| #include <ATen/ATen.h> |
| #include <ATen/ExpandUtils.h> |
| #include <ATen/Dispatch.h> |
| #include <ATen/NativeFunctions.h> |
| #include <ATen/native/LinearAlgebraUtils.h> |
| #include <ATen/TensorUtils.h> |
| #include <ATen/Parallel.h> |
| #include <ATen/LegacyTHFunctionsCPU.h> |
| #include <functional> |
| #include <numeric> |
| #include <vector> |
| #include <limits> |
| |
| namespace at { |
| namespace native { |
| |
| // Helper function for det methods. |
| // For pivoted LU factorization A = P * L * U. Since we always have det(L) = 1, |
| // det(P) = \pm 1, this method returns a 3-tuple: |
| // (det(P), diag(U), info), |
| // where info helps us identify singular matrices. |
| static inline std::tuple<double, Tensor, int> _lu_det_P_diag_U_info(const Tensor& self) { |
| Tensor p, lu, info; |
| std::tie(lu, p, info) = at::_lu_with_info(self, /*pivot=*/true, /*check_errors=*/false); |
| int int_info = info.item<int32_t>(); |
| TORCH_CHECK(int_info >= 0, "LU factorization (getrf) failed with info = ", int_info); |
| auto n = self.size(0); |
| auto num_exchanges = (at::arange(1, n + 1, p.options()) != p).nonzero().size(0); |
| if (num_exchanges % 2 == 1) { |
| return std::make_tuple(-1., lu.diag(), int_info); |
| } else { |
| return std::make_tuple(1., lu.diag(), int_info); |
| } |
| } |
| |
| Tensor det(const Tensor& self) { |
| TORCH_CHECK(at::isFloatingType(self.scalar_type()) && |
| self.dim() == 2 && self.size(0) == self.size(1), |
| "det(", self.type(), "{", self.sizes(), "}): expected a 2D square tensor " |
| "of floating types"); |
| double det_P; |
| Tensor diag_U; |
| int info; |
| std::tie(det_P, diag_U, info) = _lu_det_P_diag_U_info(self); |
| if (info > 0) { |
| return at::zeros({}, self.options()); |
| } else { |
| return diag_U.prod().mul_(det_P); |
| } |
| } |
| |
| Tensor logdet(const Tensor& self) { |
| TORCH_CHECK(at::isFloatingType(self.scalar_type()) && |
| self.dim() == 2 && self.size(0) == self.size(1), |
| "logdet(", self.type(), "{", self.sizes(), "}): expected a 2D square tensor " |
| "of floating types"); |
| double det_P; |
| Tensor diag_U; |
| int info; |
| std::tie(det_P, diag_U, info) = _lu_det_P_diag_U_info(self); |
| if (info > 0) { |
| return at::full({}, -std::numeric_limits<double>::infinity(), self.options()); |
| } |
| // `det_sign` is the sign of the determinant. We work on `diag_U.sign()` for |
| // numerical stability when diag_U has a lot small values. |
| auto det_sign = diag_U.sign().prod().mul_(det_P); |
| // This synchronizes on GPU, but `_lu_det_P_diag_U_info` above already synchronizes |
| if (det_sign.item<double>() <= 0) { |
| return det_sign.log_(); // get proper nan (det<0) or -inf (det=0) |
| } else { |
| return diag_U.abs_().log_().sum(); |
| } |
| } |
| |
| std::tuple<Tensor, Tensor> slogdet(const Tensor& self) { |
| TORCH_CHECK(at::isFloatingType(self.scalar_type()) && |
| self.dim() == 2 && self.size(0) == self.size(1), |
| "slogdet(", self.type(), "{", self.sizes(), "}): expected a 2D square tensor " |
| "of floating types"); |
| double det_P; |
| Tensor diag_U; |
| int info; |
| std::tie(det_P, diag_U, info) = _lu_det_P_diag_U_info(self); |
| if (info > 0) { |
| return std::make_tuple(at::zeros({}, self.options()), |
| at::full({}, -std::numeric_limits<double>::infinity(), self.options())); |
| } else { |
| // `det_sign` is the sign of the determinant. We work on `diag_U.sign()` for |
| // numerical stability when diag_U has a lot small values. |
