| # Owner(s): ["module: unknown"] |
| |
| import platform |
| from functools import partial |
| from unittest import skipIf as skipif |
| |
| import torch |
| from torch.testing._internal.common_device_type import ( |
| instantiate_device_type_tests, |
| OpDTypes, |
| ops, |
| ) |
| from torch.testing._internal.common_methods_invocations import op_db |
| from torch.testing._internal.common_utils import ( |
| IS_MACOS, |
| run_tests, |
| skipIfTorchInductor, |
| TestCase, |
| TestGradients, |
| unMarkDynamoStrictTest, |
| ) |
| |
| |
| # TODO: mitigate flaky issue on macOS https://github.com/pytorch/pytorch/issues/66033 |
| # AFAIK, c10::ThreadPool looks correct in the way it uses condition_variable wait. The |
| # issue seems to point to macOS itself https://github.com/graphia-app/graphia/issues/33 |
| if IS_MACOS: |
| torch.set_num_threads(1) |
| |
| # gradcheck requires double precision |
| _gradcheck_ops = partial( |
| ops, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble] |
| ) |
| |
| |
| @unMarkDynamoStrictTest |
| class TestFwdGradients(TestGradients): |
| # Test that forward-over-reverse gradgrad is computed correctly |
| @_gradcheck_ops(op_db) |
| def test_fn_fwgrad_bwgrad(self, device, dtype, op): |
| self._skip_helper(op, device, dtype) |
| |
| if op.supports_fwgrad_bwgrad: |
| self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad") |
| else: |
| err_msg = r"Trying to use forward AD with .* that does not support it" |
| hint_msg = ( |
| "Running forward-over-backward gradgrad for an OP that has does not support it did not " |
| "raise any error. If your op supports forward AD, you should set supports_fwgrad_bwgrad=True." |
| ) |
| with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg): |
| self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad") |
| |
| def _forward_grad_helper(self, device, dtype, op, variant, is_inplace): |
| # TODO: clean up how attributes are passed to gradcheck from OpInfos |
| def call_grad_test_helper(): |
| check_batched_forward_grad = ( |
| op.check_batched_forward_grad and not is_inplace |
| ) or (op.check_inplace_batched_forward_grad and is_inplace) |
| self._grad_test_helper( |
| device, |
| dtype, |
| op, |
| variant, |
| check_forward_ad=True, |
| check_backward_ad=False, |
| check_batched_grad=False, |
| check_batched_forward_grad=check_batched_forward_grad, |
| ) |
| |
| if op.supports_forward_ad: |
| call_grad_test_helper() |
| else: |
| err_msg = r"Trying to use forward AD with .* that does not support it" |
| hint_msg = ( |
| "Running forward AD for an OP that has does not support it did not " |
| "raise any error. If your op supports forward AD, you should set supports_forward_ad=True" |
| ) |
| with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg): |
| call_grad_test_helper() |
| |
| @_gradcheck_ops(op_db) |
| @skipif( |
| platform.machine() == "s390x", |
| reason="Different precision of openblas functions: https://github.com/OpenMathLib/OpenBLAS/issues/4194", |
| ) |
| def test_forward_mode_AD(self, device, dtype, op): |
| self._skip_helper(op, device, dtype) |
| |
| self._forward_grad_helper(device, dtype, op, op.get_op(), is_inplace=False) |
| |
| @_gradcheck_ops(op_db) |
| @skipIfTorchInductor("to be fixed") |
| def test_inplace_forward_mode_AD(self, device, dtype, op): |
| self._skip_helper(op, device, dtype) |
| |
| if not op.inplace_variant or not op.supports_inplace_autograd: |
| self.skipTest("Skipped! Operation does not support inplace autograd.") |
| |
| self._forward_grad_helper( |
| device, dtype, op, self._get_safe_inplace(op.get_inplace()), is_inplace=True |
| ) |
| |
| |
| instantiate_device_type_tests(TestFwdGradients, globals()) |
| |
| if __name__ == "__main__": |
| TestCase._default_dtype_check_enabled = True |
| run_tests() |