| r""" |
| This module introduces CUDA Sanitizer, a tool for detecting synchronization errors |
| between kernels ran on different streams. It stores information on accesses to tensors |
| to determine if they are synchronized or not. When enabled in a python program and a |
| possible data race is detected, a detailed warning will be printed and the program |
| will exit. |
| |
| It can be enabled either by importing this module and using |
| :func:`enable_cuda_sanitizer()` or by exporting ``TORCH_CUDA_SANITIZER`` |
| environment variable. |
| """ |
| |
| import enum |
| import functools |
| import io |
| import logging |
| import sys |
| import textwrap |
| import traceback |
| from dataclasses import dataclass, field |
| from typing import Any, Dict, Iterator, List, Optional, Set, Tuple, TypeVar |
| |
| import torch |
| import torch.utils._cuda_trace as cuda_trace |
| from torch.utils._python_dispatch import TorchDispatchMode |
| from torch.utils._pytree import tree_map |
| |
| |
| DEFAULT_STREAM_ID = 0 |
| |
| TK = TypeVar("TK") |
| TVa = TypeVar("TVa") |
| TVb = TypeVar("TVb") |
| |
| DataPtr = int |
| StreamId = int |
| EventId = int |
| SeqNum = int |
| |
| logger = logging.getLogger(__name__) |
| |
| |
| class AccessType(enum.Enum): |
| READ = enum.auto() |
| WRITE = enum.auto() |
| |
| def __str__(self): |
| return "reading from" if self is AccessType.READ else "writing to" |
| |
| |
| @dataclass |
| class Access: |
| r"""Stores information about a single access to a tensor by a kernel. |
| |
| Args: |
| type: either AccessType.READ or AccessType.Write. |
| seq_num: the sequential number of the kernel performing the access. |
| stream: the stream id of the stream executing the kernel. |
| operator: the schema of the launched kernel, which lists the |
| arguments and return type. |
| names: the arguments in the schema this access corresponds to. |
| stack_trace: the stack summary object captured during access. |
| """ |
| type: AccessType |
| seq_num: SeqNum |
| stream: StreamId |
| operator: str |
| names: List[str] |
| stack_trace: traceback.StackSummary |
| |
| |
| class SynchronizationError(Exception): |
| """Base class for errors detected by CUDA Sanitizer.""" |
| |
| pass |
| |
| |
| class UnsynchronizedAccessError(SynchronizationError): |
| """Stores information about two unsynchronized accesses to one data pointer.""" |
| |
| def __init__( |
| self, |
| data_ptr: DataPtr, |
| allocation_stack_trace: Optional[traceback.StackSummary], |
| current_access: Access, |
| previous_access: Access, |
| ): |
| self.data_ptr = data_ptr |
| self.allocation_stack_trace = allocation_stack_trace |
| self.current_access = current_access |
| self.previous_access = previous_access |
| |
| def __str__(self): |
| with io.StringIO() as message: |
| message.write( |
| textwrap.dedent( |
| f"""\ |
| ============================ |
| CSAN detected a possible data race on tensor with data pointer {self.data_ptr} |
| Access by stream {self.current_access.stream} during kernel: |
| {self.current_access.operator} |
| {self.current_access.type} argument: {', '.join(self.current_access.names)} |
| With stack trace: |
| """ |
| ) |
| ) |
| message.write(f"{''.join(self.current_access.stack_trace.format())}\n") |
| message.write( |
| textwrap.dedent( |
| f"""\ |
| Previous access by stream {self.previous_access.stream} during kernel: |
| {self.previous_access.operator} |
| {self.previous_access.type} argument: {', '.join(self.previous_access.names)} |
| With stack trace: |
| """ |
| ) |
| ) |
| message.write(f"{''.join(self.previous_access.stack_trace.format())}\n") |
| if self.allocation_stack_trace: |
| message.write( |
| "Tensor was allocated with stack trace:\n" |
| f"{''.join(self.allocation_stack_trace.format())}" |
| ) |
| else: |
| message.write("Trace for tensor allocation not found.") |
| return message.getvalue() |
| |
| |
| class CUDASanitizerErrors(Exception): |
| """Wrapper class for errors reported by CUDA Sanitizer.""" |