| auto det_sign = diag_U.sign().prod().mul_(det_P); |
| return std::make_tuple(det_sign, diag_U.abs_().log_().sum()); |
| } |
| } |
| |
| Tensor pinverse(const Tensor& self, double rcond) { |
| TORCH_CHECK(at::isFloatingType(self.scalar_type()) && self.dim() == 2, |
| "pinverse(", self.type(), "{", self.sizes(), "}): expected a 2D tensor " |
| "of floating types"); |
| if (self.numel() == 0) { |
| // Match NumPy |
| return at::empty({self.size(1), self.size(0)}, self.options()); |
| } |
| Tensor U, S, V; |
| std::tie(U, S, V) = self.svd(); |
| Tensor max_val = S[0]; |
| Tensor S_pseudoinv = at::where(S > rcond * max_val, S.reciprocal(), at::zeros({}, self.options())); |
| return V.mm(S_pseudoinv.diag().mm(U.t())); |
| } |
| |
| static inline Tensor _matrix_rank_helper(const Tensor& self, bool symmetric) { |
| Tensor S; |
| if (!symmetric) { |
| Tensor U, V; |
| std::tie(U, S, V) = self.svd(/*some=*/true, /*compute_uv=*/false); |
| } else { |
| Tensor eigvecs; |
| std::tie(S, eigvecs) = self.symeig(/*eigenvectors=*/false); |
| S = S.abs(); |
| } |
| return S; |
| } |
| |
| Tensor matrix_rank(const Tensor& self, double tol, bool symmetric) { |
| TORCH_CHECK(at::isFloatingType(self.scalar_type()) && self.dim() == 2, |
| "matrix_rank(", self.type(), "{", self.sizes(), "}): expected a 2D tensor " |
| "of floating types"); |
| |
| Tensor S = _matrix_rank_helper(self, symmetric); |
| return (S > tol).sum(); |
| } |
| |
| Tensor matrix_rank(const Tensor& self, bool symmetric) { |
| TORCH_CHECK(at::isFloatingType(self.scalar_type()) && self.dim() == 2, |
| "matrix_rank(", self.type(), "{", self.sizes(), "}): expected a 2D tensor " |
| "of floating types"); |
| |
| Tensor S = _matrix_rank_helper(self, symmetric); |
| double tol = _get_epsilon(self.scalar_type()) * std::max(self.size(0), self.size(1)); |
| return (S > S.max().mul_(tol)).sum(); |
| } |
| |
| static void check_1d(const Tensor& t, const char* arg, const char* fn) { |
| TORCH_CHECK(t.dim() == 1, fn, ": Expected 1-D argument ", arg, ", but got ", t.dim(), "-D"); |
| } |
| |
| Tensor addr(const Tensor& self, const Tensor& vec1, const Tensor& vec2, Scalar beta, Scalar alpha) { |
| check_1d(vec1, "vec1", "addr"); |
| check_1d(vec2, "vec2", "addr"); |
| return at::_addr(self, vec1, vec2, beta, alpha); |
| } |
| |
| Tensor& addr_(Tensor& self, const Tensor& vec1, const Tensor& vec2, Scalar beta, Scalar alpha) { |
| check_1d(vec1, "vec1", "addr"); |
| check_1d(vec2, "vec2", "addr"); |
| return at::_addr_(self, vec1, vec2, beta, alpha); |
| } |
| |
| Tensor& addr_out(Tensor &result, const Tensor& self, const Tensor& vec1, const Tensor& vec2, Scalar beta, Scalar alpha) { |
| check_1d(vec1, "vec1", "addr"); |
| check_1d(vec2, "vec2", "addr"); |
| return at::_addr_out(result, self, vec1, vec2, beta, alpha); |
| } |
| |
| template <typename scalar_t, bool is_bmm> |
| inline void baddbmm_cpu_kernel(const Tensor& result, const Tensor& self, const Tensor& mat2, Scalar beta_, Scalar alpha_) { |
| int64_t bs = result.size(0); |
| int64_t is = result.size(1); |
| int64_t js = result.size(2); |
| int64_t ks = self.size(2); |
| |
| scalar_t alpha = alpha_.to<scalar_t>(); |
| scalar_t beta = beta_.to<scalar_t>(); |
| |
| auto r0 = result.accessor<scalar_t, 3>(); |
| auto s0 = self.accessor<scalar_t, 3>(); |
| auto m0 = mat2.accessor<scalar_t, 3>(); |
| |
| int64_t grain_size = std::min(internal::GRAIN_SIZE / (is * js * ks), (int64_t)1); |
