blob: 9ec1436b3d3e555f6fe40f65261203ecda24c9d5 [file] [log] [blame]
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/VolumetricConvolutionMM.c"
#else
static void inline THNN_(VolumetricConvolutionMM_shapeCheck)(
THNNState *state,
THTensor *input,
THTensor *gradOutput,
THTensor *weight,
THTensor *bias,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int pT,
int pW,
int pH) {
THNN_ARGCHECK(input->nDimension == 4 || input->nDimension == 5, 2, input,
"4D or 5D (batch mode) tensor expected for input, but got: %s");
THArgCheck(kT > 0 && kW > 0 && kH > 0, 8,
"kernel size should be greater than zero, but got kT: %d kH: %d kW: %d", kT, kH, kW);
THArgCheck(dT > 0 && dW > 0 && dH > 0, 11,
"stride should be greater than zero, but got dT: %d dH: %d dW: %d", dT, dH, dW);
int ndim = input->nDimension;
int dimf = 0;
int dimt = 1;
int dimh = 2;
int dimw = 3;
if (ndim == 5)
{
dimf++;
dimt++;
dimh++;
dimw++;
}
int64_t nInputPlane;
int64_t inputDepth;
int64_t inputHeight;
int64_t inputWidth;
int64_t nOutputPlane;
int64_t outputDepth;
int64_t outputHeight;
int64_t outputWidth;
nInputPlane = input->size[dimf];
inputDepth = input->size[dimt];
inputHeight = input->size[dimh];
inputWidth = input->size[dimw];
nOutputPlane = weight->size[0];
outputDepth = (inputDepth + 2*pT - kT) / dT + 1;
outputHeight = (inputHeight + 2*pH - kH) / dH + 1;
outputWidth = (inputWidth + 2*pW - kW) / dW + 1;
if (outputWidth < 1 || outputHeight < 1 || outputDepth < 1)
{
THError(
"Given input size: (%dx%dx%dx%d). Calculated output size: (%dx%dx%dx%d). Output size is too small",
nInputPlane, inputDepth, inputHeight, inputWidth,
nOutputPlane, outputDepth, outputHeight, outputWidth
);
}
THArgCheck(weight->nDimension == 2 || weight->nDimension == 5, 4,
"weight tensor should be 2D or 5D - got %d", weight->nDimension);
if (bias != NULL) {
THNN_CHECK_DIM_SIZE(bias, 1, 0, weight->size[0]);
}
THNN_CHECK_DIM_SIZE(input, ndim, dimf, nInputPlane);
if (gradOutput != NULL) {
THNN_CHECK_DIM_SIZE(gradOutput, ndim, dimf, nOutputPlane);
THNN_CHECK_DIM_SIZE(gradOutput, ndim, dimt, outputDepth);
THNN_CHECK_DIM_SIZE(gradOutput, ndim, dimh, outputHeight);
THNN_CHECK_DIM_SIZE(gradOutput, ndim, dimw, outputWidth);
}
}
static THTensor* THNN_(view_weight)(THTensor *weight)
{
weight = THTensor_(newContiguous)(weight);
if (weight->nDimension == 5) {
int64_t s1 = weight->size[0];
int64_t s2 = weight->size[1] * weight->size[2] * weight->size[3] * weight->size[4];
THTensor *old_weight = weight;
weight = THTensor_(newWithStorage2d)(weight->storage, weight->storageOffset,
s1, -1, s2, -1);
THTensor_(free)(old_weight);
}
return weight;
}
/* note: due to write issues, this one cannot be parallelized as well as unfolded_copy */
static void THNN_(unfolded_acc_vol)(
THTensor *finput,
THTensor *input,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int pT,
int pW,
int pH,
long nInputPlane,
long inputDepth,
long inputWidth,
long inputHeight,
long outputDepth,
long outputWidth,
long outputHeight)
{
long nip;
real *input_data = THTensor_(data)(input);
real *finput_data = THTensor_(data)(finput);
//#pragma omp parallel for private(nip)
for (nip = 0; nip < nInputPlane; nip++)
{
long kt, kw, kh, t, y, x, it, ix, iy;
for (kt = 0; kt < kT; kt++)
{
for (kh = 0; kh < kH; kh++)
{
for (kw = 0; kw < kW; kw++)
{
real *src = finput_data
+ nip * (kT*kH*kW*outputDepth*outputHeight*outputWidth)
+ kt * (kH*kW*outputDepth*outputHeight*outputWidth)
+ kh * (kW*outputDepth*outputHeight*outputWidth)
+ kw * (outputDepth*outputHeight*outputWidth);
