blob: 0cbec5605c08e7b45269edf21e022214a998eeff [file] [log] [blame]
# Owner(s): ["oncall: jit"]
import cmath
import os
import sys
from itertools import product
from textwrap import dedent
from typing import Dict, List
import torch
from torch.testing._internal.common_utils import IS_MACOS
from torch.testing._internal.jit_utils import execWrapper, JitTestCase
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
class TestComplex(JitTestCase):
def test_script(self):
def fn(a: complex):
return a
self.checkScript(fn, (3 + 5j,))
def test_complexlist(self):
def fn(a: List[complex], idx: int):
return a[idx]
input = [1j, 2, 3 + 4j, -5, -7j]
self.checkScript(fn, (input, 2))
def test_complexdict(self):
def fn(a: Dict[complex, complex], key: complex) -> complex:
return a[key]
input = {2 + 3j: 2 - 3j, -4.3 - 2j: 3j}
self.checkScript(fn, (input, -4.3 - 2j))
def test_pickle(self):
class ComplexModule(torch.jit.ScriptModule):
def __init__(self) -> None:
super().__init__()
self.a = 3 + 5j
self.b = [2 + 3j, 3 + 4j, 0 - 3j, -4 + 0j]
self.c = {2 + 3j: 2 - 3j, -4.3 - 2j: 3j}
@torch.jit.script_method
def forward(self, b: int):
return b + 2j
loaded = self.getExportImportCopy(ComplexModule())
self.assertEqual(loaded.a, 3 + 5j)
self.assertEqual(loaded.b, [2 + 3j, 3 + 4j, -3j, -4])
self.assertEqual(loaded.c, {2 + 3j: 2 - 3j, -4.3 - 2j: 3j})
self.assertEqual(loaded(2), 2 + 2j)
def test_complex_parse(self):
def fn(a: int, b: torch.Tensor, dim: int):
# verifies `emitValueToTensor()` 's behavior
b[dim] = 2.4 + 0.5j
return (3 * 2j) + a + 5j - 7.4j - 4
t1 = torch.tensor(1)
t2 = torch.tensor([0.4, 1.4j, 2.35])
self.checkScript(fn, (t1, t2, 2))
def test_complex_constants_and_ops(self):
vals = (
[0.0, 1.0, 2.2, -1.0, -0.0, -2.2, 1, 0, 2]
+ [10.0**i for i in range(2)]
+ [-(10.0**i) for i in range(2)]
)
complex_vals = tuple(complex(x, y) for x, y in product(vals, vals))
funcs_template = dedent(
"""
def func(a: complex):
return cmath.{func_or_const}(a)
"""
)
def checkCmath(func_name, funcs_template=funcs_template):
funcs_str = funcs_template.format(func_or_const=func_name)
scope = {}
execWrapper(funcs_str, globals(), scope)
cu = torch.jit.CompilationUnit(funcs_str)
f_script = cu.func
f = scope["func"]
if func_name in ["isinf", "isnan", "isfinite"]:
new_vals = vals + ([float("inf"), float("nan"), -1 * float("inf")])
final_vals = tuple(
complex(x, y) for x, y in product(new_vals, new_vals)
)
else:
final_vals = complex_vals
for a in final_vals:
res_python = None
res_script = None
try:
res_python = f(a)
except Exception as e:
res_python = e
try:
res_script = f_script(a)
except Exception as e:
res_script = e
if res_python != res_script:
if isinstance(res_python, Exception):
continue
msg = f"Failed on {func_name} with input {a}. Python: {res_python}, Script: {res_script}"
self.assertEqual(res_python, res_script, msg=msg)
unary_ops = [
"log",
"log10",
"sqrt",
"exp",
"sin",
"cos",
"asin",
"acos",
"atan",
"sinh",
"cosh",
"tanh",
"asinh",
"acosh",
"atanh",
"phase",
"isinf",
"isnan",
"isfinite",
]
# --- Unary ops ---
for op in unary_ops:
checkCmath(op)
def fn(x: complex):
return abs(x)
for val in complex_vals:
self.checkScript(fn, (val,))
def pow_complex_float(x: complex, y: float):
return pow(x, y)
def pow_float_complex(x: float, y: complex):
return pow(x, y)
self.checkScript(pow_float_complex, (2, 3j))
self.checkScript(pow_complex_float, (3j, 2))
def pow_complex_complex(x: complex, y: complex):
return pow(x, y)
for x, y in zip(complex_vals, complex_vals):
# Reference: https://github.com/pytorch/pytorch/issues/54622
if x == 0:
continue
self.checkScript(pow_complex_complex, (x, y))
if not IS_MACOS:
# --- Binary op ---
def rect_fn(x: float, y: float):
return cmath.rect(x, y)
for x, y in product(vals, vals):
self.checkScript(
rect_fn,
(
x,
y,
),
)
func_constants_template = dedent(
"""
def func():
return cmath.{func_or_const}
"""
)
float_consts = ["pi", "e", "tau", "inf", "nan"]
complex_consts = ["infj", "nanj"]
for x in float_consts + complex_consts:
checkCmath(x, funcs_template=func_constants_template)
def test_infj_nanj_pickle(self):
class ComplexModule(torch.jit.ScriptModule):
def __init__(self) -> None:
super().__init__()
self.a = 3 + 5j
@torch.jit.script_method
def forward(self, infj: int, nanj: int):
if infj == 2:
return infj + cmath.infj
else:
return nanj + cmath.nanj
loaded = self.getExportImportCopy(ComplexModule())
self.assertEqual(loaded(2, 3), 2 + cmath.infj)
self.assertEqual(loaded(3, 4), 4 + cmath.nanj)
def test_complex_constructor(self):
# Test all scalar types
def fn_int(real: int, img: int):
return complex(real, img)
self.checkScript(
fn_int,
(
0,
0,
),
)
self.checkScript(
fn_int,
(
-1234,
0,
),
)
self.checkScript(
fn_int,
(
0,
-1256,
),
)
self.checkScript(
fn_int,
(
-167,
-1256,
),
)
def fn_float(real: float, img: float):
return complex(real, img)
self.checkScript(
fn_float,
(
0.0,
0.0,
),
)
self.checkScript(
fn_float,
(
-1234.78,
0,
),
)
self.checkScript(
fn_float,
(
0,
56.18,
),
)
self.checkScript(
fn_float,
(
-1.9,
-19.8,
),
)
def fn_bool(real: bool, img: bool):
return complex(real, img)
self.checkScript(
fn_bool,
(
True,
True,
),
)
self.checkScript(
fn_bool,
(
False,
False,
),
)
self.checkScript(
fn_bool,
(
False,
True,
),
)
self.checkScript(
fn_bool,
(
True,
False,
),
)
def fn_bool_int(real: bool, img: int):
return complex(real, img)
self.checkScript(
fn_bool_int,
(
True,
0,
),
)
self.checkScript(
fn_bool_int,
(
False,
0,
),
)
self.checkScript(
fn_bool_int,
(
False,
-1,
),
)
self.checkScript(
fn_bool_int,
(
True,
3,
),
)
def fn_int_bool(real: int, img: bool):
return complex(real, img)
self.checkScript(
fn_int_bool,
(
0,
True,
),
)
self.checkScript(
fn_int_bool,
(
0,
False,
),
)
self.checkScript(
fn_int_bool,
(
-3,
True,
),
)
self.checkScript(
fn_int_bool,
(
6,
False,
),
)
def fn_bool_float(real: bool, img: float):
return complex(real, img)
self.checkScript(
fn_bool_float,
(
True,
0.0,
),
)
self.checkScript(
fn_bool_float,
(
False,
0.0,
),
)
self.checkScript(
fn_bool_float,
(
False,
-1.0,
),
)
self.checkScript(
fn_bool_float,
(
True,
3.0,
),
)
def fn_float_bool(real: float, img: bool):
return complex(real, img)
self.checkScript(
fn_float_bool,
(
0.0,
True,
),
)
self.checkScript(
fn_float_bool,
(
0.0,
False,
),
)
self.checkScript(