| parallel_for(0, bs, grain_size, [&](int64_t b_begin, int64_t b_end) { |
| for (int64_t b = b_begin; b < b_end; b++) { |
| auto r1 = r0[b]; |
| auto s1 = s0[b]; |
| auto m1 = m0[b]; |
| for (int64_t i = 0; i < is; i++) { |
| auto r2 = r1[i]; |
| auto s2 = s1[i]; |
| for (int64_t j = 0; j < js; j++) { |
| scalar_t &r = r2[j]; |
| if (is_bmm) { |
| r = 0; |
| for (int64_t k = 0; k < ks; k++) { |
| r += s2[k] * m1[k][j]; |
| } |
| } else { |
| r *= beta; |
| for (int64_t k = 0; k < ks; k++) { |
| r += alpha * s2[k] * m1[k][j]; |
| } |
| } |
| } |
| } |
| } |
| }); |
| } |
| |
| // This tries to apply some optimizations to bmm/baddbmm: |
| // - When the operand size is small, computation are parallelized over the batch |
| // dimension using OMP and naive matrix multiplication is applied. |
| // - When the operand size is larger than the threshold, if compiled with MKL, MKL's batch gemm is used. |
| // - Otherwise, we use a series of matrix multiplications. |
| // The threshold of 400 for the first has not been thoroughly benchmarked yet and may have room for further |
| // optimization, it likely depends on the characteristics of the CPU, MKL will be different from non-MKL etc., |
| // but this seems to be a first starting point. |
| |
| static inline Tensor& bmm_out_or_baddbmm_(Tensor& self_or_result, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha, bool is_bmm_out) { |
| // is_bmm_out: true for bmm_out, false for baddbmm_ |
| // self_or_result is "self" for baddbmm_ and "result" for bmm_out |
| CheckedFrom c = (is_bmm_out ? "bmm" : "baddbmm"); |
| TensorArg self_arg(self_or_result, is_bmm_out ? "self" : "result", 0); |
| TensorArg b1_arg(batch1, "batch1", 1); |
| TensorArg b2_arg(batch2, "batch2", 2); |
| checkBackend(c, {self_or_result, batch1, batch2}, Backend::CPU); |
| checkDim(c, b1_arg, 3); |
| checkDim(c, b2_arg, 3); |
| |
| int64_t bs = batch1.size(0); |
| checkSize(c, b2_arg, 0, bs); |
| int64_t contraction_size = batch1.size(2); |
| int64_t res_rows = batch1.size(1); |
| int64_t res_cols = batch2.size(2); |
| checkSize(c, b2_arg, 1, contraction_size); |
| |
| if (is_bmm_out) { |
| self_or_result.resize_({bs, res_rows, res_cols}); |
| } else { |
| checkSize(c, self_arg, 0, bs); |
| checkSize(c, self_arg, 1, res_rows); |
| checkSize(c, self_arg, 2, res_cols); |
| } |
| |
| // handle pathological cases that blas may not like |
| if (self_or_result.numel() == 0) { |
| return self_or_result; |
| } else if (contraction_size == 0) { |
| return self_or_result.zero_(); |
| } |
| |
| auto batch_items_contiguous_or_transposed = [&](const Tensor& t) { |
| return (t.stride(2) == 1 && t.stride(1) >= t.size(2)) |
| || (t.stride(1) == 1 && t.stride(2) >= t.size(1)); |
| }; |
| |
| if (contraction_size * res_rows * res_cols < 400) { |
| if (is_bmm_out) { |
| AT_DISPATCH_ALL_TYPES(batch1.scalar_type(), "bmm", [&] { |
| baddbmm_cpu_kernel<scalar_t, true>(self_or_result, batch1, batch2, beta, alpha); |
| }); |
| } else { |
| AT_DISPATCH_ALL_TYPES(batch1.scalar_type(), "baddbmm", [&] { |
| baddbmm_cpu_kernel<scalar_t, false>(self_or_result, batch1, batch2, beta, alpha); |
| }); |
| } |
| } else if (at::hasMKL() && at::native::is_floating_point(self_or_result) |
| && batch_items_contiguous_or_transposed(batch1) |
| && batch_items_contiguous_or_transposed(batch2) |
| && self_or_result.is_contiguous()) { |
| at::native::_baddbmm_mkl_(self_or_result, batch1, batch2, beta, alpha); |
| } else { // split along batch dimension |
| if (is_bmm_out) { |
