blob: 46840fc99acd391296dd17ffc0b4a32f96227a70 [file] [log] [blame]
#include "torch/csrc/jit/autodiff.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
#include "torch/csrc/jit/symbolic_variable.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/utils/functional.h"
#include <torch/csrc/jit/assertions.h>
#include <algorithm>
#include <memory>
namespace torch { namespace jit {
using value_map = std::unordered_map<Value*, Value*>;
using value_set = std::unordered_set<Value*>;
void wrapDim(int64_t & dim, const std::vector<int64_t> & sizes) {
if (dim < 0) {
dim += sizes.size();
}
}
bool isDifferentiable(Node * n) {
// TODO: scalar-tensor ops should be canonicalized
static OperatorSet differentiable_ops = {
"aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::mul(Tensor self, Tensor other) -> Tensor",
"aten::mul(Tensor self, Scalar other) -> Tensor",
"aten::div(Tensor self, Tensor other) -> Tensor",
"aten::div(Tensor self, Scalar other) -> Tensor",
"aten::sigmoid(Tensor self) -> Tensor",
"aten::tanh(Tensor self) -> Tensor",
"aten::relu(Tensor self) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::t(Tensor self) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::clamp(Tensor self, Scalar min, Scalar max) -> Tensor",
"aten::type_as(Tensor self, Tensor other) -> Tensor",
"aten::unsqueeze(Tensor self, int dim) -> Tensor",
"aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor",
"aten::mm(Tensor self, Tensor mat2) -> Tensor",
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor",
"aten::abs(Tensor self) -> Tensor",
"aten::acos(Tensor self) -> Tensor",
"aten::asin(Tensor self) -> Tensor",
"aten::atan(Tensor self) -> Tensor",
"aten::ceil(Tensor self) -> Tensor",
"aten::cos(Tensor self) -> Tensor",
"aten::cosh(Tensor self) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::expm1(Tensor self) -> Tensor",
"aten::floor(Tensor self) -> Tensor",
"aten::fmod(Tensor self, Scalar other) -> Tensor",
"aten::frac(Tensor self) -> Tensor",
"aten::log(Tensor self) -> Tensor",
"aten::log10(Tensor self) -> Tensor",
"aten::log1p(Tensor self) -> Tensor",
"aten::log2(Tensor self) -> Tensor",
"aten::reciprocal(Tensor self) -> Tensor",
"aten::remainder(Tensor self, Scalar other) -> Tensor",
"aten::round(Tensor self) -> Tensor",
"aten::rsqrt(Tensor self) -> Tensor",
"aten::sin(Tensor self) -> Tensor",
"aten::sinh(Tensor self) -> Tensor",
"aten::tan(Tensor self) -> Tensor",
"aten::trunc(Tensor self) -> Tensor",
};
// TODO: add support for the following fusible operators.
