| #include "torch/csrc/jit/autodiff.h" |
| |
| #include "torch/csrc/jit/passes/dead_code_elimination.h" |
| #include "torch/csrc/jit/passes/common_subexpression_elimination.h" |
| #include "torch/csrc/jit/symbolic_variable.h" |
| #include "torch/csrc/jit/operator.h" |
| #include "torch/csrc/utils/functional.h" |
| |
| #include <torch/csrc/jit/assertions.h> |
| |
| #include <algorithm> |
| #include <memory> |
| |
| namespace torch { namespace jit { |
| |
| using value_map = std::unordered_map<Value*, Value*>; |
| using value_set = std::unordered_set<Value*>; |
| |
| void wrapDim(int64_t & dim, const std::vector<int64_t> & sizes) { |
| if (dim < 0) { |
| dim += sizes.size(); |
| } |
| } |
| |
| bool isDifferentiable(Node * n) { |
| // TODO: scalar-tensor ops should be canonicalized |
| static OperatorSet differentiable_ops = { |
| "aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor", |
| "aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor", |
| "aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor", |
| "aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor", |
| "aten::mul(Tensor self, Tensor other) -> Tensor", |
| "aten::mul(Tensor self, Scalar other) -> Tensor", |
| "aten::div(Tensor self, Tensor other) -> Tensor", |
| "aten::div(Tensor self, Scalar other) -> Tensor", |
| "aten::sigmoid(Tensor self) -> Tensor", |
| "aten::tanh(Tensor self) -> Tensor", |
| "aten::relu(Tensor self) -> Tensor", |
| "aten::exp(Tensor self) -> Tensor", |
| "aten::t(Tensor self) -> Tensor", |
| "aten::neg(Tensor self) -> Tensor", |
| "aten::clamp(Tensor self, Scalar min, Scalar max) -> Tensor", |
| "aten::type_as(Tensor self, Tensor other) -> Tensor", |
| "aten::unsqueeze(Tensor self, int dim) -> Tensor", |
| "aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor", |
| "aten::mm(Tensor self, Tensor mat2) -> Tensor", |
| "aten::lt(Tensor self, Tensor other) -> Tensor", |
| "aten::le(Tensor self, Tensor other) -> Tensor", |
| "aten::gt(Tensor self, Tensor other) -> Tensor", |
| "aten::ge(Tensor self, Tensor other) -> Tensor", |
| "aten::eq(Tensor self, Tensor other) -> Tensor", |
| "aten::ne(Tensor self, Tensor other) -> Tensor", |
| "aten::abs(Tensor self) -> Tensor", |
| "aten::acos(Tensor self) -> Tensor", |
| "aten::asin(Tensor self) -> Tensor", |
| "aten::atan(Tensor self) -> Tensor", |
| "aten::ceil(Tensor self) -> Tensor", |
| "aten::cos(Tensor self) -> Tensor", |
| "aten::cosh(Tensor self) -> Tensor", |
| "aten::exp(Tensor self) -> Tensor", |
| "aten::expm1(Tensor self) -> Tensor", |
| "aten::floor(Tensor self) -> Tensor", |
| "aten::fmod(Tensor self, Scalar other) -> Tensor", |
| "aten::frac(Tensor self) -> Tensor", |
| "aten::log(Tensor self) -> Tensor", |
| "aten::log10(Tensor self) -> Tensor", |
| "aten::log1p(Tensor self) -> Tensor", |
| "aten::log2(Tensor self) -> Tensor", |
| "aten::reciprocal(Tensor self) -> Tensor", |
| "aten::remainder(Tensor self, Scalar other) -> Tensor", |
| "aten::round(Tensor self) -> Tensor", |
| "aten::rsqrt(Tensor self) -> Tensor", |
| "aten::sin(Tensor self) -> Tensor", |
| "aten::sinh(Tensor self) -> Tensor", |
| "aten::tan(Tensor self) -> Tensor", |
| "aten::trunc(Tensor self) -> Tensor", |
| }; |
| |
| // TODO: add support for the following fusible operators. |
| // They're a little tricky to implement; max/min require mutability for best perf |
| // "aten::atan2(Tensor self) -> Tensor", |
| // "aten::max(Tensor self) -> Tensor", |
| // "aten::min(Tensor self) -> Tensor" |
| |
| if (n->kind() == prim::Constant || |
| n->kind() == prim::AutogradAdd || |
| n->kind() == prim::ConstantChunk) |
| return true; |
| if (differentiable_ops.find(n)) |
| return true; |
| |
| // linear blocks may appear as inputs to graph executors, but they are removed |
| // before differentiation occurs |