| for (int64_t b = 0; b < bs; b++) { |
| auto r = self_or_result.select(0, b); |
| legacy::cpu::_th_mm_out(r, batch1.select(0, b), batch2.select(0, b)); |
| } |
| } else { |
| for (int64_t b = 0; b < bs; b++) { |
| self_or_result.select(0, b).addmm_(batch1.select(0, b), batch2.select(0, b), beta, alpha); |
| } |
| } |
| } |
| return self_or_result; |
| } |
| |
| |
| Tensor baddbmm_cpu(const Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { |
| Tensor result = at::empty({0}, self.options()); |
| return at::native::baddbmm_out_cpu(result, self, batch1, batch2, beta, alpha); |
| } |
| |
| Tensor& baddbmm_out_cpu(Tensor &result, const Tensor& self_, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { |
| Tensor self; |
| std::tie(self) = expand_size(self_, {batch1.size(0), batch1.size(1), batch2.size(2)}, "baddbmm"); |
| result.resize_(self.sizes()); |
| result.copy_(self); |
| return at::native::baddbmm__cpu(result, batch1, batch2, beta, alpha); |
| } |
| |
| Tensor& baddbmm__cpu(Tensor& self, const Tensor& batch1, const Tensor& batch2, Scalar beta, Scalar alpha) { |
| return bmm_out_or_baddbmm_(self, batch1, batch2, beta, alpha, false); |
| } |
| |
| Tensor bmm_cpu(const Tensor& self, const Tensor& mat2) { |
| Tensor result = at::empty({0}, self.options()); |
| return at::native::bmm_out_cpu(result, self, mat2); |
| } |
| |
| Tensor& bmm_out_cpu(Tensor &result, const Tensor& batch1, const Tensor& batch2) { |
| Scalar beta(0.0); |
| Scalar alpha(1.0); |
| return bmm_out_or_baddbmm_(result, batch1, batch2, beta, alpha, true); |
| } |
| |
| Tensor& dot_out(Tensor& result, const Tensor& self, const Tensor& tensor) { |
| result.resize_({}); |
| TORCH_CHECK(result.scalar_type() == self.scalar_type(), |
| "result dtype ", result.scalar_type(), " does not match self dtype ", self.scalar_type()); |
| return result.fill_(self.dot(tensor)); |
| } |
| |
| /* |
| Matrix product of two Tensors. |
| The behavior depends on the dimensionality of the Tensors as follows: |
| - If both Tensors are 1-dimensional, the dot product (scalar) is returned. |
| - If both arguments are 2-dimensional, the matrix-matrix product is returned. |
| - If the first argument is 1-dimensional and the second argument is 2-dimensional, |
| a 1 is prepended to its dimension for the purpose of the matrix multiply. |
| After the matrix multiply, the prepended dimension is removed. |
| - If the first argument is 2-dimensional and the second argument is 1-dimensional, |
| the matrix-vector product is returned. |
| - If both arguments are at least 1-dimensional and at least one argument is |
| N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first |
| argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the |
| batched matrix multiply and removed after. If the second argument is 1-dimensional, a |
| 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. |
| The non-matrix (i.e. batch) dimensions are broadcasted (and thus |
| must be broadcastable). For example, if tensor1 is a (j x 1 x n x m) Tensor |
| and tensor2 is a (k x m x p) Tensor, the returned tensor will be an (j x k x n x p) Tensor. |
| */ |
| Tensor matmul( |
| c10::optional<Tensor> out_opt, |
| const Tensor& tensor1, |
| const Tensor& tensor2) { |
| auto dim_tensor1 = tensor1.dim(); |
| auto dim_tensor2 = tensor2.dim(); |
| auto has_out = out_opt.has_value(); |
| Tensor out = out_opt.value_or(Tensor()); |
| |
| if (dim_tensor1 == 1 && dim_tensor2 == 1) { |