// They're a little tricky to implement; max/min require mutability for best perf
// "aten::atan2(Tensor self) -> Tensor",
// "aten::max(Tensor self) -> Tensor",
// "aten::min(Tensor self) -> Tensor"
if (n->kind() == prim::Constant ||
n->kind() == prim::AutogradAdd ||
n->kind() == prim::ConstantChunk)
return true;
if (differentiable_ops.find(n))
return true;
// linear blocks may appear as inputs to graph executors, but they are removed
// before differentiation occurs
if (n->kind() == prim::GradOf) {
auto body = n->blocks().at(0);
return std::all_of(
body->nodes().begin(),
body->nodes().end(),
static_cast<bool (*)(Node*)>(isDifferentiable));
}
return false;
}
bool isDifferentiable(Graph & g) {
return std::all_of(g.nodes().begin(), g.nodes().end(),
static_cast<bool(*)(Node*)>(isDifferentiable));
}
static std::vector<Value*> gradientForNode(Node* node, ArrayRef<Value*> grad_values) {
static const OperatorSet comparison_ops = {
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor"
};
const auto build_sym_grad = [node](const std::vector<SymbolicVariable>& grads) -> std::vector<SymbolicVariable> {
auto inputs = fmap<SymbolicVariable>(node->inputs());
auto outputs = fmap<SymbolicVariable>(node->outputs());
if (node->matches("aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) {
return {grads.at(0), grads.at(0) * node->namedInput(attr::alpha), nullptr};
} else if (node->matches("aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor")) {
return {grads.at(0), nullptr, nullptr};
} else if (node->kind() == prim::AutogradAdd) {
return {grads.at(0), grads.at(0)};
} else if (node->matches("aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor")) {
return {grads.at(0), -grads.at(0) * node->namedInput(attr::alpha), nullptr};
} else if (node->matches("aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor")) {
return {grads.at(0), nullptr, nullptr};
} else if (node->matches("aten::mul(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) * inputs.at(1), grads.at(0) * inputs.at(0)};
} else if (node->matches("aten::mul(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0) * inputs.at(1), nullptr};
} else if (node->matches("aten::div(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0) / inputs.at(1), -grads.at(0) * inputs.at(0) / (inputs.at(1) * inputs.at(1))};
} else if (node->matches("aten::div(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0) / inputs.at(1), nullptr};
} else if (node->matches("aten::sigmoid(Tensor self) -> Tensor")) {
// TODO: The order of operations matter in this case. This
// works for ppc64le and x86_64. Need to look at why the
// order matters.
return {(1 - outputs.at(0)) * outputs.at(0) * grads.at(0)};
} else if (node->matches("aten::tanh(Tensor self) -> Tensor")) {
return {grads.at(0) * (1 - outputs.at(0) * outputs.at(0))};
} else if (node->matches("aten::relu(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0) > at::Scalar(0)).type_as(outputs.at(0))};
} else if (node->matches("aten::clamp(Tensor self, Scalar min, Scalar max) -> Tensor")) {
// we do two type_as and "*" in lieu of boolean "and"
// the "! (val > min)" is chosen such that the gradient is 0 on the
// boundary and the factor is 1 when the boundary is NaN
// the ! is expressed as "1-" for lack of a "not" function and
// the the fuser insisting on float
// A NaN input will cause the gradient to propagate through,
// the more pure approach would be to have NaNs in that case
// but that is hard to reliably code and costs extra checks
// so we decided against it, see
// https://github.com/pytorch/pytorch/pull/11574#discussion_r218104538
return {grads.at(0)
* (1-(inputs.at(0) <= inputs.at(1)).type_as(inputs.at(0)))
* (1-(inputs.at(0) >= inputs.at(2)).type_as(inputs.at(0))), nullptr, nullptr};
} else if (node->matches("aten::exp(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0))};
} else if (node->matches("aten::t(Tensor self) -> Tensor")) {
return {grads.at(0).t()};
} else if (node->matches("aten::neg(Tensor self) -> Tensor")) {
return {-grads.at(0)};
} else if (node->matches("aten::abs(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).sign()};
} else if (node->matches("aten::acos(Tensor self) -> Tensor")) {
return {grads.at(0) * -((-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt())};
} else if (node->matches("aten::asin(Tensor self) -> Tensor")) {
return {grads.at(0) * (-inputs.at(0) * inputs.at(0) + at::Scalar(1)).rsqrt()};
} else if (node->matches("aten::atan(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * inputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::ceil(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::cos(Tensor self) -> Tensor")) {
return {grads.at(0) * -inputs.at(0).sin()};
} else if (node->matches("aten::cosh(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).sinh()};
} else if (node->matches("aten::exp(Tensor self) -> Tensor")) {