| if (n->kind() == prim::GradOf) { |
| auto body = n->blocks().at(0); |
| return std::all_of( |
| body->nodes().begin(), |
| body->nodes().end(), |
| static_cast<bool (*)(Node*)>(isDifferentiable)); |
| } |
| |
| return false; |
| } |
| |
| |
| bool isDifferentiable(Graph & g) { |
| return std::all_of(g.nodes().begin(), g.nodes().end(), |
| static_cast<bool(*)(Node*)>(isDifferentiable)); |
| } |
| |
| |
| static std::vector<Value*> gradientForNode(Node* node, ArrayRef<Value*> grad_values) { |
| static const OperatorSet comparison_ops = { |
| "aten::lt(Tensor self, Tensor other) -> Tensor", |
| "aten::le(Tensor self, Tensor other) -> Tensor", |
| "aten::gt(Tensor self, Tensor other) -> Tensor", |
| "aten::ge(Tensor self, Tensor other) -> Tensor", |
| "aten::eq(Tensor self, Tensor other) -> Tensor", |
| "aten::ne(Tensor self, Tensor other) -> Tensor" |
| }; |
| const auto build_sym_grad = [node](const std::vector<SymbolicVariable>& grads) -> std::vector<SymbolicVariable> { |
| auto inputs = fmap<SymbolicVariable>(node->inputs()); |
| auto outputs = fmap<SymbolicVariable>(node->outputs()); |
| |
| if (node->matches("aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) { |
| return {grads.at(0), grads.at(0) * node->namedInput(attr::alpha), nullptr}; |
| |
| } else if (node->matches("aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor")) { |
| return {grads.at(0), nullptr, nullptr}; |
| |
| } else if (node->kind() == prim::AutogradAdd) { |
| return {grads.at(0), grads.at(0)}; |
| |
| } else if (node->matches("aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) { |
| return {grads.at(0), -grads.at(0) * node->namedInput(attr::alpha), nullptr}; |
| |
| } else if (node->matches("aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor")) { |
| return {grads.at(0), nullptr, nullptr}; |
| |
| } else if (node->matches("aten::mul(Tensor self, Tensor other) -> Tensor")) { |
| return {grads.at(0) * inputs.at(1), grads.at(0) * inputs.at(0)}; |
| |
| } else if (node->matches("aten::mul(Tensor self, Scalar other) -> Tensor")) { |
| return {grads.at(0) * inputs.at(1), nullptr}; |
| |
| } else if (node->matches("aten::div(Tensor self, Tensor other) -> Tensor")) { |
| return {grads.at(0) / inputs.at(1), -grads.at(0) * inputs.at(0) / (inputs.at(1) * inputs.at(1))}; |
| |
| } else if (node->matches("aten::div(Tensor self, Scalar other) -> Tensor")) { |
| return {grads.at(0) / inputs.at(1), nullptr}; |
| |
| } else if (node->matches("aten::sigmoid(Tensor self) -> Tensor")) { |
| // TODO: The order of operations matter in this case. This |
| // works for ppc64le and x86_64. Need to look at why the |
| // order matters. |
| return {(1 - outputs.at(0)) * outputs.at(0) * grads.at(0)}; |
| |
| } else if (node->matches("aten::tanh(Tensor self) -> Tensor")) { |
| return {grads.at(0) * (1 - outputs.at(0) * outputs.at(0))}; |
| |
| } else if (node->matches("aten::relu(Tensor self) -> Tensor")) { |
| return {grads.at(0) * (outputs.at(0) > at::Scalar(0)).type_as(outputs.at(0))}; |
| |
| } else if (node->matches("aten::clamp(Tensor self, Scalar min, Scalar max) -> Tensor")) { |
| // we do two type_as and "*" in lieu of boolean "and" |
| // the "! (val > min)" is chosen such that the gradient is 0 on the |
| // boundary and the factor is 1 when the boundary is NaN |
| // the ! is expressed as "1-" for lack of a "not" function and |
| // the the fuser insisting on float |
| // A NaN input will cause the gradient to propagate through, |
| // the more pure approach would be to have NaNs in that case |
| // but that is hard to reliably code and costs extra checks |
| // so we decided against it, see |
| // https://github.com/pytorch/pytorch/pull/11574#discussion_r218104538 |
| return {grads.at(0) |
| * (1-(inputs.at(0) <= inputs.at(1)).type_as(inputs.at(0))) |