| |
| def __init__(self, errors: List[SynchronizationError]): |
| self.errors = errors |
| |
| def __str__(self): |
| return f"detected {len(self.errors)} errors" |
| |
| |
| def format_log_message(message: str) -> str: |
| return " ".join(line.strip() for line in message.strip().splitlines()) |
| |
| |
| @dataclass |
| class TensorInfo: |
| r"""Stores information about a single tensor and recent accesses to it. |
| |
| Args: |
| allocation_stack_trace: the stack summary object captured during tensor |
| allocation. Can be ``None`` if the allocation wasn't caught by CSAN. |
| reads: list of read accesses to the tensor that were performed since |
| the last write. |
| write: the last write access to the tensor. |
| """ |
| allocation_stack_trace: Optional[traceback.StackSummary] |
| reads: List[Access] = field(default_factory=list) |
| write: Optional[Access] = None |
| |
| |
| class _TensorsAccessed: |
| def __init__(self): |
| self.accesses: Dict[DataPtr, TensorInfo] = {} |
| |
| def ensure_tensor_exists(self, data_ptr: DataPtr) -> None: |
| if data_ptr not in self.accesses: |
| logger.info( |
| format_log_message( |
| f""" |
| Found tensor with pointer: {data_ptr}, but no matching tensor |
| allocation in the trace. Backfilling the trace now. |
| Perhaps the sanitizer was enabled after some torch operations? |
| """ |
| ) |
| ) |
| self.create_tensor(data_ptr, None) |
| |
| def ensure_tensor_does_not_exist(self, data_ptr: DataPtr) -> None: |
| if data_ptr in self.accesses: |
| logger.info( |
| format_log_message( |
| f""" |
| Found duplicate tensor allocation in the trace for tensor with |
| pointer: {data_ptr}. Assuming the trace for tensor deallocation |
| wasn't caught and backfilling it now. |
| Perhaps the sanitizer was enabled after some torch operations? |
| """ |
| ) |
| ) |
| self.delete_tensor(data_ptr) |
| |
| def create_tensor( |
| self, data_ptr: DataPtr, stack_trace: Optional[traceback.StackSummary] |
| ) -> None: |
| self.accesses[data_ptr] = TensorInfo(stack_trace) |
| |
| def delete_tensor(self, data_ptr: DataPtr) -> None: |
| del self.accesses[data_ptr] |
| |
| def were_there_reads_since_last_write(self, data_ptr: DataPtr) -> bool: |
| return True if self.accesses[data_ptr].reads else False |
| |
| def get_allocation_stack_trace( |
| self, data_ptr: DataPtr |
| ) -> Optional[traceback.StackSummary]: |
| return self.accesses[data_ptr].allocation_stack_trace |
| |
| def get_write(self, data_ptr: DataPtr) -> Optional[Access]: |
| return self.accesses[data_ptr].write |
| |
| def get_reads(self, data_ptr: DataPtr) -> List[Access]: |
| return self.accesses[data_ptr].reads |
| |
| def add_read(self, data_ptr: DataPtr, access: Access) -> None: |
| self.accesses[data_ptr].reads.append(access) |
| |
| def set_write(self, data_ptr: DataPtr, access: Access) -> None: |
| self.accesses[data_ptr].write = access |
| self.accesses[data_ptr].reads = [] |
| |
| |
| class StreamSynchronizations: |
| def __init__(self): |
| self.current_sync_states: Dict[StreamId, Dict[StreamId, SeqNum]] = {} |
| self.recorded_sync_states: Dict[EventId, Dict[StreamId, SeqNum]] = {} |
| self.host_sync_state: Dict[StreamId, SeqNum] = {} |
| self.create_stream(DEFAULT_STREAM_ID) |
| |
| def _ensure_stream_exists(self, stream: StreamId) -> None: |
| if stream not in self.current_sync_states: |
| logger.info( |
| format_log_message( |
| f""" |
| Found Stream with id: {stream}, but no matching stream |
| creation in the trace. Backfilling the trace now. |
| Perhaps the sanitizer was enabled after some torch operations? |
| """ |
| ) |
| ) |
| self.create_stream(stream) |
| |
| def _ensure_event_exists(self, event: EventId) -> None: |
| if event not in self.recorded_sync_states: |
| logger.info( |
| format_log_message( |
| f""" |
| Found Event with id: {event}, but no matching event |
| creation in the trace. Backfilling the trace now. |
| Perhaps the sanitizer was enabled after some torch operations? |
| """ |
| ) |
| ) |