return {grads.at(0) * outputs.at(0)};
} else if (node->matches("aten::expm1(Tensor self) -> Tensor")) {
return {grads.at(0) * (outputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::floor(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::fmod(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0), nullptr};
} else if (node->matches("aten::frac(Tensor self) -> Tensor")) {
return {grads.at(0)};
} else if (node->matches("aten::log(Tensor self) -> Tensor")) {
return {grads.at(0) / inputs.at(0)};
} else if (node->matches("aten::log10(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * 2.3025850929940456)};
} else if (node->matches("aten::log1p(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) + at::Scalar(1))};
} else if (node->matches("aten::log2(Tensor self) -> Tensor")) {
return {grads.at(0) / (inputs.at(0) * 0.6931471805599453)};
} else if (node->matches("aten::reciprocal(Tensor self) -> Tensor")) {
return {-grads.at(0) * outputs.at(0) * outputs.at(0)};
} else if (node->matches("aten::remainder(Tensor self, Scalar other) -> Tensor")) {
return {grads.at(0), nullptr};
} else if (node->matches("aten::round(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->matches("aten::rsqrt(Tensor self) -> Tensor")) {
return {grads.at(0) * outputs.at(0).pow(3.) * -0.5};
} else if (node->matches("aten::sin(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).cos()};
} else if (node->matches("aten::sinh(Tensor self) -> Tensor")) {
return {grads.at(0) * inputs.at(0).cosh()};
} else if (node->matches("aten::tan(Tensor self) -> Tensor")) {
return {grads.at(0) * (1. + outputs.at(0) * outputs.at(0))};
} else if (node->matches("aten::trunc(Tensor self) -> Tensor")) {
return {SymbolicVariable::zeros_like(grads.at(0))};
} else if (node->kind() == prim::ConstantChunk) {
return {SymbolicVariable::cat(grads, node->i(attr::dim))};
} else if (node->matches("aten::view(Tensor self, int[] size) -> Tensor") ||
node->matches("aten::reshape(Tensor self, int[] shape) -> Tensor")) {
// TODO: if sizes are not available statically, add an operator that reutrns them as a tuple
auto sizes = node->namedInput(attr::self)->type()->expect<CompleteTensorType>()->sizes();
return {grads.at(0).reshape(sizes), nullptr};
} else if (node->matches("aten::type_as(Tensor self, Tensor other) -> Tensor")) {
return {grads.at(0).type_as(inputs.at(0)), nullptr};
} else if (node->matches("aten::unsqueeze(Tensor self, int dim) -> Tensor")) {
return {grads.at(0).squeeze(node->namedInput(attr::dim)), nullptr};
} else if (node->matches("aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta, Scalar alpha) -> Tensor")) {
return {grads.at(0) * node->namedInput(attr::beta),
grads.at(0).mm(inputs.at(2).t()) * node->namedInput(attr::alpha),
inputs.at(1).t().mm(grads.at(0)) * node->namedInput(attr::alpha),
nullptr, nullptr};
} else if (node->matches("aten::mm(Tensor self, Tensor mat2) -> Tensor")) {
return {grads.at(0).mm(inputs.at(1).t()), inputs.at(0).t().mm(grads.at(0))};
} else if (node->matches("aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor")) {
const auto& input_sizes = inputs.at(0).sizes();
if (input_sizes.size() == 0)
return {grads.at(0).sum(), nullptr, nullptr};
auto grad_sizes = node->get<std::vector<int64_t>>(attr::size).value();
auto grad = grads.at(0);
while (grad_sizes.size() > input_sizes.size()) {
grad = grad.sum(0, false);
grad_sizes.erase(grad_sizes.begin());
}
for (size_t i = 0; i < input_sizes.size(); ++i) {
if (input_sizes[i] == 1 && grad_sizes[i] > 1) {
grad = grad.sum(i, true);
}
}
return {grad, nullptr, nullptr};
} else if (node->matches("aten::squeeze(Tensor self) -> Tensor")) {
const auto& sizes = inputs.at(0).sizes();
std::vector<size_t> squeezed_dims;
for (size_t i = 0; i < sizes.size(); ++i) {
if (sizes[i] != 1) continue;
squeezed_dims.push_back(i);
}
SymbolicVariable returned_grad = grads.at(0);
for (auto it = squeezed_dims.begin(); it != squeezed_dims.end(); ++it)
returned_grad = returned_grad.unsqueeze(*it);
return {returned_grad};
} else if (node->matches("aten::squeeze(Tensor self, int dim) -> Tensor", /*const=*/attr::dim)) {
int64_t dim = *node->get<int64_t>(attr::dim);
const auto& sizes = inputs.at(0).sizes();
wrapDim(dim, sizes);
if (sizes.size() == 0) {
return {grads.at(0), nullptr};
}
return {sizes.at(dim) > 1 ? grads.at(0) : grads.at(0).unsqueeze(dim), nullptr};
} else if (node->matches("aten::cat(Tensor[] tensors, int dim) -> Tensor", /*const=*/attr::dim)) {
int dim = *node->get<int64_t>(attr::dim);
auto tensor_inputs = inputs; tensor_inputs.pop_back();
const auto& first_sizes = tensor_inputs.at(0).sizes();
const auto has_first_sizes = [&first_sizes](SymbolicVariable var) {
return var.sizes() == first_sizes;
};
// NB: this is a specialization for the common case where all inputs are
// of equal sizes. We can use a single split operation to handle that.