| * (1-(inputs.at(0) >= inputs.at(2)).type_as(inputs.at(0))), nullptr, nullptr}; |
| } else if (node->matches("aten::exp(Tensor self) -> Tensor")) { |
| return {grads.at(0) * (outputs.at(0))}; |
| |
| } else if (node->matches("aten::t(Tensor self) -> Tensor")) { |
| return {grads.at(0).t()}; |
| |
| } else if (node->matches("aten::neg(Tensor self) -> Tensor")) { |
| return {-grads.at(0)}; |
| |
| } else if (node->matches("aten::abs(Tensor self) -> Tensor")) { |
| return {grads.at(0) * inputs.at(0).sign()}; |
| |
| } else if (node->matches("aten::acos(Tensor self) -> Tensor")) { |
| return {grads.at(0) * -((-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt())}; |
| |
| } else if (node->matches("aten::asin(Tensor self) -> Tensor")) { |
| return {grads.at(0) * (-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt()}; |
| |
| } else if (node->matches("aten::atan(Tensor self) -> Tensor")) { |
| return {grads.at(0) / (inputs.at(0) * inputs.at(0) + at::Scalar(1))}; |
| |
| } else if (node->matches("aten::ceil(Tensor self) -> Tensor")) { |
| return {SymbolicVariable::zeros_like(grads.at(0))}; |
| |
| } else if (node->matches("aten::cos(Tensor self) -> Tensor")) { |
| return {grads.at(0) * -inputs.at(0).sin()}; |
| |
| } else if (node->matches("aten::cosh(Tensor self) -> Tensor")) { |
| return {grads.at(0) * inputs.at(0).sinh()}; |
| |
| } else if (node->matches("aten::exp(Tensor self) -> Tensor")) { |
| return {grads.at(0) * outputs.at(0)}; |
| |
| } else if (node->matches("aten::expm1(Tensor self) -> Tensor")) { |
| return {grads.at(0) * (outputs.at(0) + at::Scalar(1))}; |
| |
| } else if (node->matches("aten::floor(Tensor self) -> Tensor")) { |
| return {SymbolicVariable::zeros_like(grads.at(0))}; |
| |
| } else if (node->matches("aten::fmod(Tensor self, Scalar other) -> Tensor")) { |
| return {grads.at(0), nullptr}; |
| |
| } else if (node->matches("aten::frac(Tensor self) -> Tensor")) { |
| return {grads.at(0)}; |
| |
| } else if (node->matches("aten::log(Tensor self) -> Tensor")) { |
| return {grads.at(0) / inputs.at(0)}; |
| |
| } else if (node->matches("aten::log10(Tensor self) -> Tensor")) { |
| return {grads.at(0) / (inputs.at(0) * 2.3025850929940456)}; |
| |
| } else if (node->matches("aten::log1p(Tensor self) -> Tensor")) { |
| return {grads.at(0) / (inputs.at(0) + at::Scalar(1))}; |
| |
| } else if (node->matches("aten::log2(Tensor self) -> Tensor")) { |
| return {grads.at(0) / (inputs.at(0) * 0.6931471805599453)}; |
| |
| } else if (node->matches("aten::reciprocal(Tensor self) -> Tensor")) { |
| return {-grads.at(0) * outputs.at(0) * outputs.at(0)}; |
| |
| } else if (node->matches("aten::remainder(Tensor self, Scalar other) -> Tensor")) { |
| return {grads.at(0), nullptr}; |
| |
| } else if (node->matches("aten::round(Tensor self) -> Tensor")) { |
| return {SymbolicVariable::zeros_like(grads.at(0))}; |
| |
| } else if (node->matches("aten::rsqrt(Tensor self) -> Tensor")) { |
| return {grads.at(0) * outputs.at(0).pow(3.) * -0.5}; |
| |
| } else if (node->matches("aten::sin(Tensor self) -> Tensor")) { |
| return {grads.at(0) * inputs.at(0).cos()}; |
| |
| } else if (node->matches("aten::sinh(Tensor self) -> Tensor")) { |
| return {grads.at(0) * inputs.at(0).cosh()}; |
| |
| } else if (node->matches("aten::tan(Tensor self) -> Tensor")) { |
| return {grads.at(0) * (1. + outputs.at(0) * outputs.at(0))}; |
| |
| } else if (node->matches("aten::trunc(Tensor self) -> Tensor")) { |
| return {SymbolicVariable::zeros_like(grads.at(0))}; |
| |
| } else if (node->kind() == prim::ConstantChunk) { |
| return {SymbolicVariable::cat(grads, node->i(attr::dim))}; |
| |
| } else if (node->matches("aten::view(Tensor self, int[] size) -> Tensor") || |
| node->matches("aten::reshape(Tensor self, int[] shape) -> Tensor")) { |