| return has_out ? at::native::dot_out(out, tensor1, tensor2) : tensor1.dot(tensor2); |
| } else if (dim_tensor1 == 2 && dim_tensor2 == 1) { |
| return has_out ? at::mv_out(out, tensor1, tensor2) : tensor1.mv(tensor2); |
| } else if (dim_tensor1 == 1 && dim_tensor2 == 2) { |
| return has_out ? at::mm_out(out, tensor1.unsqueeze(0), tensor2).squeeze_(0) |
| : tensor1.unsqueeze(0).mm(tensor2).squeeze_(0); |
| } else if (dim_tensor1 == 2 && dim_tensor2 == 2) { |
| return has_out ? at::mm_out(out, tensor1, tensor2) : tensor1.mm(tensor2); |
| } else if (dim_tensor1 >= 3 && (dim_tensor2 == 1 || dim_tensor2 == 2)) { |
| // optimization: use mm instead of bmm by folding tensor1's batch into |
| // its leading matrix dimension. |
| |
| Tensor t2 = dim_tensor2 == 1 ? tensor2.unsqueeze(-1) : tensor2; |
| auto size1 = tensor1.sizes(); |
| auto size2 = t2.sizes(); |
| std::vector<int64_t> output_size; |
| output_size.insert(output_size.end(), size1.begin(), size1.end() - 1); |
| if (dim_tensor2 > 1) { |
| output_size.push_back(size2[dim_tensor2 - 1]); |
| } |
| |
| // fold the batch into the first dimension |
| Tensor t1 = tensor1.contiguous().view({-1, size1[size1.size() - 1]}); |
| Tensor output = has_out ? at::_unsafe_view(at::mm_out(out, t1, t2), output_size) |
| : at::_unsafe_view(t1.mm(t2), output_size); |
| return has_out ? out.set_(output) : output; |
| } else if ((dim_tensor1 == 1 || dim_tensor1 == 2) && dim_tensor2 >= 3) { |
| // optimization: transpose the inner dimensions of the arguments, call |
| // matmul on the swapped arguments, then transpose the inner dimensions |
| // of the result. |
| const int64_t n = dim_tensor1 == 2 ? tensor1.size(-2) : 1; |
| const int64_t m = tensor1.size(-1); |
| const int64_t p = tensor2.size(-1); |
| |
| const Tensor t2_T = tensor2.transpose(-1, -2); |
| const Tensor t1_T = dim_tensor1 == 2 ? tensor1.t() : tensor1.reshape({n, m}).t(); |
| const Tensor res_T = matmul(out_opt, t2_T, t1_T); |
| |
| if (dim_tensor1 == 2) { |
| Tensor res = res_T.transpose(-1, -2).contiguous(); |
| return has_out ? out.set_(res) : res; |
| } |
| else { |
| std::vector<int64_t> shape = tensor2.sizes().slice(0, dim_tensor2 - 2).vec(); |
| shape.push_back(p); |
| |
| Tensor res = res_T.reshape(shape).contiguous(); |
| return has_out ? out.set_(res) : res; |
| } |
| } else if ((dim_tensor1 >= 1 && dim_tensor2 >= 1) && (dim_tensor1 >= 3 || dim_tensor2 >= 3)) { |
| // We are multiplying b1 x n x m1 by x2 x m2 x p (where b1 can be a list); |
| // we track m1 vs m2 separately even though they must match for nicer error messages |
| int64_t n = dim_tensor1 > 1 ? tensor1.size(-2) : 1; |
| int64_t m1 = tensor1.size(-1); |
| IntArrayRef batch_tensor1(tensor1.sizes().data(), std::max<int64_t>(dim_tensor1 - 2, 0)); |
| int64_t m2 = dim_tensor2 > 1 ? tensor2.size(-2) : 1; |
| int64_t p = tensor2.size(-1); |
| IntArrayRef batch_tensor2(tensor2.sizes().data(), std::max<int64_t>(dim_tensor2 - 2, 0)); |
| |
| // expand the batch portion (i.e. cut off matrix dimensions and expand rest) |
| std::vector<int64_t> expand_batch_portion = infer_size(batch_tensor1, batch_tensor2); |
| |
| std::vector<int64_t> tensor1_expand_size(expand_batch_portion); |
| tensor1_expand_size.insert(tensor1_expand_size.end(), {n, m1}); |
| |
| std::vector<int64_t> tensor2_expand_size(expand_batch_portion); |
| tensor2_expand_size.insert(tensor2_expand_size.end(), {m2, p}); |
| |
| int expand_batch_product = std::accumulate(expand_batch_portion.begin(), expand_batch_portion.end(), |