if (std::all_of(tensor_inputs.begin(), tensor_inputs.end(), has_first_sizes)) {
auto tensor_grads = grads.at(0).chunk(tensor_inputs.size(), dim);
tensor_grads.push_back(nullptr); // for attr::dim
return tensor_grads;
} else {
size_t offset = 0;
auto grad = grads.at(0);
std::vector<SymbolicVariable> tensor_grads;
for (auto input : tensor_inputs) {
tensor_grads.push_back(grad.narrow(dim, offset, input.sizes()[dim]));
offset += input.sizes()[dim];
}
tensor_grads.push_back(nullptr); // for attr::dim
return tensor_grads;
}
} else if (comparison_ops.find(node)) {
return {nullptr, nullptr};
} else if (node->kind() == prim::Constant) {
return {};
}
throw std::runtime_error(std::string("failed to differentiate `") + node->kind().toDisplayString() + "`");
};
if (!isDifferentiable(node)) {
throw std::runtime_error(std::string("differentiation of ") + node->kind().toDisplayString() + " "
"is not supported, or it is missing necessary type information");
}
auto sym_grads = build_sym_grad(fmap<SymbolicVariable>(grad_values));
return fmap(sym_grads, [](const SymbolicVariable &v) { return v.value(); });
}
// If we have a function y = f(x) with jacobian J, the backwards of f is dx = J^t dy.
// Note that because the backwards always implements this matrix multiply,
// we know that it maps an input vector of zeros to an output vector of zero
// regardless of what operations it choses to do inside to actually implement
// the matrix multiply (most use some optimized form and never generate J^t).
// More generally, we know that all of the backward computations are linear and
// can use this property to do more aggressive optimizations later.
// It is ok to replace any backward function with known-zero inputs with something
// that produces known-zero outputs. This function encloses each know-linear
// backward function in a 'GradOf' sub-block so that we can perform optimizations
// using this information. In particular, specializeUndef will observe if
// all the inputs to the linear block are Undef, which the autograd uses to represent
// zeros, and then propagate the undefs to the outputs of the block.