| // TODO: if sizes are not available statically, add an operator that reutrns them as a tuple |
| auto sizes = node->namedInput(attr::self)->type()->expect<CompleteTensorType>()->sizes(); |
| return {grads.at(0).reshape(sizes), nullptr}; |
| |
| } else if (node->matches("aten::type_as(Tensor self, Tensor other) -> Tensor")) { |
| return {grads.at(0).type_as(inputs.at(0)), nullptr}; |
| |
| } else if (node->matches("aten::unsqueeze(Tensor self, int dim) -> Tensor")) { |
| return {grads.at(0).squeeze(node->namedInput(attr::dim)), nullptr}; |
| |
| } else if (node->matches("aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor")) { |
| return {grads.at(0) * node->namedInput(attr::beta), |
| grads.at(0).mm(inputs.at(2).t()) * node->namedInput(attr::alpha), |
| inputs.at(1).t().mm(grads.at(0)) * node->namedInput(attr::alpha), |
| nullptr, nullptr}; |
| |
| } else if (node->matches("aten::mm(Tensor self, Tensor mat2) -> Tensor")) { |
| return {grads.at(0).mm(inputs.at(1).t()), inputs.at(0).t().mm(grads.at(0))}; |
| |
| } else if (node->matches("aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor")) { |
| const auto& input_sizes = inputs.at(0).sizes(); |
| if (input_sizes.size() == 0) |
| return {grads.at(0).sum(), nullptr, nullptr}; |
| auto grad_sizes = node->get<std::vector<int64_t>>(attr::size).value(); |
| auto grad = grads.at(0); |
| while (grad_sizes.size() > input_sizes.size()) { |
| grad = grad.sum(0, false); |
| grad_sizes.erase(grad_sizes.begin()); |
| } |
| for (size_t i = 0; i < input_sizes.size(); ++i) { |
| if (input_sizes[i] == 1 && grad_sizes[i] > 1) { |
| grad = grad.sum(i, true); |
| } |
| } |
| return {grad, nullptr, nullptr}; |
| |
| } else if (node->matches("aten::squeeze(Tensor self) -> Tensor")) { |
| const auto& sizes = inputs.at(0).sizes(); |
| std::vector<size_t> squeezed_dims; |
| for (size_t i = 0; i < sizes.size(); ++i) { |
| if (sizes[i] != 1) continue; |
| squeezed_dims.push_back(i); |
| } |
| SymbolicVariable returned_grad = grads.at(0); |
| for (auto it = squeezed_dims.begin(); it != squeezed_dims.end(); ++it) |
| returned_grad = returned_grad.unsqueeze(*it); |
| return {returned_grad}; |
| |
| } else if (node->matches("aten::squeeze(Tensor self, int dim) -> Tensor", /*const=*/attr::dim)) { |
| int64_t dim = *node->get<int64_t>(attr::dim); |
| const auto& sizes = inputs.at(0).sizes(); |
| wrapDim(dim, sizes); |
| if (sizes.size() == 0) { |
| return {grads.at(0), nullptr}; |
| } |
| return {sizes.at(dim) > 1 ? grads.at(0) : grads.at(0).unsqueeze(dim), nullptr}; |
| |
| } else if (node->matches("aten::cat(Tensor[] tensors, int dim) -> Tensor", /*const=*/attr::dim)) { |
| int dim = *node->get<int64_t>(attr::dim); |
| auto tensor_inputs = inputs; tensor_inputs.pop_back(); |
| const auto& first_sizes = tensor_inputs.at(0).sizes(); |
| const auto has_first_sizes = [&first_sizes](SymbolicVariable var) { |
| return var.sizes() == first_sizes; |
| }; |
| |
| // NB: this is a specialization for the common case where all inputs are |
| // of equal sizes. We can use a single split operation to handle that. |
| if (std::all_of(tensor_inputs.begin(), tensor_inputs.end(), has_first_sizes)) { |
| auto tensor_grads = grads.at(0).chunk(tensor_inputs.size(), dim); |
| tensor_grads.push_back(nullptr); // for attr::dim |
| return tensor_grads; |
| } else { |
| size_t offset = 0; |
| auto grad = grads.at(0); |
| std::vector<SymbolicVariable> tensor_grads; |
| for (auto input : tensor_inputs) { |
| tensor_grads.push_back(grad.narrow(dim, offset, input.sizes()[dim])); |
| offset += input.sizes()[dim]; |
| } |
| tensor_grads.push_back(nullptr); // for attr::dim |
| return tensor_grads; |
| } |
| } else if (comparison_ops.find(node)) { |
| return {nullptr, nullptr}; |
| |
| } else if (node->kind() == prim::Constant) { |
| return {}; |
| } |