real *dst = input_data + nip*(inputDepth*inputHeight*inputWidth);
if (pT > 0 || pH > 0 || pW > 0)
{
for (t = 0; t < outputDepth; t++)
{
it = t*dT - pT + kt;
for (y = 0; y < outputHeight; y++)
{
iy = y*dH - pH + kh;
for (x = 0; x < outputWidth; x++)
{
ix = x*dW - pW + kw;
if (it < 0 || it >= inputDepth || iy < 0 || iy >= inputHeight || ix < 0 || ix >= inputWidth)
{
}
else
{
real *dst_slice = dst+it*inputHeight*inputWidth+iy*inputWidth+ix;
THVector_(cadd)(dst_slice, dst_slice, src+t*outputHeight*outputWidth+y*outputWidth+x, 1, 1);
}
}
}
}
}
else
{
for (t = 0; t < outputDepth; t++)
{
it = t*dT + kt;
for (y = 0; y < outputHeight; y++)
{
iy = y*dH + kh;
for(x = 0; x < outputWidth; x++)
{
ix = x*dW + kw;
real *dst_slice = dst+it*inputHeight*inputWidth+iy*inputWidth+ix;
THVector_(cadd)(dst_slice, dst_slice, src+t*outputHeight*outputWidth+y*outputWidth+x, 1, 1);
}
}
}
}
}
}
}
}
}
static void THNN_(unfolded_copy_vol)(
THTensor *finput,
THTensor *input,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int pT,
int pW,
int pH,
long nInputPlane,
long inputDepth,
long inputWidth,
long inputHeight,
long outputDepth,
long outputWidth,
long outputHeight)
{
int64_t k;
real *input_data = THTensor_(data)(input);
real *finput_data = THTensor_(data)(finput);
// #pragma omp parallel for private(k)
for (k = 0; k < nInputPlane*kT*kH*kW; k++)
{
long nip = k / (kT*kH*kW);
long rest = k % (kT*kH*kW);
long kt = rest / (kH*kW);
rest = rest % (kH*kW);
long kh = rest / kW;
long kw = rest % kW;
long t,x,y,it,ix,iy;
real *dst = finput_data
+ nip * (kT*kH*kW*outputDepth*outputHeight*outputWidth)
+ kt * (kH*kW*outputDepth*outputHeight*outputWidth)
+ kh * (kW*outputDepth*outputHeight*outputWidth)
+ kw * (outputDepth*outputHeight*outputWidth);
real *src = input_data + nip*(inputDepth*inputHeight*inputWidth);
if (pT > 0 || pH > 0 || pW > 0)
{
for (t = 0; t < outputDepth; t++)
{
it = t*dT - pT + kt;
for (y = 0; y < outputHeight; y++)
{
iy = y*dH - pH + kh;
for (x = 0; x < outputWidth; x++)
{
ix = x*dW - pW + kw;
if (it < 0 || it >= inputDepth || iy < 0 || iy >= inputHeight || ix < 0 || ix >= inputWidth)
memset(dst+t*outputHeight*outputWidth+y*outputWidth+x, 0, sizeof(real)*(1));
else
memcpy(dst+t*outputHeight*outputWidth+y*outputWidth+x, src+it*inputHeight*inputWidth+iy*inputWidth+ix, sizeof(real)*(1));
}
}
}
}
else
{
for (t = 0; t < outputDepth; t++)
{
it = t*dT + kt;
for (y = 0; y < outputHeight; y++)
{
iy = y*dH + kh;
for(x = 0; x < outputWidth; x++)
{
ix = x*dW + kw;
memcpy(dst+t*outputHeight*outputWidth+y*outputWidth+x, src+it*inputHeight*inputWidth+iy*inputWidth+ix, sizeof(real)*(1));
}
}
}
}
}
}
static void THNN_(VolumetricConvolutionMM_updateOutput_frame)(
THTensor *input,
THTensor *output,
THTensor *weight,
THTensor *bias,
THTensor *finput,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int pT,
int pW,
int pH,
int64_t nInputPlane,
int64_t inputDepth,
int64_t inputWidth,
int64_t inputHeight,
int64_t nOutputPlane,
int64_t outputDepth,
int64_t outputWidth,
int64_t outputHeight)
{
int64_t i;
THTensor *output2d;
THNN_(unfolded_copy_vol)(
finput, input,
kT, kW, kH,
dT, dW, dH,
pT, pW, pH,
nInputPlane,
inputDepth, inputWidth, inputHeight,
outputDepth, outputWidth, outputHeight
);
output2d = THTensor_(newWithStorage2d)(
output->storage, output->storageOffset, nOutputPlane, -1,
outputDepth*outputHeight*outputWidth, -1
);
if (bias) {
for (i = 0; i < nOutputPlane; i++)
{
THVector_(fill)(
output->storage->data+output->storageOffset+output->stride[0]*i,
THTensor_(get1d)(bias, i),
outputDepth*outputHeight*outputWidth
);
}