| 1, std::multiplies<int64_t>()); |
| |
| std::vector<int64_t> tensor1_bmm_view({expand_batch_product}); |
| tensor1_bmm_view.insert(tensor1_bmm_view.end(), {n, m1}); |
| |
| std::vector<int64_t> tensor2_bmm_view({expand_batch_product}); |
| tensor2_bmm_view.insert(tensor2_bmm_view.end(), {m2, p}); |
| |
| // flatten expanded batches |
| Tensor tensor1_expanded = tensor1.expand(tensor1_expand_size).contiguous().view(tensor1_bmm_view); |
| Tensor tensor2_expanded = tensor2.expand(tensor2_expand_size).contiguous().view(tensor2_bmm_view); |
| |
| // reshape batches back into result |
| std::vector<int64_t> output_shape(expand_batch_portion); |
| if (dim_tensor1 > 1) { |
| output_shape.push_back(n); |
| } |
| if (dim_tensor2 > 1) { |
| output_shape.push_back(p); |
| } |
| |
| Tensor output = has_out ? at::_unsafe_view(at::bmm_out(out, tensor1_expanded, tensor2_expanded), output_shape) |
| : at::_unsafe_view(tensor1_expanded.bmm(tensor2_expanded), output_shape); |
| |
| return has_out ? out.set_(output) : output; |
| } |
| |
| AT_ERROR("both arguments to matmul need to be at least 1D, but they are ", |
| dim_tensor1, "D and ", dim_tensor2, "D"); |
| } |
| |
| Tensor matmul(const Tensor & tensor1, const Tensor & tensor2) { |
| return at::native::matmul(c10::nullopt, tensor1, tensor2); |
| } |
| |
| Tensor& matmul_out(Tensor &result, const Tensor & tensor1, const Tensor & tensor2) { |
| at::native::matmul(c10::optional<Tensor>(result), tensor1, tensor2); |
| return result; |
| } |
| |
| Tensor matrix_power(const Tensor& a, int64_t n) { |
| TORCH_CHECK(a.dim() >= 2 && at::isFloatingType(a.scalar_type()), |
| "matrix_power(", a.type(), "{", a.sizes(), "}): expected a tensor " |
| "of floating types with dim at least 2"); |
| if (n == 0) { |
| return a.clone().copy_(at::eye(a.size(-2), a.options()).expand_as(a)); |
| } else if (n < 0) { |
| Tensor a_ = at::inverse(a); |
| n *= -1; |
| return at::native::matrix_power(a_, n); |
| } else if (n == 1) { |
| return a.clone(); |
| } else if (n == 2) { |
| return at::native::matmul(a, a); |
| } else if (n == 3) { |
| return at::native::matmul(at::native::matmul(a, a), a); |
| } |
| |
| // This is a binary decomposition of n. |
| // Moving from the least significant bit to the most significant bit |
| // This is done to reduce the number of matrix multiplications |
| // by raising the input matrix in powers of 2 |
| // The total number of matrix multiplications are |
| // number of bits + number of bits that equal 1 ~ O(log n) |
| // instead of O(n) |
| Tensor result, z; |
| int64_t r; |
| while (n > 0) { |
| z = (!z.defined()) ? a.clone() : at::native::matmul(z, z); |
| r = n % 2; |
| n = n / 2; |
| if (r == 1) { |
| result = (!result.defined()) ? z.clone() : at::native::matmul(result, z); |
| } |
| } |
| return result; |
| } |
| |
| Tensor frobenius_norm(const Tensor& self) { |
| return at::norm(self); |
| } |
| |
| Tensor frobenius_norm(const Tensor& self, IntArrayRef dim, bool keepdim) { |
| TORCH_CHECK( |
| dim.size() <= 2, |
| "Expected at most 2 dimensions, but got ", |
| dim.size(), |
| " dimensions instead."); |
| if (dim.size() == 1) { |
| return at::norm(self, 2, dim, keepdim, self.scalar_type()); |
| } |
| return at::sqrt(at::sum(self * self, dim, keepdim)); |
| } |
| |
| Tensor &frobenius_norm_out( |
| Tensor& result, |
| const Tensor& self, |
| IntArrayRef dim, |
| bool keepdim) { |
| TORCH_CHECK( |
| dim.size() <= 2, |