fn_float_bool,
(
-3.0,
True,
),
)
self.checkScript(
fn_float_bool,
(
6.0,
False,
),
)
def fn_float_int(real: float, img: int):
return complex(real, img)
self.checkScript(
fn_float_int,
(
0.0,
1,
),
)
self.checkScript(
fn_float_int,
(
0.0,
-1,
),
)
self.checkScript(
fn_float_int,
(
1.8,
-3,
),
)
self.checkScript(
fn_float_int,
(
2.7,
8,
),
)
def fn_int_float(real: int, img: float):
return complex(real, img)
self.checkScript(
fn_int_float,
(
1,
0.0,
),
)
self.checkScript(
fn_int_float,
(
-1,
1.7,
),
)
self.checkScript(
fn_int_float,
(
-3,
0.0,
),
)
self.checkScript(
fn_int_float,
(
2,
-8.9,
),
)
def test_torch_complex_constructor_with_tensor(self):
tensors = [torch.rand(1), torch.randint(-5, 5, (1,)), torch.tensor([False])]
def fn_tensor_float(real, img: float):
return complex(real, img)
def fn_tensor_int(real, img: int):
return complex(real, img)
def fn_tensor_bool(real, img: bool):
return complex(real, img)
def fn_float_tensor(real: float, img):
return complex(real, img)
def fn_int_tensor(real: int, img):
return complex(real, img)
def fn_bool_tensor(real: bool, img):
return complex(real, img)
for tensor in tensors:
self.checkScript(fn_tensor_float, (tensor, 1.2))
self.checkScript(fn_tensor_int, (tensor, 3))
self.checkScript(fn_tensor_bool, (tensor, True))
self.checkScript(fn_float_tensor, (1.2, tensor))
self.checkScript(fn_int_tensor, (3, tensor))
self.checkScript(fn_bool_tensor, (True, tensor))
def fn_tensor_tensor(real, img):
return complex(real, img) + complex(2)
for x, y in product(tensors, tensors):
self.checkScript(
fn_tensor_tensor,
(
x,
y,
),
)
def test_comparison_ops(self):
def fn1(a: complex, b: complex):
return a == b
def fn2(a: complex, b: complex):
return a != b
def fn3(a: complex, b: float):
return a == b
def fn4(a: complex, b: float):
return a != b
x, y = 2 - 3j, 4j
self.checkScript(fn1, (x, x))
self.checkScript(fn1, (x, y))
self.checkScript(fn2, (x, x))
self.checkScript(fn2, (x, y))
x1, y1 = 1 + 0j, 1.0
self.checkScript(fn3, (x1, y1))
self.checkScript(fn4, (x1, y1))
def test_div(self):
def fn1(a: complex, b: complex):
return a / b
x, y = 2 - 3j, 4j
self.checkScript(fn1, (x, y))
def test_complex_list_sum(self):
def fn(x: List[complex]):
return sum(x)
self.checkScript(fn, (torch.randn(4, dtype=torch.cdouble).tolist(),))
def test_tensor_attributes(self):
def tensor_real(x):
return x.real
def tensor_imag(x):
return x.imag
t = torch.randn(2, 3, dtype=torch.cdouble)
self.checkScript(tensor_real, (t,))
self.checkScript(tensor_imag, (t,))
def test_binary_op_complex_tensor(self):
def mul(x: complex, y: torch.Tensor):
return x * y
def add(x: complex, y: torch.Tensor):
return x + y
def eq(x: complex, y: torch.Tensor):
return x == y
def ne(x: complex, y: torch.Tensor):
return x != y
def sub(x: complex, y: torch.Tensor):
return x - y
def div(x: complex, y: torch.Tensor):
return x - y
ops = [mul, add, eq, ne, sub, div]
for shape in [(1,), (2, 2)]:
x = 0.71 + 0.71j
y = torch.randn(shape, dtype=torch.cfloat)
for op in ops:
eager_result = op(x, y)
scripted = torch.jit.script(op)
jit_result = scripted(x, y)
self.assertEqual(eager_result, jit_result)