| self.create_event(event) |
| |
| def _ensure_event_does_not_exist(self, event: EventId) -> None: |
| if event in self.recorded_sync_states: |
| logger.info( |
| format_log_message( |
| f""" |
| Found duplicate event creation in the trace for event with |
| id: {event}. Assuming the trace for event deletion wasn't caught |
| and backfilling it now. |
| Perhaps the sanitizer was enabled after some torch operations? |
| """ |
| ) |
| ) |
| self.delete_event(event) |
| |
| def create_stream(self, stream: StreamId) -> None: |
| if stream in self.current_sync_states: |
| logger.info( |
| format_log_message( |
| f""" |
| Found duplicate Stream creation in the trace for Stream with |
| id: {stream}. PyTorch Streams are only created once, so this |
| trace entry is ignored. |
| """ |
| ) |
| ) |
| else: |
| self.host_sync_state[stream] = 0 |
| self.current_sync_states[stream] = self.host_sync_state.copy() |
| |
| def create_event(self, event: EventId) -> None: |
| self._ensure_event_does_not_exist(event) |
| self.recorded_sync_states[event] = {} |
| |
| def delete_event(self, event: EventId) -> None: |
| self._ensure_event_exists(event) |
| del self.recorded_sync_states[event] |
| |
| def update_seq_num(self, stream: StreamId, seq_num: SeqNum) -> None: |
| self._ensure_stream_exists(stream) |
| self.current_sync_states[stream][stream] = seq_num |
| |
| def record_state(self, event: EventId, stream: StreamId) -> None: |
| self._ensure_event_exists(event) |
| self._ensure_stream_exists(stream) |
| self.recorded_sync_states[event] = self.current_sync_states[stream].copy() |
| |
| def _state_wait_for_other( |
| self, state: Dict[StreamId, SeqNum], other: Dict[StreamId, SeqNum] |
| ) -> None: |
| for stream, seq_num in other.items(): |
| state[stream] = max(state.get(stream, -1), seq_num) |
| |
| def stream_wait_for_event(self, stream: StreamId, event: EventId) -> None: |
| self._ensure_stream_exists(stream) |
| self._ensure_event_exists(event) |
| self._state_wait_for_other( |
| self.current_sync_states[stream], self.recorded_sync_states[event] |
| ) |
| |
| def all_streams_wait_for_event(self, event: EventId) -> None: |
| self._ensure_event_exists(event) |
| for stream in self.current_sync_states.keys(): |
| self.stream_wait_for_event(stream, event) |
| |
| self._state_wait_for_other( |
| self.host_sync_state, self.recorded_sync_states[event] |
| ) |
| |
| def all_streams_wait_for_stream(self, stream: StreamId) -> None: |
| self._ensure_stream_exists(stream) |
| for state in self.current_sync_states.values(): |
| self._state_wait_for_other(state, self.current_sync_states[stream]) |
| |
| self._state_wait_for_other( |
| self.host_sync_state, self.current_sync_states[stream] |
| ) |
| |
| def sync_all_streams(self) -> None: |
| for stream, state in self.current_sync_states.items(): |
| self.host_sync_state[stream] = state[stream] |
| |
| for state in self.current_sync_states.values(): |
| self._state_wait_for_other(state, self.host_sync_state) |
| |
| def is_ordered_after( |
| self, current_stream: StreamId, seq_num: SeqNum, other_stream: StreamId |
| ) -> bool: |
| self._ensure_stream_exists(current_stream) |
| self._ensure_stream_exists(other_stream) |
| return seq_num <= self.current_sync_states[current_stream].get(other_stream, -1) |
| |
| |
| class EventHandler: |
| """Analyzes CSAN trace for synchronization errors. |
| |
| Stores information on each stream's synchronizations with other streams as well |
| as tensor accesses to determine whether a given kernel launch might cause a |
| data race. |
| """ |
| |
| def __init__(self): |
| self.tensors_accessed = _TensorsAccessed() |
| self.syncs = StreamSynchronizations() |
| self.seq_num: SeqNum = 0 |
| |
| def _handle_kernel_launch( |
| self, |
| stream: StreamId, |
| read_only: List[DataPtr], |
| read_write: List[DataPtr], |
| operator: str, |
| tensor_names: Dict[int, List[str]], |
| ) -> List[SynchronizationError]: |
| def check_conflict( |
| data_ptr: DataPtr, current_access: Access, previous_access: Optional[Access] |