| "Expected at most 2 dimensions, but got ", |
| dim.size(), |
| " dimensions instead."); |
| if (dim.size() == 1) { |
| return at::norm_out(result, self, 2, dim, keepdim, self.scalar_type()); |
| } |
| return at::sqrt_out(result, at::sum(self * self, dim, keepdim)); |
| } |
| |
| Tensor nuclear_norm(const Tensor& self, bool keepdim) { |
| TORCH_CHECK( |
| self.dim() == 2, |
| "Expected a tensor with 2 dimensions, but got a tensor with ", |
| self.dim(), " dimension", self.dim()==1 ? "" : "s", " instead."); |
| return at::sum(std::get<1>(at::svd(self)), 0, keepdim); |
| } |
| |
| Tensor &nuclear_norm_out(Tensor& result, const Tensor& self, bool keepdim) { |
| TORCH_CHECK( |
| self.dim() == 2, |
| "Expected a tensor with 2 dimensions, but got a tensor with ", |
| self.dim(), " dimension", self.dim()==1 ? "" : "s", " instead."); |
| return at::sum_out(result, std::get<1>(at::svd(self)), 0, keepdim); |
| } |
| |
| // Non-optimized batched svd implementation. This can be merged with at::svd |
| // once at::svd has been ported to ATen. |
| static std::tuple<Tensor, Tensor, Tensor> |
| _batch_svd(const Tensor& self, bool some, bool compute_uv) |
| { |
| const int64_t ndim = self.ndimension(); |
| |
| TORCH_CHECK( |
| ndim >= 2, |
| "Expected a tensor with at least 2 dimensions, but got a tensor with ", |
| self.dim(), " dimension", self.dim()==1 ? "" : "s", " instead."); |
| |
| if (ndim == 2) { |
| return at::svd(self, some, compute_uv); |
| } |
| |
| const int64_t n = self.size(-2); |
| const int64_t m = self.size(-1); |
| const int64_t k = std::min<int64_t>(n, m); |
| const int64_t nn = (some && compute_uv) ? k : n; |
| const int64_t mm = (some && compute_uv) ? k : m; |
| const int64_t p = batchCount(self); |
| |
| Tensor t = self.reshape({p, n, m}); |
| |
| Tensor s = at::empty({p, k}, self.options()); |
| Tensor u, v; |
| if (compute_uv) { |
| u = at::empty({p, n, nn}, self.options()); |
| v = at::empty({p, m, mm}, self.options()); |
| } |
| |
| for (int64_t i = 0; i < p; i++) { |
| auto tuple = at::svd(t[i], some, compute_uv); |
| s[i] = std::get<1>(tuple); |
| if (compute_uv) { |
| u[i] = std::get<0>(tuple); |
| v[i] = std::get<2>(tuple); |
| } |
| } |
| |
| std::vector<int64_t> shape = self.sizes().slice(0, ndim-1).vec(); |
| shape[ndim-2] = k; |
| s = s.reshape(shape); |
| |
| shape[ndim-2] = n; |
| shape.push_back(nn); |
| u = compute_uv ? u.reshape(shape) : at::zeros(shape, self.options()); |
| |
| shape[ndim-2] = m; |
| shape[ndim-1] = mm; |
| v = compute_uv ? v.reshape(shape) : at::zeros(shape, self.options()); |
| |
| return std::tuple<Tensor, Tensor, Tensor>(u, s, v); |
| } |
| |
| Tensor nuclear_norm(const Tensor& self, IntArrayRef dim, bool keepdim) { |
| TORCH_CHECK(dim.size() == 2, "nuclear norm requires a 'dim' argument of size 2"); |
| |
| Tensor p = _move_to_end(self, dim); |
| return at::sum(std::get<1>(_batch_svd(p, true, false)), -1, keepdim); |
| } |
| |
| Tensor& nuclear_norm_out(Tensor& result, const Tensor& self, IntArrayRef dim, bool keepdim) { |
| TORCH_CHECK(dim.size() == 2, "nuclear norm requires a 'dim' argument of size 2"); |
| |
| Tensor p = _move_to_end(self, dim); |
| return at::sum_out(result, std::get<1>(_batch_svd(p, true, false)), -1, keepdim); |
| } |
| |
| static inline Tensor _chain_matmul_general(TensorList matrices, std::vector<std::vector<int64_t>>& order, int64_t i, int64_t j) { |
| if (i == j) |
| return matrices[i]; |
| else |
