |
| t = torch.rand(5, 5) |
| id_before = id(t) |
| t /= 2 |
| id_after = id(t) |
| self.assertEqual(id_before, id_after) |
| |
| def test_simple_scalar_cast(self): |
| ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)] |
| ok_values = [1.5, 0] |
| |
| not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) |
| |
| for tensor, value in zip(ok, ok_values): |
| self.assertEqual(int(tensor), int(value)) |
| self.assertEqual(float(tensor), float(value)) |
| if sys.version_info[0] < 3: |
| self.assertEqual(long(tensor), long(value)) |
| |
| for tensor in not_ok: |
| self.assertRaises(ValueError, lambda: int(tensor)) |
| self.assertRaises(ValueError, lambda: float(tensor)) |
| if sys.version_info[0] < 3: |
| self.assertRaises(ValueError, lambda: long(tensor)) |
| |
| def test_offset_scalar_cast(self): |
| x = torch.Tensor([1, 2, 3]) |
| y = x[2:] |
| self.assertEqual(int(y), 3) |
| |
| # skip this test for now as it affects all tests |
| @unittest.skipIf(True, "flush_denormal not supported") |
| def test_set_flush_denormal(self): |
| tiny_float = 1e-42 |
| tiny_double = 1e-320 |
| float_tensor = torch.FloatTensor([1.0, tiny_float]) |
| double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double]) |
| |
| self.assertEqual(float_tensor[0], 1.0, prec=0.0) |
| self.assertEqual(float_tensor[1], tiny_float, prec=tiny_float / 16) |
| self.assertEqual(double_tensor[0], 1.0, prec=0.0) |
| self.assertEqual(double_tensor[1], tiny_float, prec=0.0) |
| self.assertEqual(double_tensor[2], tiny_double, prec=0.0) |
| |
| torch.set_flush_denormal(True) |
| self.assertEqual(float_tensor[0], 1.0, prec=0.0) |
| self.assertEqual(float_tensor[1], 0.0, prec=0.0) # tiny_float to zero |
| self.assertEqual(double_tensor[0], 1.0, prec=0.0) |
| # tiny_float is not converted to zero in double type |
| self.assertEqual(double_tensor[1], tiny_float, prec=0.0) |
| self.assertEqual(double_tensor[2], 0.0, prec=0.0) # tiny_double to zero |
| torch.set_flush_denormal(False) |
| |
| def test_unique_cpu(self): |
| x = torch.LongTensor([1, 2, 3, 2, 8, 5, 2, 3]) |
| expected_unique = torch.LongTensor([1, 2, 3, 5, 8]) |
| expected_inverse = torch.LongTensor([0, 1, 2, 1, 4, 3, 1, 2]) |
| |
| x_unique = torch.unique(x) |
| self.assertEqual( |
| expected_unique.tolist(), sorted(x_unique.tolist())) |
| |
| x_unique, x_inverse = x.unique(return_inverse=True) |
| self.assertEqual( |
| expected_unique.tolist(), sorted(x_unique.tolist())) |
| self.assertEqual(expected_inverse.numel(), x_inverse.numel()) |
| |
| x_unique = x.unique(sorted=True) |
| self.assertEqual(expected_unique, x_unique) |
| |
| x_unique, x_inverse = torch.unique( |
| x, sorted=True, return_inverse=True) |
| self.assertEqual(expected_unique, x_unique) |
| self.assertEqual(expected_inverse, x_inverse) |
| |
| # Tests per-element unique on a higher rank tensor. |
| y = x.view(2, 2, 2) |
| y_unique, y_inverse = y.unique(sorted=True, return_inverse=True) |
| self.assertEqual(expected_unique, y_unique) |
| self.assertEqual(expected_inverse.view(y.size()), y_inverse) |
| |
| # Tests unique on other types. |
| int_unique, int_inverse = torch.unique( |
| torch.IntTensor([2, 1, 2]), sorted=True, return_inverse=True) |
| self.assertEqual(torch.IntTensor([1, 2]), int_unique) |
| self.assertEqual(torch.LongTensor([1, 0, 1]), int_inverse) |
| |
| double_unique, double_inverse = torch.unique( |
| torch.DoubleTensor([2., 1.5, 2.1, 2.]), |
| sorted=True, |
| return_inverse=True, |
| ) |
| self.assertEqual(torch.DoubleTensor([1.5, 2., 2.1]), double_unique) |
| self.assertEqual(torch.LongTensor([1, 0, 2, 1]), double_inverse) |
| |
| byte_unique, byte_inverse = torch.unique( |
| torch.ByteTensor([133, 7, 7, 7, 42, 128]), |
| sorted=True, |
| return_inverse=True, |
| ) |
| self.assertEqual(torch.ByteTensor([7, 42, 128, 133]), byte_unique) |
| self.assertEqual(torch.LongTensor([3, 0, 0, 0, 1, 2]), byte_inverse) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') |
| def test_unique_cuda(self): |
| # unique currently does not support CUDA. |
| self.assertRaises( |
| RuntimeError, lambda: torch.cuda.LongTensor([0, 1]).unique()) |
| self.assertRaises( |
| RuntimeError, |
| lambda: torch.unique(torch.cuda.FloatTensor([0., 1.])), |
| ) |
| |
| @staticmethod |
| def _test_bincount(self, device): |
| # negative input throws |
| with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): |
| torch.bincount(torch.tensor([1, -1], device=device)) |
| # n-d input, with n > 1 throws |
| with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): |
| torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device)) |
| # floating input type throws |
| with self.assertRaisesRegex(RuntimeError, 'not implemented'): |
| torch.bincount(torch.tensor([1., 0.3], device=device)) |
| # minlength < 0 throws |
| with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'): |
| torch.bincount(torch.tensor([1, 3], device=device), |
| torch.tensor([.2, .2], device=device), |
| minlength=-1) |
| # input and weights dim mismatch |
| with self.assertRaisesRegex(RuntimeError, 'same length'): |
| torch.bincount(torch.tensor([1, 0], device=device), |