| throw std::runtime_error(std::string("failed to differentiate `") + node->kind().toDisplayString() + "`"); |
| }; |
| if (!isDifferentiable(node)) { |
| throw std::runtime_error(std::string("differentiation of ") + node->kind().toDisplayString() + " " |
| "is not supported, or it is missing necessary type information"); |
| } |
| auto sym_grads = build_sym_grad(fmap<SymbolicVariable>(grad_values)); |
| return fmap(sym_grads, [](const SymbolicVariable &v) { return v.value(); }); |
| } |
| |
| // If we have a function y = f(x) with jacobian J, the backwards of f is dx = J^t dy. |
| // Note that because the backwards always implements this matrix multiply, |
| // we know that it maps an input vector of zeros to an output vector of zero |
| // regardless of what operations it choses to do inside to actually implement |
| // the matrix multiply (most use some optimized form and never generate J^t). |
| // More generally, we know that all of the backward computations are linear and |
| // can use this property to do more aggressive optimizations later. |
| // It is ok to replace any backward function with known-zero inputs with something |
| // that produces known-zero outputs. This function encloses each know-linear |
| // backward function in a 'GradOf' sub-block so that we can perform optimizations |
| // using this information. In particular, specializeUndef will observe if |
| // all the inputs to the linear block are Undef, which the autograd uses to represent |
| // zeros, and then propagate the undefs to the outputs of the block. |
| static std::vector<Value*> linearGradientForNode(Node* node, ArrayRef<Value*> grad_values) { |
| auto & graph = *node->owningGraph(); |
| auto linear = graph.insertNode(graph.create(prim::GradOf, {grad_values}, 0)); |
| // to make reading gradient graphs easier, remember the name of the forward op |
| linear->s_(attr::name, node->kind().toDisplayString()); |
| auto block = linear->addBlock(); |
| WithInsertPoint guard(block); |
| auto results = gradientForNode(node, grad_values); |
| return fmap(results, [block, linear](Value *grad) -> Value* { |
| if (!grad) return nullptr; |
| block->registerOutput(grad); |
| return linear->addOutput()->copyMetadata(grad); |
| }); |
| } |
| |
| struct ReverseDetails { |
| ReverseDetails(value_map&& grad_map, Block * reverse_block) |
| : grad_map(std::move(grad_map)) |
| , reverse_block(reverse_block) {} |
| |
| value_map grad_map; |
| Block * reverse_block; |
| }; |
| |
| // AutogradAdd is a special addition function that handles Undef |
| // AutogradAdd(a, b) == a + b if defined(a) and defined(b) |
| // AutogradAdd(Undef, b) == b |
| // AutogradAdd(a, Undef) == a |
| // AutogradAdd(Undef, Undef) == Undef |
| static Value* createAutogradAdd(Value* a, Value* b) { |
| auto graph = a->owningGraph(); |
| return graph->insertNode(graph->create(prim::AutogradAdd, {a, b}))->output(); |
| } |
| |
| // Before: |
| // - grad_desc has field f initialized to the original 0-stage graph |
| // After: |
| // - the last node of f (f->nodes().reverse()[0]) is a gradient node |
| // whose block has vjp inputs for all outputs that require_grad |
| // and vjp outputs for all primal inputs that require_grad |
| // - grad_desc has df_input_vjps and df_output_vjps set |
| // (but df_input_vjps will be modified later as well) |
| static ReverseDetails addReverseInline(Gradient& grad_desc) { |
| auto & graph = *grad_desc.f; |
| // note: reverse_node is intentionally not inserted to avoid |
| // accidentally acting on it (e.g. in elminate dead code), |
| // std::cout << *reverse_node << to view its state. |
| auto reverse_node = graph.create(prim::Reverse, 0); |
| auto reverse_block = reverse_node->addBlock(); |
| WithInsertPoint guard(reverse_block); |
| |
| value_map grad_map; // x -> dx mapping |
