blob: cdbc118037511c1a8982922d45922330b3588620 [file] [log] [blame]
## @package resnet50_trainer
# Module caffe2.python.examples.resnet50_trainer
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import logging
import numpy as np
import time
from caffe2.python import core, workspace, experiment_util, data_parallel_model, dyndep
from caffe2.python import timeout_guard, cnn
import caffe2.python.models.resnet as resnet
'''
Parallelized multi-GPU distributed trainer for Resnet 50. Can be used to train
on imagenet data, for example.
To run the trainer in single-machine multi-gpu mode by setting num_shards = 1.
To run the trainer in multi-machine multi-gpu mode with M machines,
run the same program on all machines, specifying num_shards = M, and
shard_id = a unique integer in the set [0, M-1].
For rendezvous (the trainer processes have to know about each other),
you can either use a directory path that is visible to all processes
(e.g. NFS directory), or use a Redis instance. Use the former by
passing the `file_store_path` argument. Use the latter by passing the
`redis_host` and `redis_port` arguments.
'''
logging.basicConfig()
log = logging.getLogger("resnet50_trainer")
log.setLevel(logging.DEBUG)
dyndep.InitOpsLibrary('@/caffe2/caffe2/distributed:file_store_handler_ops')
dyndep.InitOpsLibrary('@/caffe2/caffe2/distributed:redis_store_handler_ops')
def AddImageInput(model, reader, batch_size, img_size):
'''
Image input operator that loads data from reader and
applies certain transformations to the images.
'''
data, label = model.ImageInput(
reader,
["data", "label"],
batch_size=batch_size,
use_caffe_datum=True,
mean=128.,
std=128.,
scale=256,
crop=img_size,
mirror=1
)
data = model.StopGradient(data, data)
def AddMomentumParameterUpdate(train_model, LR):
'''
Add the momentum-SGD update.
'''
params = train_model.GetParams()
assert(len(params) > 0)
for param in params:
param_grad = train_model.param_to_grad[param]
param_momentum = train_model.param_init_net.ConstantFill(
[param], param + '_momentum', value=0.0
)
# Update param_grad and param_momentum in place
train_model.net.MomentumSGDUpdate(
[param_grad, param_momentum, LR, param],
[param_grad, param_momentum, param],
momentum=0.9,
nesterov=1,
)
def RunEpoch(
args,
epoch,
train_model,
test_model,
total_batch_size,
num_shards,
expname,
explog,
):
'''
Run one epoch of the trainer.
TODO: add checkpointing here.
'''
# TODO: add loading from checkpoint
log.info("Starting epoch {}/{}".format(epoch, args.num_epochs))
epoch_iters = int(args.epoch_size / total_batch_size / num_shards)
for i in range(epoch_iters):
# This timeout is required (temporarily) since CUDA-NCCL
# operators might deadlock when synchronizing between GPUs.
timeout = 600.0 if i == 0 else 60.0
with timeout_guard.CompleteInTimeOrDie(timeout):
t1 = time.time()
workspace.RunNet(train_model.net.Proto().name)
t2 = time.time()
dt = t2 - t1
fmt = "Finished iteration {}/{} of epoch {} ({:.2f} images/sec)"
log.info(fmt.format(i + 1, epoch_iters, epoch, total_batch_size / dt))
num_images = epoch * epoch_iters * total_batch_size
prefix = "gpu_{}".format(train_model._devices[0])
accuracy = workspace.FetchBlob(prefix + '/accuracy')
loss = workspace.FetchBlob(prefix + '/loss')
learning_rate = workspace.FetchBlob(prefix + '/LR')
test_accuracy = 0
if (test_model is not None):
# Run 100 iters of testing
ntests = 0
for _ in range(0, 100):
workspace.RunNet(test_model.net.Proto().name)
for g in test_model._devices:
test_accuracy += np.asscalar(workspace.FetchBlob(
"gpu_{}".format(g) + '/accuracy'
))
ntests += 1
test_accuracy /= ntests
else:
test_accuracy = (-1)
explog.log(
input_count=num_images,
batch_count=(i + epoch * epoch_iters),
additional_values={
'accuracy': accuracy,
'loss': loss,
'learning_rate': learning_rate,
'epoch': epoch,
'test_accuracy': test_accuracy,
}
)
assert loss < 40, "Exploded gradients :("
# TODO: add checkpointing
return epoch + 1
def Train(args):
# Either use specified device list or generate one
if args.gpus is not None:
gpus = [int(x) for x in args.gpus.split(',')]
num_gpus = len(gpus)
else:
gpus = range(args.num_gpus)
num_gpus = args.num_gpus
log.info("Running on GPUs: {}".format(gpus))
# Verify valid batch size
total_batch_size = args.batch_size
batch_per_device = total_batch_size // num_gpus
assert \
total_batch_size % num_gpus == 0, \
"Number of GPUs must divide batch size"
# Round down epoch size to closest multiple of batch size across machines
global_batch_size = total_batch_size * args.num_shards
epoch_iters = int(args.epoch_size / global_batch_size)
args.epoch_size = epoch_iters * global_batch_size
log.info("Using epoch size: {}".format(args.epoch_size))
# Create CNNModeLhelper object
train_model = cnn.CNNModelHelper(
order="NCHW",
name="resnet50",
use_cudnn=True,
cudnn_exhaustive_search=True,
ws_nbytes_limit=(args.cudnn_workspace_limit_mb * 1024 * 1024),
)
num_shards = args.num_shards
shard_id = args.shard_id
if num_shards > 1:
# Create rendezvous for distributed computation
store_handler = "store_handler"
if args.redis_host is not None:
# Use Redis for rendezvous if Redis host is specified
workspace.RunOperatorOnce(
core.CreateOperator(
"RedisStoreHandlerCreate", [], [store_handler],
host=args.redis_host,
port=args.redis_port,
prefix=args.run_id,
)
)
else:
# Use filesystem for rendezvous otherwise
workspace.RunOperatorOnce(
core.CreateOperator(
"FileStoreHandlerCreate", [], [store_handler],
path=args.file_store_path,
)
)
rendezvous = dict(
kv_handler=store_handler,
shard_id=shard_id,
num_shards=num_shards,
engine="GLOO",
exit_nets=None)
else:
rendezvous = None
# Model building functions
def create_resnet50_model_ops(model, loss_scale):
[softmax, loss] = resnet.create_resnet50(
model,
"data",
num_input_channels=args.num_channels,
num_labels=args.num_labels,
label="label",
no_bias=True,
)
loss = model.Scale(loss, scale=loss_scale)
model.Accuracy([softmax, "label"], "accuracy")
return [loss]
# SGD
def add_parameter_update_ops(model):
model.AddWeightDecay(args.weight_decay)
ITER = model.Iter("ITER")
stepsz = int(30 * args.epoch_size / total_batch_size / num_shards)
LR = model.net.LearningRate(
[ITER],
"LR",
base_lr=args.base_learning_rate,
policy="step",
stepsize=stepsz,
gamma=0.1,
)
AddMomentumParameterUpdate(model, LR)
