blob: 1eeb48127019b419e32cdf941f315cf212f5bdf2 [file] [log] [blame]
# Owner(s): ["module: unknown"]
import platform
from functools import partial
from unittest import skipIf as skipif
import torch
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_utils import (
IS_MACOS,
run_tests,
skipIfTorchInductor,
TestCase,
TestGradients,
unMarkDynamoStrictTest,
)
# TODO: mitigate flaky issue on macOS https://github.com/pytorch/pytorch/issues/66033
# AFAIK, c10::ThreadPool looks correct in the way it uses condition_variable wait. The
# issue seems to point to macOS itself https://github.com/graphia-app/graphia/issues/33
if IS_MACOS:
torch.set_num_threads(1)
# gradcheck requires double precision
_gradcheck_ops = partial(
ops, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble]
)
@unMarkDynamoStrictTest
class TestFwdGradients(TestGradients):
# Test that forward-over-reverse gradgrad is computed correctly
@_gradcheck_ops(op_db)
def test_fn_fwgrad_bwgrad(self, device, dtype, op):
self._skip_helper(op, device, dtype)
if op.supports_fwgrad_bwgrad:
self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad")
else:
err_msg = r"Trying to use forward AD with .* that does not support it"
hint_msg = (
"Running forward-over-backward gradgrad for an OP that has does not support it did not "
"raise any error. If your op supports forward AD, you should set supports_fwgrad_bwgrad=True."
)
with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg):
self._check_helper(device, dtype, op, op.get_op(), "fwgrad_bwgrad")
def _forward_grad_helper(self, device, dtype, op, variant, is_inplace):
# TODO: clean up how attributes are passed to gradcheck from OpInfos
def call_grad_test_helper():
check_batched_forward_grad = (
op.check_batched_forward_grad and not is_inplace
) or (op.check_inplace_batched_forward_grad and is_inplace)
self._grad_test_helper(
device,
dtype,
op,
variant,
check_forward_ad=True,
check_backward_ad=False,
check_batched_grad=False,
check_batched_forward_grad=check_batched_forward_grad,
)
if op.supports_forward_ad:
call_grad_test_helper()
else:
err_msg = r"Trying to use forward AD with .* that does not support it"
hint_msg = (
"Running forward AD for an OP that has does not support it did not "
"raise any error. If your op supports forward AD, you should set supports_forward_ad=True"
)
with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg):
call_grad_test_helper()
@_gradcheck_ops(op_db)
@skipif(
platform.machine() == "s390x",
reason="Different precision of openblas functions: https://github.com/OpenMathLib/OpenBLAS/issues/4194",
)
def test_forward_mode_AD(self, device, dtype, op):
self._skip_helper(op, device, dtype)
self._forward_grad_helper(device, dtype, op, op.get_op(), is_inplace=False)
@_gradcheck_ops(op_db)
@skipIfTorchInductor("to be fixed")
def test_inplace_forward_mode_AD(self, device, dtype, op):
self._skip_helper(op, device, dtype)
if not op.inplace_variant or not op.supports_inplace_autograd:
self.skipTest("Skipped! Operation does not support inplace autograd.")
self._forward_grad_helper(
device, dtype, op, self._get_safe_inplace(op.get_inplace()), is_inplace=True
)
instantiate_device_type_tests(TestFwdGradients, globals())
if __name__ == "__main__":
TestCase._default_dtype_check_enabled = True
run_tests()