} else {
THTensor_(zero)(output);
}
THTensor_(addmm)(output2d, 1, output2d, 1, weight, finput);
THTensor_(free)(output2d);
}
void THNN_(VolumetricConvolutionMM_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output,
THTensor *weight,
THTensor *bias,
THTensor *finput,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int pT,
int pW,
int pH)
{
int dimf = 0;
int dimt = 1;
int dimh = 2;
int dimw = 3;
int64_t nInputPlane;
int64_t inputDepth;
int64_t inputHeight;
int64_t inputWidth;
int64_t nOutputPlane;
int64_t outputDepth;
int64_t outputHeight;
int64_t outputWidth;
THNN_(VolumetricConvolutionMM_shapeCheck)(
state, input, NULL, weight, bias,
kT, kW, kH, dT, dW, dH, pT, pW, pH);
input = THTensor_(newContiguous)(input);
if (input->nDimension == 5)
{
dimf++;
dimt++;
dimh++;
dimw++;
}
nInputPlane = input->size[dimf];
inputDepth = input->size[dimt];
inputHeight = input->size[dimh];
inputWidth = input->size[dimw];
nOutputPlane = weight->size[0];
outputDepth = (inputDepth + 2*pT - kT) / dT + 1;
outputHeight = (inputHeight + 2*pH - kH) / dH + 1;
outputWidth = (inputWidth + 2*pW - kW) / dW + 1;
weight = THNN_(view_weight)(weight);
if (input->nDimension == 4)
{
THTensor_(resize2d)(finput, kT*kW*kH*nInputPlane, outputDepth*outputHeight*outputWidth);
THTensor_(resize4d)(output, nOutputPlane, outputDepth, outputHeight, outputWidth);
THNN_(VolumetricConvolutionMM_updateOutput_frame)(
input, output, weight, bias, finput,
kT, kW, kH,
dT, dW, dH,
pT, pW, pH,
nInputPlane, inputDepth, inputWidth, inputHeight,
nOutputPlane, outputDepth, outputWidth, outputHeight
);
}
else
{
int64_t T = input->size[0];
int64_t t;
THTensor_(resize3d)(finput, T, kT*kW*kH*nInputPlane, outputDepth*outputHeight*outputWidth);
THTensor_(resize5d)(output, T, nOutputPlane, outputDepth, outputHeight, outputWidth);
// #pragma omp parallel for private(t)
for (t = 0; t < T; t++)
{
THTensor *input_t = THTensor_(newSelect)(input, 0, t);
THTensor *output_t = THTensor_(newSelect)(output, 0, t);
THTensor *finput_t = THTensor_(newSelect)(finput, 0, t);
THNN_(VolumetricConvolutionMM_updateOutput_frame)(
input_t, output_t, weight, bias, finput_t,
kT, kW, kH,
dT, dW, dH,
pT, pW, pH,
nInputPlane, inputDepth, inputWidth, inputHeight,
nOutputPlane, outputDepth, outputWidth, outputHeight
);
THTensor_(free)(input_t);
THTensor_(free)(output_t);
THTensor_(free)(finput_t);
}
}
THTensor_(free)(input);
THTensor_(free)(weight);
}
static void THNN_(VolumetricConvolutionMM_updateGradInput_frame)(
THTensor *gradInput,
THTensor *gradOutput,
THTensor *weight,
THTensor *fgradInput,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int pT,
int pW,
int pH)
{
THTensor *gradOutput2d = THTensor_(newWithStorage2d)(
gradOutput->storage, gradOutput->storageOffset,
gradOutput->size[0], -1,
gradOutput->size[1]*gradOutput->size[2]*gradOutput->size[3], -1
);
THTensor_(addmm)(fgradInput, 0, fgradInput, 1, weight, gradOutput2d);
THTensor_(free)(gradOutput2d);
THTensor_(zero)(gradInput);
THNN_(unfolded_acc_vol)(
fgradInput, gradInput,
kT, kW, kH,
dT, dW, dH,
pT, pW, pH,
gradInput->size[0], gradInput->size[1], gradInput->size[3], gradInput->size[2],
gradOutput->size[1], gradOutput->size[3], gradOutput->size[2]
);
}
void THNN_(VolumetricConvolutionMM_updateGradInput)(
THNNState *state,
THTensor *input,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *weight,
THTensor *finput,
THTensor *fgradInput,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int pT,
int pW,
int pH)
{
int nOutputPlane = (int)weight->size[0];
THNN_(VolumetricConvolutionMM_shapeCheck)(