| return at::mm(_chain_matmul_general(matrices, order, i, order[i][j]), _chain_matmul_general(matrices, order, order[i][j] + 1, j)); |
| } |
| |
| // Why the separate implementation for 3 matrices? |
| // The logic for three matrices is much faster when done directly |
| // Requires 1 comparison to 4 comparisons and lesser arithmetic operations |
| static inline Tensor _chain_matmul_three_matrices(TensorList matrices) { |
| int64_t a = matrices[0].size(0); // This is the first dimension |
| int64_t b = matrices[1].size(0); // This is the common dimension between the first two matrices |
| int64_t c = matrices[2].size(0); // This is the common dimension between the last two matrices |
| int64_t d = matrices[2].size(1); // This is the last dimension |
| |
| // The matrices are of size (a x b), (b x c), (c x d) |
| // cost_1 is the cost of parenthesizing (a x b) and (b x c) and then combining (c x d) |
| // cost_2 is the cost of parenthesizing (b x c) and (c x d) and then combining (a x b) |
| int64_t cost_1 = (a * c) * (b + d); |
| int64_t cost_2 = (b * d) * (a + c); |
| |
| if (cost_1 > cost_2) { |
| return at::mm(matrices[0], at::mm(matrices[1], matrices[2])); |
| } else { |
| return at::mm(at::mm(matrices[0], matrices[1]), matrices[2]); |
| } |
| } |
| |
| Tensor chain_matmul(TensorList matrices) { |
| checkAllSameDim(matrices, 2); |
| |
| if (matrices.size() == 1) { |
| return matrices[0]; |
| } else if (matrices.size() == 2) { |
| return at::mm(matrices[0], matrices[1]); |
| } else if (matrices.size() == 3) { |
| return _chain_matmul_three_matrices(matrices); |
| } else { |
| |
| // Following the algorithm in Chapter 15.2 : Introduction to Algorithms, Cormen et al. |
| // Minor modifications have been made to accommodate zero-indexing |
| auto n = matrices.size(); |
| |
| // Dim vector - the length of which is n + 1. Note that for matrix multiplication, there |
| // needs to a common dimension between the multiplicands, hence for n matrices, there are |
| // n + 1 values. The values p_{i} and p_{i + 1} correspond to the dimensions of matrix i in |
| // the chain (zero-indexed) |
| std::vector<int64_t> p; |
| p.push_back(matrices[0].size(0)); |
| for (int64_t i = 0; i < n; i++) { |
| p.push_back(matrices[i].size(1)); |
| } |
| |
| // Cost matrix - an element m[i, j] of this matrix corresponds to the minimum cost of |
| // parenthesizing matrices A_{i} to A_{j}. By this definition m[i, i] = 0 for all i |
| // m[i, j] is filled using the substructure property of the algorithm, meaning: |
| // m[i, j] = min_{i <= k < j} m[i, k] + m[k, j] + p_{i-1}p_{k}p_{j} |
| std::vector<std::vector<int64_t>> m(n, std::vector<int64_t>(n, 0)); |
| |
| // Auxiliary table for constructing the order |
| // s[i, j] stores the index k at which the optimal split is obtained |
| std::vector<std::vector<int64_t>> s(n, std::vector<int64_t>(n)); |
| |
| // j and q are used repetitively in the algorithm below |
| int64_t j, q; |
| |
| for (int64_t l = 1; l < n; l++) { |
| for (int64_t i = 0; i < n - l; i++) { |
| j = i + l; |
| m[i][j] = std::numeric_limits<int64_t>::max(); |
| for (int64_t k = i; k < j; k++) { |
| q = m[i][k] + m[k + 1][j] + p[i] * p[k + 1] * p[j + 1]; |
| if (q < m[i][j]) { |
| m[i][j] = q; |
| s[i][j] = k; |
| } |
| } |
| } |
| } |
| |
| // We use the result from the algorithm to compute the matrix chain product via recursion |
| return _chain_matmul_general(matrices, s, 0, n - 1); |
| } |
| } |
| |
| } // namespace native |
| } // namespace at |