| #ifndef TH_GENERIC_FILE |
| #define TH_GENERIC_FILE "generic/SpatialAdaptiveMaxPooling.c" |
| #else |
| |
| static void THNN_(SpatialAdaptiveMaxPooling_updateOutput_frame)( |
| real *input_p, |
| real *output_p, |
| THIndex_t *ind_p, |
| int64_t nslices, |
| int64_t iwidth, |
| int64_t iheight, |
| int64_t owidth, |
| int64_t oheight, |
| int64_t stridew, |
| int64_t strideh, |
| int64_t strided) |
| { |
| int64_t k; |
| #pragma omp parallel for private(k) |
| for (k = 0; k < nslices; k++) |
| { |
| /* loop over output */ |
| int64_t i, j; |
| for(i = 0; i < oheight; i++) |
| { |
| int y_start = (int)floor((float)i / oheight * iheight); |
| int y_end = (int)ceil((float)(i + 1) / oheight * iheight); |
| int kH = y_end-y_start; |
| |
| for(j = 0; j < owidth; j++) |
| { |
| |
| int x_start = (int)floor((float)j / owidth * iwidth); |
| int x_end = (int)ceil((float)(j + 1) / owidth * iwidth); |
| int kW = x_end-x_start; |
| |
| /* local pointers */ |
| real *ip = input_p + k*strided + y_start*strideh + x_start*stridew; |
| real *op = output_p + k*owidth*oheight + i*owidth + j; |
| THIndex_t *indp = ind_p + k*owidth*oheight + i*owidth + j; |
| |
| /* compute local max: */ |
| int64_t maxindex = -1; |
| real maxval = -FLT_MAX; |
| int64_t tcntr = 0; |
| int x,y; |
| for(y = 0; y < kH; y++) |
| { |
| for(x = 0; x < kW; x++) |
| { |
| real val = *(ip + y*strideh + x*stridew); |
| if (val > maxval) |
| { |
| maxval = val; |
| maxindex = (y+y_start)*iwidth + (x+x_start); |
| } |
| } |
| } |
| |
| /* set output to local max */ |
| *op = maxval; |
| |
| /* store location of max */ |
| *indp = maxindex + TH_INDEX_BASE; |
| } |
| } |
| } |
| } |
| |
| void THNN_(SpatialAdaptiveMaxPooling_updateOutput)( |
| THNNState *state, |
| THTensor *input, |
| THTensor *output, |
| THIndexTensor *indices, |
| int owidth, |
| int oheight) |
| { |
| int dimw = 2; |
| int dimh = 1; |
| int64_t nbatch = 1; |
| int64_t nslices; |
| int64_t iheight; |
| int64_t iwidth; |
| |
| int64_t istride_d; |
| int64_t istride_h; |
| int64_t istride_w; |
| int64_t istride_b; |
| |
| real *input_data; |
| real *output_data; |
| THIndex_t *indices_data; |
| |
| |
| THNN_ARGCHECK(input->nDimension == 3 || input->nDimension == 4, 2, input, |
| "3D or 4D (batch mode) tensor expected for input, but got: %s"); |
| |
| if (input->nDimension == 4) |
| { |
| istride_b = input->stride[0]; |
| nbatch = input->size[0]; |
| dimw++; |
| dimh++; |
| } |
| |
| /* sizes */ |
| nslices = input->size[dimh-1]; |
| iheight = input->size[dimh]; |
| iwidth = input->size[dimw]; |
| /* strides */ |
| istride_d = input->stride[dimh-1]; |
| istride_h = input->stride[dimh]; |
| istride_w = input->stride[dimw]; |
| |
| /* resize output */ |
| if (input->nDimension == 3) |
| { |
| THTensor_(resize3d)(output, nslices, oheight, owidth); |
| /* indices will contain i,j locations for each output point */ |
| THIndexTensor_(resize3d)(indices, nslices, oheight, owidth); |
| |
| input_data = THTensor_(data)(input); |
| output_data = THTensor_(data)(output); |
| indices_data = THIndexTensor_(data)(indices); |
| |
| THNN_(SpatialAdaptiveMaxPooling_updateOutput_frame)(input_data, output_data, |
| indices_data, |
| nslices, |
| iwidth, iheight, |
| owidth, oheight, |
| istride_w,istride_h, |
| istride_d); |
| } |
| else |
| { |
| int64_t p; |
| |
| THTensor_(resize4d)(output, nbatch, nslices, oheight, owidth); |