| const auto get_grad = [&](Value* v) -> Value* { |
| auto it = grad_map.find(v); |
| if (it == grad_map.end()) { |
| auto undef = graph.insertNode(graph.createUndefined()); |
| std::tie(it, std::ignore) = grad_map.emplace(v, undef->output()); |
| } |
| return it->second; |
| }; |
| const auto set_grad = [&](Value *x, Value *dx) { |
| if (Value * prev_grad = grad_map[x]) { |
| grad_map[x] = createAutogradAdd(prev_grad, dx); |
| } else { |
| grad_map[x] = dx; |
| } |
| }; |
| |
| auto outputs = graph.outputs(); |
| for (size_t i = 0, num_outputs = outputs.size(); i < num_outputs; ++i) { |
| Value * output = outputs[i]; |
| if (!output->requires_grad()) |
| continue; |
| Value * output_grad = reverse_block->addInput()->setType(output->type()); |
| set_grad(output, output_grad); |
| grad_desc.df_input_vjps.push_back(i); |
| } |
| |
| for (auto it = graph.nodes().rbegin(), end = graph.nodes().rend(); it != end; ++it) { |
| Node *node = *it; |
| auto inputs = node->inputs(); |
| auto outputs = node->outputs(); |
| if (std::all_of(outputs.begin(), outputs.end(), [](Value *v) { return !v->requires_grad(); })) { |
| continue; |
| } |
| |
| value_list grad_inputs = linearGradientForNode(node, fmap(node->outputs(), get_grad)); |
| JIT_ASSERT(grad_inputs.size() == node->inputs().size()); |
| for (size_t i = 0, num_inputs = grad_inputs.size(); i < num_inputs; ++i) { |
| if (!inputs[i]->requires_grad()) continue; |
| // NB: Not returning a gradient w.r.t. a value that requires grad is normal if the |
| // input is non-differentiable. This happens e.g. in the aten::type_as case. |
| if (!grad_inputs[i]) continue; |
| set_grad(inputs[i], grad_inputs[i]); |
| } |
| } |
| |
| auto inputs = graph.inputs(); |
| for (size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) { |
| Value * input = inputs[i]; |
| if (!input->requires_grad()) |
| continue; |
| // NB: Not having a gradient defined w.r.t. an input to the graph which requires grad |
| // can happen and is not an error. It might have been used only in non-differentiable |
| // contexts (e.g. as second input to aten::type_as). In that case we simply ignore it |
| // as an output, because it won't ever produce any meaningful values. |
| if (grad_map.count(input) == 0) continue; |
| reverse_block->registerOutput(get_grad(input)); |
| grad_desc.df_output_vjps.push_back(i); |
| } |
| return ReverseDetails(std::move(grad_map), reverse_block); |
| } |
| |
| // Any temporary value from the primal graphs needs to be captured for later use in the |
| // reverse graph, to avoid costly recomputations. However, a lot of the nodes we have |
| // in our graphs are simply constants, which are cheap to execute and replicate, and so |
| // it's better to just copy them into the reverse graph, without polluting the output |
| // lists unnecessarily. |
| static void liftConstants(Gradient& grad_desc, ReverseDetails& rev_info) { |
| static const auto err = [](Value*) -> Value* { |
| throw std::runtime_error("unexpected input"); |
| }; |
| auto & graph = *grad_desc.f; |
| Block* reverse_block = rev_info.reverse_block; |
| |
| for (Node *top_node : reverse_block->nodes()) { |
| JIT_ASSERT(top_node->kind() == prim::GradOf || |
| top_node->kind() == prim::AutogradAdd || |
| top_node->kind() == prim::Undefined); |
| if (top_node->kind() != prim::GradOf) continue; |
| Block * grad_body = top_node->blocks().at(0); |
| for (Node *node : grad_body->nodes()) { |
| for (Value * input : node->inputs()) { |
| if (input->node()->kind() != prim::Constant) continue; |
| if (input->node()->owningBlock() == grad_body) continue; |
| Node *lifted_constant = graph.createClone(input->node(), err); |
| reverse_block->prependNode(lifted_constant); |
| node->replaceInputWith(input, lifted_constant->output()); |
| } |
| } |
