blob: d34a010321975e970d57030db9c4093d0f3b75ad [file] [log] [blame]
import torch
from torch.testing._internal.common_utils import TestCase
from functorch.experimental.cond import cond
from torch.fx.experimental.proxy_tensor import make_fx
class TestControlFlow(TestCase):
def test_cond_no_trace(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
x = torch.randn(4)
result = cond(False, true_fn, false_fn, [x])
self.assertEqual(result, torch.cos(x))
class TestControlFlowTraced(TestCase):
def test_cond_traced(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return x.cos()
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
graph = make_fx(f)(x, torch.tensor(False))
result_true = graph.forward(x, torch.tensor(True))
result_false = graph.forward(x, torch.tensor(False))
self.assertFalse(torch.allclose(result_true, result_false))
self.assertEqual(result_true, torch.sin(x))
self.assertEqual(result_false, torch.cos(x))
def test_cond_nested_traced(self):
def true_nested(y):
return y * y
def false_nested(y):
return y + y
def true_fn(x, pred2):
z = cond(pred2, true_nested, false_nested, [x])
return x + z
def false_fn(x, _):
return x.cos()
def f(x, pred, pred2):
return cond(pred, true_fn, false_fn, [x, pred2])
x = torch.randn(4)
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
result_true_true = graph.forward(x, torch.tensor(True), torch.tensor(True)) # True + True -> x * x
result_true_false = graph.forward(x, torch.tensor(True), torch.tensor(False)) # True + True -> x + x
result_false_true = graph.forward(x, torch.tensor(False), torch.tensor(True)) # False + either -> cos
result_false_false = graph.forward(x, torch.tensor(False), torch.tensor(False)) # False + either -> cos
self.assertNotEqual(result_true_true, result_true_false)
self.assertFalse(torch.allclose(result_false_true, result_true_true))
self.assertEqual(result_false_true, result_false_false)
self.assertEqual(result_true_true, (x * x) + x)
self.assertEqual(result_true_false, x + x + x)
self.assertEqual(result_false_true, torch.cos(x))
def test_cond_nested_traced_other_inputs(self):
def true_nested(y):
return y * y
def false_nested(y):
return y + y
def true_fn(k, pred2):
z = cond(pred2, true_nested, false_nested, [k])
return torch.add(torch.tensor([.25, .25]), z)
def false_fn(k, _):
return k.cos()
def f(k, pred, pred2):
return cond(pred, true_fn, false_fn, [k, pred2])
x = torch.tensor([0.5, 0.5])
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
a = torch.tensor([1.0, 1.0])
result_true_true = graph.forward(a, torch.tensor(True), torch.tensor(True))
self.assertEqual(result_true_true, (a * a) + torch.tensor([0.25, 0.25]))
b = torch.tensor([2.0, 2.0])
result_true_true = graph.forward(b, torch.tensor(True), torch.tensor(True))
self.assertEqual(result_true_true, (b * b) + torch.tensor([0.25, 0.25]))
def test_cond_nested_traced_multi(self):
def true_a(y):
return y * y
def false_a(y):
return y + y
def true_b(y, z):
return y + z
def false_b(y, z):
return y * z
def f(x, pred, pred2):
a_out = cond(pred, true_a, false_a, [x])
b_out = cond(pred2, true_b, false_b, [x, x])
return a_out + b_out
x = torch.randn(4)
graph = make_fx(f)(x, torch.tensor(False), torch.tensor(False))
# Brittle, yet, delicious
out = """
def forward(self, x_1, pred_1, pred2_1):
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional = functorch_experimental_ops_cond(pred_1,
true_graph_0, false_graph_0, [[x_1]]); pred_1 = true_graph_0 = false_graph_0 = None
true_graph_1 = self.true_graph_1
false_graph_1 = self.false_graph_1
conditional_1 = functorch_experimental_ops_cond(pred2_1,
true_graph_1, false_graph_1, [[x_1, x_1]]); pred2_1 = true_graph_1 = false_graph_1 = x_1 = None
add_tensor = torch.ops.aten.add.Tensor(conditional, conditional_1); conditional = conditional_1 = None
return add_tensor
"""
code = graph.code
# Normalization hack, cause .code makes some weird whitespace
code = "".join(code.split())
out = "".join(out.split())
self.assertEqual(code, out)
code = graph.true_graph_0.code
out = """
def forward(self, flat_args):
flat_args_1, = fx_pytree.tree_flatten_spec([flat_args], self._in_spec)
mul_tensor = torch.ops.aten.mul.Tensor(flat_args_1, flat_args_1); flat_args_1 = None
return pytree.tree_unflatten([mul_tensor], self._out_spec)
"""
# Normalization hack, cause .code makes some weird whitespace
code = "".join(code.split())
out = "".join(out.split())
self.assertEqual(code, out)
def test_assert_on_mismatch_type_size(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return (x, x)
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
with self.assertRaises(AssertionError):
make_fx(f)(x, torch.tensor(False))
def test_assert_on_mismatch_tensor_size(self):
def true_fn(x):
return x.sin()
def false_fn(x):
return torch.zeros([10, 10])
def f(x, y):
return cond(y, true_fn, false_fn, [x])
x = torch.randn(4)
with self.assertRaises(AssertionError):
make_fx(f)(x, torch.tensor(False))