| torch.tensor([1., 0.3, 0.5], device=device)) |
| |
| # test tensor method without weights |
| long_counts = torch.tensor( |
| [0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount() |
| self.assertEqual( |
| torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device), |
| long_counts) |
| # test minlength functionality |
| int_counts = torch.bincount( |
| torch.tensor([1, 1, 1, 1], device=device), minlength=5) |
| self.assertEqual( |
| torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device), |
| int_counts) |
| # test weights |
| byte_counts = torch.bincount( |
| torch.tensor([0, 1, 1, 1, 4], device=device), |
| torch.tensor([.1, .2, .3, .4, .5], device=device)) |
| self.assertEqual( |
| torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts) |
| byte_counts = torch.bincount( |
| torch.tensor([0, 1, 1, 1, 4], device=device), |
| torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device)) |
| self.assertEqual( |
| torch.tensor([1, 9, 0, 0, 5], device=device), byte_counts) |
| # test large number of bins - global memory use |
| big_exp = torch.zeros(10000000, device=device) |
| big_exp[-1] = 50.0 |
| big_w = torch.tensor([.5] * 100, device=device) |
| big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w) |
| self.assertEqual(big_exp, big_out) |
| # test large input size |
| big_exp = torch.zeros(2, device=device) |
| big_exp[1] = 1000000 |
| big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount() |
| self.assertEqual(big_exp, big_out) |
| |
| def test_bincount_cpu(self): |
| self._test_bincount(self, device='cpu') |
| |
| def test_is_nonzero(self): |
| self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([]).is_nonzero(), subname="empty") |
| self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([0, 0]).is_nonzero(), subname="multiple") |
| self.assertFalse(torch.tensor(0).is_nonzero()) |
| self.assertTrue(torch.tensor(1).is_nonzero()) |
| self.assertFalse(torch.tensor([0]).is_nonzero()) |
| self.assertTrue(torch.tensor([1]).is_nonzero()) |
| self.assertFalse(torch.tensor([[0]]).is_nonzero()) |
| self.assertTrue(torch.tensor([[1]]).is_nonzero()) |
| |
| |
| # Functions to test negative dimension wrapping |
| METHOD = 1 |
| INPLACE_METHOD = 2 |
| FUNCTIONAL = 4 |
| DIM_ARG = None |
| |
| |
| def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0): |
| def neg_dim_test(self): |
| if isinstance(tensor_arg, list): |
| assert METHOD not in types and INPLACE_METHOD not in types |
| x = [torch.randn(arg) for arg in tensor_arg] |
| ndim = len(tensor_arg[-1]) |
| else: |
| x = torch.randn(*tensor_arg) |
| ndim = len(tensor_arg) |
| ndim += extra_dim |
| |
| n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr())) |
| |
| for dims_val in combinations(range(ndim), n_dim_to_test): |
| arg = arg_constr() |
| arg_neg = copy.deepcopy(arg) |
| idx = 0 |
| for i, v in enumerate(arg): |
| if v is DIM_ARG: |
| arg[i] = dims_val[idx] |
| arg_neg[i] = dims_val[idx] - ndim |
| idx += 1 |
| |
| if METHOD in types: |
| a = getattr(x, name)(*arg) |
| b = getattr(x, name)(*arg_neg) |
| self.assertEqual(a, b) |
| |
| if INPLACE_METHOD in types: |
| a = x.clone() |
| getattr(a, name + '_')(*arg) |
| b = x.clone() |
| getattr(b, name + '_')(*arg_neg) |
| self.assertEqual(a, b) |
| |
| if FUNCTIONAL in types: |
| a = getattr(torch, name)(x, *arg) |
| b = getattr(torch, name)(x, *arg_neg) |
| self.assertEqual(a, b) |
| |
| return neg_dim_test |
| |
| |
| def idx_tensor(size, max_val): |
| return torch.LongTensor(*size).random_(0, max_val - 1) |
| |
| neg_dim_tests = [ |
| ('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]), |
| ('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]), |
| ('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]), |
| ('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]), |
| ('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]), |
| ('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]), |
| ('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]), |
| ('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]), |
| ('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1), |
| ('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), |
| ('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]), |
| ('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]), |
| ('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]), |
| ('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]), |
| ('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]), |
| ('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]), |
| ('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]), |
| ] |
| |
| for decl in neg_dim_tests: |
| if len(decl) == 4: |
| name, tensor_arg, arg_constr, types = decl |
| extra_dim = 0 |
| elif len(decl) == 5: |
| name, tensor_arg, arg_constr, types, extra_dim = decl |
| |
| test_name = 'test_' + name + '_neg_dim' |
| |
| assert not hasattr(TestTorch, test_name), "Duplicated test name: " + test_name |
| setattr(TestTorch, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim)) |
| |
| if __name__ == '__main__': |
| run_tests() |