static std::vector<Value*> linearGradientForNode(Node* node, ArrayRef<Value*> grad_values) {
auto & graph = *node->owningGraph();
auto linear = graph.insertNode(graph.create(prim::GradOf, {grad_values}, 0));
// to make reading gradient graphs easier, remember the name of the forward op
linear->s_(attr::name, node->kind().toDisplayString());
auto block = linear->addBlock();
WithInsertPoint guard(block);
auto results = gradientForNode(node, grad_values);
return fmap(results, [block, linear](Value *grad) -> Value* {
if (!grad) return nullptr;
block->registerOutput(grad);
return linear->addOutput()->copyMetadata(grad);
});
}
struct ReverseDetails {
ReverseDetails(value_map&& grad_map, Block * reverse_block)
: grad_map(std::move(grad_map))
, reverse_block(reverse_block) {}
value_map grad_map;
Block * reverse_block;
};
// AutogradAdd is a special addition function that handles Undef
// AutogradAdd(a, b) == a + b if defined(a) and defined(b)
// AutogradAdd(Undef, b) == b
// AutogradAdd(a, Undef) == a
// AutogradAdd(Undef, Undef) == Undef
static Value* createAutogradAdd(Value* a, Value* b) {
auto graph = a->owningGraph();
return graph->insertNode(graph->create(prim::AutogradAdd, {a, b}))->output();
}
// Before:
// - grad_desc has field f initialized to the original 0-stage graph
// After:
// - the last node of f (f->nodes().reverse()[0]) is a gradient node
// whose block has vjp inputs for all outputs that require_grad
// and vjp outputs for all primal inputs that require_grad
// - grad_desc has df_input_vjps and df_output_vjps set
// (but df_input_vjps will be modified later as well)
static ReverseDetails addReverseInline(Gradient& grad_desc) {
auto & graph = *grad_desc.f;
// note: reverse_node is intentionally not inserted to avoid
// accidentally acting on it (e.g. in elminate dead code),
// std::cout << *reverse_node << to view its state.
auto reverse_node = graph.create(prim::Reverse, 0);
auto reverse_block = reverse_node->addBlock();
WithInsertPoint guard(reverse_block);
value_map grad_map; // x -> dx mapping
const auto get_grad = [&](Value* v) -> Value* {
auto it = grad_map.find(v);
if (it == grad_map.end()) {
auto undef = graph.insertNode(graph.createUndefined());
std::tie(it, std::ignore) = grad_map.emplace(v, undef->output());
}
return it->second;
};
const auto set_grad = [&](Value *x, Value *dx) {
if (Value * prev_grad = grad_map[x]) {
grad_map[x] = createAutogradAdd(prev_grad, dx);
} else {
grad_map[x] = dx;
}
};
auto outputs = graph.outputs();
for (size_t i = 0, num_outputs = outputs.size(); i < num_outputs; ++i) {
Value * output = outputs[i];
if (!output->requires_grad())
continue;
Value * output_grad = reverse_block->addInput()->setType(output->type());
set_grad(output, output_grad);
grad_desc.df_input_vjps.push_back(i);
}
for (auto it = graph.nodes().rbegin(), end = graph.nodes().rend(); it != end; ++it) {
Node *node = *it;
auto inputs = node->inputs();
auto outputs = node->outputs();
if (std::all_of(outputs.begin(), outputs.end(), [](Value *v) { return !v->requires_grad(); })) {
continue;
}
value_list grad_inputs = linearGradientForNode(node, fmap(node->outputs(), get_grad));
JIT_ASSERT(grad_inputs.size() == node->inputs().size());
for (size_t i = 0, num_inputs = grad_inputs.size(); i < num_inputs; ++i) {
if (!inputs[i]->requires_grad()) continue;
// NB: Not returning a gradient w.r.t. a value that requires grad is normal if the
// input is non-differentiable. This happens e.g. in the aten::type_as case.
if (!grad_inputs[i]) continue;
set_grad(inputs[i], grad_inputs[i]);
}
}
auto inputs = graph.inputs();
for (size_t i = 0, num_inputs = inputs.size(); i < num_inputs; ++i) {
Value * input = inputs[i];
if (!input->requires_grad())
continue;
// NB: Not having a gradient defined w.r.t. an input to the graph which requires grad
// can happen and is not an error. It might have been used only in non-differentiable
// contexts (e.g. as second input to aten::type_as). In that case we simply ignore it
// as an output, because it won't ever produce any meaningful values.
if (grad_map.count(input) == 0) continue;
reverse_block->registerOutput(get_grad(input));
grad_desc.df_output_vjps.push_back(i);
}
return ReverseDetails(std::move(grad_map), reverse_block);
}
// Any temporary value from the primal graphs needs to be captured for later use in the
// reverse graph, to avoid costly recomputations. However, a lot of the nodes we have
// in our graphs are simply constants, which are cheap to execute and replicate, and so
// it's better to just copy them into the reverse graph, without polluting the output
// lists unnecessarily.