| ) -> None: |
| if previous_access is None: |
| return |
| if not self.syncs.is_ordered_after( |
| current_access.stream, previous_access.seq_num, previous_access.stream |
| ): |
| error_list.append( |
| UnsynchronizedAccessError( |
| data_ptr, |
| self.tensors_accessed.get_allocation_stack_trace(data_ptr), |
| current_access, |
| previous_access, |
| ) |
| ) |
| |
| error_list: List[SynchronizationError] = [] |
| self.seq_num += 1 |
| self.syncs.update_seq_num(stream, self.seq_num) |
| stack_trace = traceback.StackSummary.extract( |
| traceback.walk_stack(None), lookup_lines=False |
| ) |
| |
| for data_ptr in read_only: |
| self.tensors_accessed.ensure_tensor_exists(data_ptr) |
| current_access = Access( |
| AccessType.READ, |
| self.seq_num, |
| stream, |
| operator, |
| tensor_names[data_ptr], |
| stack_trace, |
| ) |
| check_conflict( |
| data_ptr, current_access, self.tensors_accessed.get_write(data_ptr) |
| ) |
| self.tensors_accessed.add_read(data_ptr, current_access) |
| |
| for data_ptr in read_write: |
| self.tensors_accessed.ensure_tensor_exists(data_ptr) |
| current_access = Access( |
| AccessType.WRITE, |
| self.seq_num, |
| stream, |
| operator, |
| tensor_names[data_ptr], |
| stack_trace, |
| ) |
| if self.tensors_accessed.were_there_reads_since_last_write(data_ptr): |
| for previous_access in self.tensors_accessed.get_reads(data_ptr): |
| check_conflict(data_ptr, current_access, previous_access) |
| else: |
| check_conflict( |
| data_ptr, current_access, self.tensors_accessed.get_write(data_ptr) |
| ) |
| self.tensors_accessed.set_write(data_ptr, current_access) |
| |
| return error_list |
| |
| def _handle_event_creation(self, event: EventId) -> None: |
| self.syncs.create_event(event) |
| |
| def _handle_event_deletion(self, event: EventId) -> None: |
| self.syncs.delete_event(event) |
| |
| def _handle_event_record(self, event: EventId, stream: StreamId) -> None: |
| self.syncs.record_state(event, stream) |
| |
| def _handle_event_wait(self, event: EventId, stream: StreamId) -> None: |
| self.syncs.stream_wait_for_event(stream, event) |
| |
| def _handle_memory_allocation(self, data_ptr: DataPtr) -> None: |
| self.tensors_accessed.ensure_tensor_does_not_exist(data_ptr) |
| self.tensors_accessed.create_tensor( |
| data_ptr, |
| traceback.StackSummary.extract( |
| traceback.walk_stack(None), lookup_lines=False |
| ), |
| ) |
| |
| def _handle_memory_deallocation(self, data_ptr: DataPtr) -> None: |
| self.tensors_accessed.ensure_tensor_exists(data_ptr) |
| self.tensors_accessed.delete_tensor(data_ptr) |
| |
| def _handle_stream_creation(self, stream: StreamId) -> None: |
| self.syncs.create_stream(stream) |
| |
| def _handle_device_synchronization(self) -> None: |
| self.syncs.sync_all_streams() |
| |
| def _handle_stream_synchronization(self, stream: StreamId) -> None: |
| self.syncs.all_streams_wait_for_stream(stream) |
| |
| def _handle_event_synchronization(self, event: EventId) -> None: |
| self.syncs.all_streams_wait_for_event(event) |
| |
| |
| def zip_by_key(a: Dict[TK, TVa], b: Dict[TK, TVb]) -> Iterator[Tuple[TK, TVa, TVb]]: |
| for arg, value in a.items(): |
| if arg in b: |
| yield arg, value, b[arg] |
| |
| |
| def zip_arguments( |
| schema: torch.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any] |
| ) -> Iterator[Tuple[torch.Argument, Any]]: |
| schema_args = schema.arguments[: len(args)] |
| schema_kwargs = {arg.name: arg for arg in schema.arguments[len(args) :]} |
| |
| yield from zip(schema_args, args) |
| |
| for _, argument, value in zip_by_key(schema_kwargs, kwargs): |
| yield (argument, value) |
| |
| |
| class ArgumentHandler: |
| def __init__(self): |
| self.dataptrs_read: Set[int] = set() |
| self.dataptrs_written: Set[int] = set() |
| self.tensor_names: Dict[int, List[str]] = dict() |
| |
| def _handle_argument(self, value: Any, is_write: bool, name: str) -> None: |
| if isinstance(value, torch.Tensor) and value.is_cuda: |