| } |
| |
| // It's possible the we've cloned the same constants many times, |
| // so we use CSE to deduplicate them. |
| EliminateCommonSubexpression(reverse_block); |
| } |
| |
| // Takes a grad_desc.f returned from `addReverseInline` and splits off the |
| // reverse_block into its own graph, storing it in df. |
| // All intermediates needed in the second stage are added to |
| // outputs of f, and taken as inputs in df. For a more |
| // detailed description see Note [Gradient graphs] in autodiff.h. |
| // This function also initializes the fields in grad_desc that were undefined after |
| // `addReverseInline` (and extends `df_input_vjps` with vjps for captured temporaries). |
| static void lambdaLiftReverse(Gradient& grad_desc, ReverseDetails& rev_info) { |
| auto & graph = *grad_desc.f; |
| auto primal_block = graph.block(); |
| auto reverse_block = rev_info.reverse_block; |
| |
| // -------------------------------------------------------------------------- |
| // 1. Find values of f that need to be captured. |
| // -------------------------------------------------------------------------- |
| // First, we need to find all values that are produced in f, |
| // and used in df. They will need to be added as inputs of the df |
| // and some of them may also need to be appended as outputs of f if |
| // they are not already an input or an output of f |
| value_set reverse_captures_set; |
| value_list reverse_captures; // Invariant: topo sorted |
| auto check_uses = [&](Value *v) { |
| for (auto use : v->uses()) { |
| if (use.user->owningBlock() == primal_block) |
| continue; |
| if (/* bool unseen = */ reverse_captures_set.emplace(v).second) { |
| reverse_captures.push_back(v); |
| } |
| } |
| }; |
| for (Value * input : graph.inputs()) { |
| if (input->stage() != 0) break; |
| check_uses(input); |
| } |
| for (Node * node : graph.nodes()) { |
| if (node->stage() != 0) break; |
| for (Value * output : node->outputs()) |
| check_uses(output); |
| } |
| |
| // -------------------------------------------------------------------------- |
| // 2. Prepare input/outputs lists for f and df |
| // -------------------------------------------------------------------------- |
| // It's simple to construct primal_inputs/reverse_outputs, |
| // but primal_outputs/reverse_inputs are much more subtle. |
| // Here's a summary of how they are supposed to look like: |
| // |
| // Primal outputs: |
| // [original outputs], [temporaries] |
| // |
| // Reverse inputs: |
| // [output vjps (aka grad_outputs)], [temporary vjps] |
| // [captured primal values, in topological order], |
| |
| // -- Construct primal_outputs, df_input_captures, f_real_outputs ---- |
| grad_desc.f_real_outputs = graph.outputs().size(); |
| |
| std::unordered_map<Value*, size_t> orig_primal_outputs_idx; |
| std::unordered_map<Value*, size_t> orig_primal_inputs_idx; |
| // NOTE: we use emplace to avoid replacing an existing index if an output is repeated |
| for (size_t i = 0, num_outputs = graph.outputs().size(); i < num_outputs; ++i) |
| orig_primal_outputs_idx.emplace(graph.outputs()[i], i); |
| for (size_t i = 0, num_inputs = graph.inputs().size(); i < num_inputs; ++i) |
| orig_primal_inputs_idx[graph.inputs()[i]] = i; |
| |
| // NB: reverse_captures are already deduplicated, and in topo order |
| for (Value * capture_val : reverse_captures) { |
| // If it's already an output we don't have to add anything, |
| // but register the fact that it needs to be captured. |
| if (orig_primal_outputs_idx.count(capture_val) > 0) { |
| grad_desc.df_input_captured_outputs.push_back(orig_primal_outputs_idx[capture_val]); |
| // If it's an input, we could add it as an output but in fact it's |
| // more efficient to use a special kind of capture. |
| } else if (orig_primal_inputs_idx.count(capture_val) > 0) { |