static void liftConstants(Gradient& grad_desc, ReverseDetails& rev_info) {
static const auto err = [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
};
auto & graph = *grad_desc.f;
Block* reverse_block = rev_info.reverse_block;
for (Node *top_node : reverse_block->nodes()) {
JIT_ASSERT(top_node->kind() == prim::GradOf ||
top_node->kind() == prim::AutogradAdd ||
top_node->kind() == prim::Undefined);
if (top_node->kind() != prim::GradOf) continue;
Block * grad_body = top_node->blocks().at(0);
for (Node *node : grad_body->nodes()) {
for (Value * input : node->inputs()) {
if (input->node()->kind() != prim::Constant) continue;
if (input->node()->owningBlock() == grad_body) continue;
Node *lifted_constant = graph.createClone(input->node(), err);
reverse_block->prependNode(lifted_constant);
node->replaceInputWith(input, lifted_constant->output());
}
}
}
// It's possible the we've cloned the same constants many times,
// so we use CSE to deduplicate them.
EliminateCommonSubexpression(reverse_block);
}
// Takes a grad_desc.f returned from `addReverseInline` and splits off the
// reverse_block into its own graph, storing it in df.
// All intermediates needed in the second stage are added to
// outputs of f, and taken as inputs in df. For a more
// detailed description see Note [Gradient graphs] in autodiff.h.
// This function also initializes the fields in grad_desc that were undefined after
// `addReverseInline` (and extends `df_input_vjps` with vjps for captured temporaries).
static void lambdaLiftReverse(Gradient& grad_desc, ReverseDetails& rev_info) {
auto & graph = *grad_desc.f;
auto primal_block = graph.block();
auto reverse_block = rev_info.reverse_block;
// --------------------------------------------------------------------------
// 1. Find values of f that need to be captured.
// --------------------------------------------------------------------------
// First, we need to find all values that are produced in f,
// and used in df. They will need to be added as inputs of the df
// and some of them may also need to be appended as outputs of f if
// they are not already an input or an output of f
value_set reverse_captures_set;
value_list reverse_captures; // Invariant: topo sorted
auto check_uses = [&](Value *v) {
for (auto use : v->uses()) {
if (use.user->owningBlock() == primal_block)
continue;
if (/* bool unseen = */ reverse_captures_set.emplace(v).second) {
reverse_captures.push_back(v);
}
}
};
for (Value * input : graph.inputs()) {
if (input->stage() != 0) break;
check_uses(input);
}
for (Node * node : graph.nodes()) {
if (node->stage() != 0) break;
for (Value * output : node->outputs())
check_uses(output);
}
// --------------------------------------------------------------------------
// 2. Prepare input/outputs lists for f and df
// --------------------------------------------------------------------------
// It's simple to construct primal_inputs/reverse_outputs,
// but primal_outputs/reverse_inputs are much more subtle.
// Here's a summary of how they are supposed to look like:
//
// Primal outputs:
// [original outputs], [temporaries]
//
// Reverse inputs:
// [output vjps (aka grad_outputs)], [temporary vjps]
// [captured primal values, in topological order],
// -- Construct primal_outputs, df_input_captures, f_real_outputs ----
grad_desc.f_real_outputs = graph.outputs().size();
std::unordered_map<Value*, size_t> orig_primal_outputs_idx;
std::unordered_map<Value*, size_t> orig_primal_inputs_idx;
// NOTE: we use emplace to avoid replacing an existing index if an output is repeated
for (size_t i = 0, num_outputs = graph.outputs().size(); i < num_outputs; ++i)
orig_primal_outputs_idx.emplace(graph.outputs()[i], i);
for (size_t i = 0, num_inputs = graph.inputs().size(); i < num_inputs; ++i)
orig_primal_inputs_idx[graph.inputs()[i]] = i;
// NB: reverse_captures are already deduplicated, and in topo order
for (Value * capture_val : reverse_captures) {
// If it's already an output we don't have to add anything,
// but register the fact that it needs to be captured.
if (orig_primal_outputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_outputs.push_back(orig_primal_outputs_idx[capture_val]);
// If it's an input, we could add it as an output but in fact it's
// more efficient to use a special kind of capture.