| data_ptr = value.data_ptr() |
| if is_write: |
| self.dataptrs_written.add(data_ptr) |
| else: |
| self.dataptrs_read.add(data_ptr) |
| self.tensor_names.setdefault(data_ptr, []).append(name) |
| |
| def parse_inputs( |
| self, |
| schema: torch.FunctionSchema, |
| args: Tuple[Any, ...], |
| kwargs: Dict[str, Any], |
| ) -> None: |
| for argument, value in zip_arguments(schema, args, kwargs): |
| is_write = argument.alias_info is not None and argument.alias_info.is_write |
| tree_map( |
| functools.partial( |
| self._handle_argument, is_write=is_write, name=argument.name |
| ), |
| value, |
| ) |
| |
| def parse_outputs(self, outputs: Any) -> None: |
| tree_map( |
| functools.partial(self._handle_argument, is_write=True, name="output"), |
| outputs, |
| ) |
| |
| |
| class CUDASanitizerDispatchMode(TorchDispatchMode): |
| def __init__(self): |
| self.event_handler = EventHandler() |
| torch._C._activate_cuda_trace() |
| cuda_trace.register_callback_for_cuda_event_creation( |
| self.event_handler._handle_event_creation |
| ) |
| cuda_trace.register_callback_for_cuda_event_deletion( |
| self.event_handler._handle_event_deletion |
| ) |
| cuda_trace.register_callback_for_cuda_event_record( |
| self.event_handler._handle_event_record |
| ) |
| cuda_trace.register_callback_for_cuda_event_wait( |
| self.event_handler._handle_event_wait |
| ) |
| cuda_trace.register_callback_for_cuda_memory_allocation( |
| self.event_handler._handle_memory_allocation |
| ) |
| cuda_trace.register_callback_for_cuda_memory_deallocation( |
| self.event_handler._handle_memory_deallocation |
| ) |
| cuda_trace.register_callback_for_cuda_stream_creation( |
| self.event_handler._handle_stream_creation |
| ) |
| cuda_trace.register_callback_for_cuda_device_synchronization( |
| self.event_handler._handle_device_synchronization |
| ) |
| cuda_trace.register_callback_for_cuda_stream_synchronization( |
| self.event_handler._handle_stream_synchronization |
| ) |
| cuda_trace.register_callback_for_cuda_event_synchronization( |
| self.event_handler._handle_event_synchronization |
| ) |
| |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| if kwargs is None: |
| kwargs = {} |
| |
| argument_handler = ArgumentHandler() |
| argument_handler.parse_inputs(func._schema, args, kwargs) |
| |
| outputs = func(*args, **kwargs) |
| |
| argument_handler.parse_outputs(outputs) |
| errors = self.event_handler._handle_kernel_launch( |
| torch.cuda.current_stream().cuda_stream, |
| list(argument_handler.dataptrs_read - argument_handler.dataptrs_written), |
| list(argument_handler.dataptrs_written), |
| func._schema, |
| argument_handler.tensor_names, |
| ) |
| if errors: |
| for error in errors: |
| print(error, file=sys.stderr) |
| raise CUDASanitizerErrors(errors) |
| |
| return outputs |
| |
| |
| class CUDASanitizer: |
| """Manages the lifetime of a CUDASanitizer dispatch mode object. |
| |
| The CUDASanitizer class wraps the entering/exiting functions of the dispatch mode |
| context manager in the enable function/destructor, respectively. This is to |
| explicitly set the lifetime of the dispatch mode object to that of the application. |
| This approach was deemed more elegant than using the atexit module. |
| """ |
| |
| def __init__(self): |
| self.dispatch = CUDASanitizerDispatchMode() |
| self.enabled = False |
| |
| def enable(self): |
| self.dispatch.__enter__() |
| self.enabled = True |
| |
| def __del__(self): |
| if self.enabled: |
| self.dispatch.__exit__(None, None, None) |
| |
| |
| def enable_cuda_sanitizer(): |
| """Enables CUDA Sanitizer. |
| |
| The sanitizer will begin to analyze low-level CUDA calls invoked by torch functions |
| for synchronization errors. All data races found will be printed to the standard |
| error output along with stack traces of suspected causes. For best results, the |
| sanitizer should be enabled at the very beginning of the program. |
| """ |
| cuda_sanitizer.enable() |
| |
| |
| cuda_sanitizer = CUDASanitizer() |