state, input, gradOutput, weight, NULL,
kT, kW, kH, dT, dW, dH, pT, pW, pH);
input = THTensor_(newContiguous)(input);
gradOutput = THTensor_(newContiguous)(gradOutput);
weight = THNN_(view_weight)(weight);
THTensor_(resizeAs)(gradInput, input);
THTensor_(resizeAs)(fgradInput, finput);
// depending on the BLAS library, fgradInput (result tensor) might
// be left uninitialized on zero alpha, which might lead to weird behavior
// hence, to be safe, zero it
THTensor_(zero)(fgradInput);
THTensor *tweight = THTensor_(new)();
THTensor_(transpose)(tweight, weight, 0, 1);
if (input->nDimension == 4)
{
THNN_(VolumetricConvolutionMM_updateGradInput_frame)(
gradInput, gradOutput, tweight, fgradInput,
kT, kW, kH,
dT, dW, dH,
pT, pW, pH
);
}
else
{
int64_t T = input->size[0];
int64_t t;
//#pragma omp parallel for private(t)
for (t = 0; t < T; t++)
{
THTensor *gradInput_t = THTensor_(newSelect)(gradInput, 0, t);
THTensor *gradOutput_t = THTensor_(newSelect)(gradOutput, 0, t);
THTensor *fgradInput_t = THTensor_(newSelect)(fgradInput, 0, t);
THNN_(VolumetricConvolutionMM_updateGradInput_frame)(
gradInput_t, gradOutput_t, tweight, fgradInput_t,
kT, kW, kH,
dT, dW, dH,
pT, pW, pH
);
THTensor_(free)(gradInput_t);
THTensor_(free)(gradOutput_t);
THTensor_(free)(fgradInput_t);
}
}
THTensor_(free)(tweight);
THTensor_(free)(input);
THTensor_(free)(gradOutput);
THTensor_(free)(weight);
}
static void THNN_(VolumetricConvolutionMM_accGradParameters_frame)(
THTensor *gradOutput,
THTensor *gradWeight,
THTensor *gradBias,
THTensor *finput,
real scale)
{
int64_t i;
THTensor *gradOutput2d = THTensor_(newWithStorage2d)(
gradOutput->storage, gradOutput->storageOffset,
gradOutput->size[0], -1,
gradOutput->size[1]*gradOutput->size[2]*gradOutput->size[3], -1
);
THTensor *tfinput = THTensor_(new)();
THTensor_(transpose)(tfinput, finput, 0, 1);
THTensor_(addmm)(gradWeight, 1, gradWeight, scale, gradOutput2d, tfinput);
THTensor_(free)(tfinput);
if (gradBias) {
for (i = 0; i < gradBias->size[0]; i++)
{
int64_t k;
real sum = 0;
real *data = gradOutput2d->storage->data + gradOutput2d->storageOffset + i*gradOutput2d->stride[0];
for (k = 0; k < gradOutput2d->size[1]; k++)
sum += data[k];
(gradBias->storage->data + gradBias->storageOffset)[i] += scale * sum;
}
}
THTensor_(free)(gradOutput2d);
}
void THNN_(VolumetricConvolutionMM_accGradParameters)(
THNNState *state,
THTensor *input,
THTensor *gradOutput,
THTensor *gradWeight,
THTensor *gradBias,
THTensor *finput,
int kT, int kW, int kH,
int dT, int dW, int dH,
int pT, int pW, int pH,
accreal scale_)
{
real scale = TH_CONVERT_ACCREAL_TO_REAL(scale_);
int nOutputPlane = (int)gradWeight->size[0];
THNN_(VolumetricConvolutionMM_shapeCheck)(
state, input, gradOutput, gradWeight, gradBias,
kT, kW, kH, dT, dW, dH, pT, pW, pH);
input = THTensor_(newContiguous)(input);
gradOutput = THTensor_(newContiguous)(gradOutput);
gradWeight = THNN_(view_weight)(gradWeight);
if (input->nDimension == 4) // non-batch mode
{
THNN_(VolumetricConvolutionMM_accGradParameters_frame)(gradOutput, gradWeight, gradBias, finput, scale);
}
else // batch mode
{
int64_t T = input->size[0];
int64_t t;
for (t = 0; t < T; t++)
{
THTensor *gradOutput_t = THTensor_(newSelect)(gradOutput, 0, t);
THTensor *finput_t = THTensor_(newSelect)(finput, 0, t);
THNN_(VolumetricConvolutionMM_accGradParameters_frame)(gradOutput_t, gradWeight, gradBias, finput_t, scale);
THTensor_(free)(gradOutput_t);
THTensor_(free)(finput_t);
}
}
THTensor_(free)(input);
THTensor_(free)(gradOutput);
THTensor_(free)(gradWeight);
}
#endif