| from numbers import Number |
| import math |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.exponential import Exponential |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import AffineTransform, PowerTransform |
| from torch.distributions.utils import broadcast_all |
| from torch.distributions.gumbel import euler_constant |
| |
| |
| class Weibull(TransformedDistribution): |
| r""" |
| Samples from a two-parameter Weibull distribution. |
| |
| Example: |
| |
| >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) |
| >>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1 |
| tensor([ 0.4784]) |
| |
| Args: |
| scale (float or Tensor): Scale parameter of distribution (lambda). |
| concentration (float or Tensor): Concentration parameter of distribution (k/shape). |
| """ |
| arg_constraints = {'scale': constraints.positive, 'concentration': constraints.positive} |
| support = constraints.positive |
| |
| def __init__(self, scale, concentration, validate_args=None): |
| self.scale, self.concentration = broadcast_all(scale, concentration) |
| self.concentration_reciprocal = self.concentration.reciprocal() |
| base_dist = Exponential(self.scale.new(self.scale.size()).fill_(1.0)) |
| transforms = [PowerTransform(exponent=self.concentration_reciprocal), |
| AffineTransform(loc=0, scale=self.scale)] |
| super(Weibull, self).__init__(base_dist, transforms, validate_args=validate_args) |
| |
| @property |
| def mean(self): |
| return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal)) |
| |
| @property |
| def variance(self): |
| return self.scale.pow(2) * (torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) - |
| torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal))) |
| |
| def entropy(self): |
| return euler_constant * (1 - self.concentration_reciprocal) + \ |
| torch.log(self.scale * self.concentration_reciprocal) + 1 |