| grad_desc.df_input_captured_inputs.push_back(orig_primal_inputs_idx.at(capture_val)); |
| // Otherwise it's just a regular intermediate value that we need to add as an output |
| } else { |
| // we need to create a new temporary output for this capture because it wasn't availiable. |
| graph.registerOutput(capture_val); |
| grad_desc.df_input_captured_outputs.emplace_back(graph.outputs().size() - 1); |
| } |
| } |
| |
| // -- Add VJPs for temporaries, adjust df_input_vjps ------------------------- |
| // NB [possible optimization]: use the newly added vjp input as soon as the first |
| // vjp for that value is generated, to reduce the lifespan of this input |
| // (currently we add it to the final vjp after all adds). |
| for (size_t i = grad_desc.f_real_outputs; i < graph.outputs().size(); ++i) { |
| Value * tmp = graph.outputs().at(i); |
| // Add VJP inputs only for intermediates that actually required grad. |
| if (!tmp->requires_grad()) continue; |
| Value * tmp_vjp_in = reverse_block->addInput()->setType(tmp->type()); |
| Value * tmp_vjp_prev = rev_info.grad_map.at(tmp); |
| // This is quite weird because we can't first make a sum and then replace all uses |
| // of tmp_vjp_prev (that would replace its use in the sum too!), so we create an |
| // incorrect sum that doesn't use prev vjp, replace uses, and fix the sum. |
| Value * new_vjp = createAutogradAdd(tmp_vjp_in, tmp_vjp_in); |
| new_vjp->node()->moveAfter(tmp_vjp_prev->node()); |
| tmp_vjp_prev->replaceAllUsesWith(new_vjp); |
| new_vjp->node()->replaceInput(1, tmp_vjp_prev); |
| grad_desc.df_input_vjps.emplace_back(i); |
| } |
| |
| // add the captures as formal arguments to the reverse_block |
| // afterward inputs: [output vjps][temporary vjps][captures] |
| // construct a map from captured 'value' to the index in the input list |
| // used to extract this block into its own function |
| std::unordered_map<Value*, size_t> capture_to_formal_index; |
| const auto & add_capture = [&](Value * captured) { |
| capture_to_formal_index[captured] = reverse_block->inputs().size(); |
| reverse_block->addInput()->copyMetadata(captured); |
| }; |
| for(auto & offset : grad_desc.df_input_captured_inputs) |
| add_capture(graph.inputs()[offset]); |
| for(auto & offset : grad_desc.df_input_captured_outputs) |
| add_capture(graph.outputs()[offset]); |
| |
| grad_desc.df = std::make_shared<Graph>(); |
| grad_desc.df->block()->cloneFrom(reverse_block, [&](Value* v) { |
| return grad_desc.df->inputs()[capture_to_formal_index.at(v)]; |
| }); |
| // reverse_node was just to hold onto reverse_block in a debuggable way |
| // we can remove it now. |
| reverse_block->owningNode()->destroy(); |
| } |
| |
| Gradient differentiate(std::shared_ptr<Graph>& graph) { |
| Gradient grad_desc; |
| // Take ownership of the graph |
| JIT_ASSERTM(graph.use_count() == 1, |
| "differentiate will mutate and destroy the graph, so it requires " |
| "graph.use_count() == 1, but found %d", graph.use_count()); |
| std::swap(graph, grad_desc.f); |
| // XXX: Take care when handling outputs - they can be duplicated! |
| |
| WithInsertPoint guard(grad_desc.f->block()); |
| // Fills in df_input_vjps and df_output_vjps |
| auto rev_info = addReverseInline(grad_desc); |
| // Lift constants captured for the reverse graph into it |
| liftConstants(grad_desc, rev_info); |
| // addReverseInline has to call gradientForNode if *any* of the outputs |
| // require grad, but it will emit vjps for *all* outputs. Use DCE to remove |
| // unnecessary nodes. |
| EliminateDeadCode(rev_info.reverse_block); |
| // Fills in f, df, f_real_outputs, df_input_captures, |
| // modifies df_input_vjps (new vjps are added for temporaries) |
| lambdaLiftReverse(grad_desc, rev_info); |
| return grad_desc; |
| } |
| |
| }} |