} else if (orig_primal_inputs_idx.count(capture_val) > 0) {
grad_desc.df_input_captured_inputs.push_back(orig_primal_inputs_idx.at(capture_val));
// Otherwise it's just a regular intermediate value that we need to add as an output
} else {
// we need to create a new temporary output for this capture because it wasn't availiable.
graph.registerOutput(capture_val);
grad_desc.df_input_captured_outputs.emplace_back(graph.outputs().size() - 1);
}
}
// -- Add VJPs for temporaries, adjust df_input_vjps -------------------------
// NB [possible optimization]: use the newly added vjp input as soon as the first
// vjp for that value is generated, to reduce the lifespan of this input
// (currently we add it to the final vjp after all adds).
for (size_t i = grad_desc.f_real_outputs; i < graph.outputs().size(); ++i) {
Value * tmp = graph.outputs().at(i);
// Add VJP inputs only for intermediates that actually required grad.
if (!tmp->requires_grad()) continue;
Value * tmp_vjp_in = reverse_block->addInput()->setType(tmp->type());
Value * tmp_vjp_prev = rev_info.grad_map.at(tmp);
// This is quite weird because we can't first make a sum and then replace all uses
// of tmp_vjp_prev (that would replace its use in the sum too!), so we create an
// incorrect sum that doesn't use prev vjp, replace uses, and fix the sum.
Value * new_vjp = createAutogradAdd(tmp_vjp_in, tmp_vjp_in);
new_vjp->node()->moveAfter(tmp_vjp_prev->node());
tmp_vjp_prev->replaceAllUsesWith(new_vjp);
new_vjp->node()->replaceInput(1, tmp_vjp_prev);
grad_desc.df_input_vjps.emplace_back(i);
}
// add the captures as formal arguments to the reverse_block
// afterward inputs: [output vjps][temporary vjps][captures]
// construct a map from captured 'value' to the index in the input list
// used to extract this block into its own function
std::unordered_map<Value*, size_t> capture_to_formal_index;
const auto & add_capture = [&](Value * captured) {
capture_to_formal_index[captured] = reverse_block->inputs().size();
reverse_block->addInput()->copyMetadata(captured);
};
for(auto & offset : grad_desc.df_input_captured_inputs)
add_capture(graph.inputs()[offset]);
for(auto & offset : grad_desc.df_input_captured_outputs)
add_capture(graph.outputs()[offset]);
grad_desc.df = std::make_shared<Graph>();
grad_desc.df->block()->cloneFrom(reverse_block, [&](Value* v) {
return grad_desc.df->inputs()[capture_to_formal_index.at(v)];
});
// reverse_node was just to hold onto reverse_block in a debuggable way
// we can remove it now.
reverse_block->owningNode()->destroy();
}
Gradient differentiate(std::shared_ptr<Graph>& graph) {
Gradient grad_desc;
// Take ownership of the graph
JIT_ASSERTM(graph.use_count() == 1,
"differentiate will mutate and destroy the graph, so it requires "
"graph.use_count() == 1, but found %d", graph.use_count());
std::swap(graph, grad_desc.f);
// XXX: Take care when handling outputs - they can be duplicated!
WithInsertPoint guard(grad_desc.f->block());
// Fills in df_input_vjps and df_output_vjps
auto rev_info = addReverseInline(grad_desc);
// Lift constants captured for the reverse graph into it
liftConstants(grad_desc, rev_info);
// addReverseInline has to call gradientForNode if *any* of the outputs
// require grad, but it will emit vjps for *all* outputs. Use DCE to remove
// unnecessary nodes.
EliminateDeadCode(rev_info.reverse_block);
// Fills in f, df, f_real_outputs, df_input_captures,
// modifies df_input_vjps (new vjps are added for temporaries)
lambdaLiftReverse(grad_desc, rev_info);
return grad_desc;
}
}}