| /* indices will contain i,j locations for each output point */ |
| THIndexTensor_(resize4d)(indices, nbatch, nslices, oheight, owidth); |
| |
| input_data = THTensor_(data)(input); |
| output_data = THTensor_(data)(output); |
| indices_data = THIndexTensor_(data)(indices); |
| |
| #pragma omp parallel for private(p) |
| for (p = 0; p < nbatch; p++) |
| { |
| THNN_(SpatialAdaptiveMaxPooling_updateOutput_frame)(input_data+p*istride_b, output_data+p*nslices*owidth*oheight, |
| indices_data+p*nslices*owidth*oheight, |
| nslices, |
| iwidth, iheight, |
| owidth, oheight, |
| istride_w,istride_h, |
| istride_d); |
| } |
| } |
| } |
| |
| static void THNN_(SpatialAdaptiveMaxPooling_updateGradInput_frame)( |
| real *gradInput_p, |
| real *gradOutput_p, |
| THIndex_t *ind_p, |
| int64_t nslices, |
| int64_t iwidth, |
| int64_t iheight, |
| int64_t owidth, |
| int64_t oheight) |
| { |
| int64_t k; |
| #pragma omp parallel for private(k) |
| for (k = 0; k < nslices; k++) |
| { |
| real *gradInput_p_k = gradInput_p + k*iwidth*iheight; |
| real *gradOutput_p_k = gradOutput_p + k*owidth*oheight; |
| THIndex_t *ind_p_k = ind_p + k*owidth*oheight; |
| |
| /* calculate max points */ |
| int64_t i, j; |
| for(i = 0; i < oheight; i++) |
| { |
| int y_start = (int)floor((float) i / oheight * iheight); |
| for(j = 0; j < owidth; j++) |
| { |
| int x_start = (int)floor((float) j / owidth * iwidth); |
| /* retrieve position of max */ |
| int64_t maxp = ind_p_k[i*owidth + j] - TH_INDEX_BASE; |
| |
| /* update gradient */ |
| gradInput_p_k[maxp] += gradOutput_p_k[i*owidth + j]; |
| } |
| } |
| } |
| } |
| |
| void THNN_(SpatialAdaptiveMaxPooling_updateGradInput)( |
| THNNState *state, |
| THTensor *input, |
| THTensor *gradOutput, |
| THTensor *gradInput, |
| THIndexTensor *indices) |
| { |
| int dimw = 2; |
| int dimh = 1; |
| int64_t nbatch = 1; |
| int nslices; |
| int iheight; |
| int iwidth; |
| int oheight; |
| int owidth; |
| real *gradInput_data; |
| real *gradOutput_data; |
| THIndex_t *indices_data; |
| |
| /* get contiguous gradOutput */ |
| gradOutput = THTensor_(newContiguous)(gradOutput); |
| |
| /* resize */ |
| THTensor_(resizeAs)(gradInput, input); |
| THTensor_(zero)(gradInput); |
| |
| if (input->nDimension == 4) { |
| nbatch = input->size[0]; |
| dimw++; |
| dimh++; |
| } |
| |
| /* sizes */ |
| nslices = input->size[dimh-1]; |
| iheight = input->size[dimh]; |
| iwidth = input->size[dimw]; |
| oheight = gradOutput->size[dimh]; |
| owidth = gradOutput->size[dimw]; |
| |
| /* get raw pointers */ |
| gradInput_data = THTensor_(data)(gradInput); |
| gradOutput_data = THTensor_(data)(gradOutput); |
| indices_data = THIndexTensor_(data)(indices); |
| |
| /* backprop */ |
| if (input->nDimension == 3) |
| { |
| THNN_(SpatialAdaptiveMaxPooling_updateGradInput_frame)(gradInput_data, gradOutput_data, |
| indices_data, |
| nslices, |
| iwidth, iheight, |
| owidth, oheight); |
| } |
| else |
| { |
| int64_t p; |
| #pragma omp parallel for private(p) |
| for (p = 0; p < nbatch; p++) |
| { |
| THNN_(SpatialAdaptiveMaxPooling_updateGradInput_frame)(gradInput_data+p*nslices*iwidth*iheight, gradOutput_data+p*nslices*owidth*oheight, |
| indices_data+p*nslices*owidth*oheight, |
| nslices, |
| iwidth, iheight, |
| owidth, oheight); |
| } |
| } |
| |
| /* cleanup */ |
| THTensor_(free)(gradOutput); |
| } |
| |
| #endif |