blob: 637a4067efc0e1c7d568190cb2ac36d4e67674f2 [file] [log] [blame]
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/BCECriterion.c"
#else
#define EPS 1e-12
void THNN_(BCECriterion_updateOutput)(THNNState *state, THTensor *input,
THTensor *target, THTensor *output,
bool sizeAverage, THTensor *weights)
{
THNN_CHECK_NELEMENT(input, target);
THNN_CHECK_NELEMENT(input, weights);
THNN_CHECK_DIM_SIZE(output, 1, 0, 1);
real sum = 0;
if(weights)
TH_TENSOR_APPLY3(real, input, real, target, real, weights,
real x = *input_data;
real y = *target_data;
real w = *weights_data;
THAssertMsg(x >= 0. && x <= 1.,
"input value should be between 0~1, but got %f",
(double) x);
sum -= (log(x + EPS) * y + log(1. - x + EPS) * (1. - y)) * w;
)
else
TH_TENSOR_APPLY2(real, input, real, target,
real x = *input_data;
real y = *target_data;
THAssertMsg(x >= 0. && x <= 1.,
"input value should be between 0~1, but got %f",
(double) x);
sum -= log(x + EPS) * y + log(1. - x + EPS) * (1. - y);
);
if (sizeAverage)
sum /= THTensor_(nElement)(input);
THTensor_(set1d)(output, 0, sum);
}
void THNN_(BCECriterion_updateGradInput)(THNNState *state, THTensor *input,
THTensor *target, THTensor *gradInput,
bool sizeAverage, THTensor *weights)
{
THNN_CHECK_NELEMENT(input, target);
THNN_CHECK_NELEMENT(input, weights);
real norm = (sizeAverage ? 1./((real)THTensor_(nElement)(input)) : 1.);
THTensor_(resizeAs)(gradInput, input);
TH_TENSOR_APPLY3(real, gradInput, real, input, real, target,
real x = *input_data;
real y = *target_data;
*gradInput_data = - norm * (y - x) / ((1. - x + EPS) * (x + EPS));
);
if(weights)
THTensor_(cmul)(gradInput, gradInput, weights);
}
#undef EPS
#endif