# Input. Note that the reader must be shared with all GPUS.
reader = train_model.CreateDB(
"reader",
db=args.train_data,
db_type=args.db_type,
num_shards=num_shards,
shard_id=shard_id,
)
def add_image_input(model):
AddImageInput(
model,
reader,
batch_size=batch_per_device,
img_size=args.image_size,
)
# Create parallelized model
data_parallel_model.Parallelize_GPU(
train_model,
input_builder_fun=add_image_input,
forward_pass_builder_fun=create_resnet50_model_ops,
param_update_builder_fun=add_parameter_update_ops,
devices=gpus,
rendezvous=rendezvous,
optimize_gradient_memory=True,
)
# Add test model, if specified
test_model = None
if (args.test_data is not None):
log.info("----- Create test net ----")
test_model = cnn.CNNModelHelper(
order="NCHW",
name="resnet50_test",
use_cudnn=True,
cudnn_exhaustive_search=True
)
test_reader = test_model.CreateDB(
"test_reader",
db=args.test_data,
db_type=args.db_type,
)
def test_input_fn(model):
AddImageInput(
model,
test_reader,
batch_size=batch_per_device,
img_size=args.image_size,
)
data_parallel_model.Parallelize_GPU(
test_model,
input_builder_fun=test_input_fn,
forward_pass_builder_fun=create_resnet50_model_ops,
param_update_builder_fun=None,
devices=gpus,
)
workspace.RunNetOnce(test_model.param_init_net)
workspace.CreateNet(test_model.net)
workspace.RunNetOnce(train_model.param_init_net)
workspace.CreateNet(train_model.net)
expname = "resnet50_gpu%d_b%d_L%d_lr%.2f_v2" % (
args.num_gpus,
total_batch_size,
args.num_labels,
args.base_learning_rate,
)
explog = experiment_util.ModelTrainerLog(expname, args)
# Run the training one epoch a time
epoch = 0
while epoch < args.num_epochs:
epoch = RunEpoch(
args,
epoch,
train_model,
test_model,
total_batch_size,
num_shards,
expname,
explog
)
# TODO: save final model.
def main():
# TODO: use argv
parser = argparse.ArgumentParser(
description="Caffe2: Resnet-50 training"
)
parser.add_argument("--train_data", type=str, default=None,
help="Path to training data or 'everstore_sampler'",
required=True)
parser.add_argument("--test_data", type=str, default=None,
help="Path to test data")
parser.add_argument("--db_type", type=str, default="lmdb",
help="Database type (such as lmdb or leveldb)")
parser.add_argument("--gpus", type=str,
help="Comma separated list of GPU devices to use")
parser.add_argument("--num_gpus", type=int, default=1,
help="Number of GPU devices (instead of --gpus)")
parser.add_argument("--num_channels", type=int, default=3,
help="Number of color channels")
parser.add_argument("--image_size", type=int, default=227,
help="Input image size (to crop to)")
parser.add_argument("--num_labels", type=int, default=1000,
help="Number of labels")
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size, total over all GPUs")
parser.add_argument("--epoch_size", type=int, default=1500000,
help="Number of images/epoch, total over all machines")
parser.add_argument("--num_epochs", type=int, default=1000,
help="Num epochs.")
parser.add_argument("--base_learning_rate", type=float, default=0.1,
help="Initial learning rate.")
parser.add_argument("--weight_decay", type=float, default=1e-4,
help="Weight decay (L2 regularization)")
parser.add_argument("--cudnn_workspace_limit_mb", type=int, default=64,
help="CuDNN workspace limit in MBs")
parser.add_argument("--num_shards", type=int, default=1,
help="Number of machines in distributed run")
parser.add_argument("--shard_id", type=int, default=0,
help="Shard id.")
parser.add_argument("--run_id", type=str,
help="Unique run identifier (e.g. uuid)")
parser.add_argument("--redis_host", type=str,
help="Host of Redis server (for rendezvous)")
parser.add_argument("--redis_port", type=int, default=6379,
help="Port of Redis server (for rendezvous)")
parser.add_argument("--file_store_path", type=str, default="/tmp",
help="Path to directory to use for rendezvous")
args = parser.parse_args()
Train(args)
if __name__ == '__main__':
workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
main()