| from collections import OrderedDict | 
 | import enum | 
 | import functools | 
 | from numbers import Number | 
 | from typing import Any, Dict, Optional, Tuple, Union | 
 | import warnings | 
 | import copyreg | 
 | from copy import deepcopy | 
 |  | 
 | import torch | 
 | import torch._C as _C | 
 | from torch._namedtensor_internals import ( | 
 |     update_names, check_serializing_named_tensor, resolve_ellipsis, | 
 |     unzip_namedshape, single_ellipsis_index, is_ellipsis) | 
 | from torch.overrides import ( | 
 |     has_torch_function, has_torch_function_unary, has_torch_function_variadic, | 
 |     handle_torch_function, get_default_nowrap_functions) | 
 | import torch.utils.hooks as hooks | 
 |  | 
 |  | 
 | def _handle_torch_function_and_wrap_type_error_to_not_implemented(f): | 
 |     # functools.wraps doesn't work well with methods in python 2 | 
 |     method_assignments = ('__name__', '__doc__') | 
 |     assigned = functools.WRAPPER_ASSIGNMENTS | 
 |  | 
 |     @functools.wraps(f, assigned=assigned) | 
 |     def wrapped(*args, **kwargs): | 
 |         try: | 
 |             # See https://github.com/pytorch/pytorch/issues/75462 | 
 |             if has_torch_function(args): | 
 |                 return handle_torch_function(wrapped, args, *args, **kwargs) | 
 |             return f(*args, **kwargs) | 
 |         except TypeError: | 
 |             return NotImplemented | 
 |     return wrapped | 
 |  | 
 | # Should not be used, this is kept only for BC of loading old serialized Tensor subclasses | 
 | def _rebuild_from_type(func, type, args, dict): | 
 |     if type is Tensor: | 
 |         return func(*args) | 
 |  | 
 |     ret = func(*args).as_subclass(type) | 
 |     ret.__dict__ = dict | 
 |     return ret | 
 |  | 
 | def _rebuild_from_type_v2(func, new_type, args, state): | 
 |     if new_type is Tensor: | 
 |         return func(*args) | 
 |  | 
 |     ret = func(*args) | 
 |     if type(ret) is not new_type: | 
 |         ret = ret.as_subclass(new_type) | 
 |     # Tensor does define __setstate__ even though it doesn't define | 
 |     # __getstate__. So only use __setstate__ if it is NOT the one defined | 
 |     # on Tensor | 
 |     if getattr(ret.__class__, "__setstate__", Tensor.__setstate__) is not Tensor.__setstate__: | 
 |         ret.__setstate__(state) | 
 |     else: | 
 |         if isinstance(state, tuple): | 
 |             if not len(state) == 2: | 
 |                 raise RuntimeError(f"Invalid serialized state: {state}") | 
 |             dict_state = state[0] | 
 |             slots_state = state[1] | 
 |         else: | 
 |             dict_state = state | 
 |             slots_state = None | 
 |  | 
 |         for k, v in dict_state.items(): | 
 |             setattr(ret, k, v) | 
 |  | 
 |         if slots_state: | 
 |             for k, v in slots_state.items(): | 
 |                 setattr(ret, k, v) | 
 |     return ret | 
 |  | 
 |  | 
 | # NB: If you subclass Tensor, and want to share the subclassed class | 
 | # across processes, you must also update torch/multiprocessing/reductions.py | 
 | # to define a ForkingPickler serialization mode for the class. | 
 | # | 
 | # NB: If you add a new method to Tensor, you must update | 
 | # torch/__init__.py.in to add a type annotation for your method; | 
 | # otherwise, it will not show up in autocomplete. | 
 | class Tensor(torch._C._TensorBase): | 
 |     def __deepcopy__(self, memo): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__deepcopy__, (self,), self, memo) | 
 |         if not self.is_leaf: | 
 |             raise RuntimeError("Only Tensors created explicitly by the user " | 
 |                                "(graph leaves) support the deepcopy protocol at the moment") | 
 |         if id(self) in memo: | 
 |             return memo[id(self)] | 
 |         with torch.no_grad(): | 
 |             # TODO: skipping storage copy is wrong for meta, as meta | 
 |             # does accurate alias tracking; however, the code below | 
 |             # doesn't work because of | 
 |             # https://github.com/pytorch/pytorch/issues/47442 | 
 |             if self.is_sparse or self.device.type in ['lazy', 'xla', 'mlc', 'ort', 'meta', 'hpu'] or \ | 
 |                     (type(self) is not Tensor and self.data_ptr() == 0): | 
 |                 new_tensor = self.clone() | 
 |                 if type(new_tensor) is not type(self): | 
 |                     raise RuntimeError("The default implementation of __deepcopy__() for wrapper subclasses " | 
 |                                        "only works for subclass types that implement clone() and for which " | 
 |                                        "cloning returns another instance of the same subclass. You should either " | 
 |                                        "properly implement clone() for your subclass or override __deepcopy__() " | 
 |                                        "if it is intended behavior for clone() to return an instance of a " | 
 |                                        "different type.") | 
 |             else: | 
 |                 new_storage = self.storage().__deepcopy__(memo) | 
 |                 if self.is_quantized: | 
 |                     # quantizer_params can be different type based on torch attribute | 
 |                     quantizer_params: Union[Tuple[torch.qscheme, float, int], Tuple[torch.qscheme, Tensor, Tensor, int]] | 
 |                     if self.qscheme() == torch.per_tensor_affine: | 
 |                         quantizer_params = self.qscheme(), self.q_scale(), self.q_zero_point() | 
 |                     elif self.qscheme() in (torch.per_channel_affine, torch.per_channel_affine_float_qparams): | 
 |                         quantizer_params = self.qscheme(), \ | 
 |                             self.q_per_channel_scales(), \ | 
 |                             self.q_per_channel_zero_points(), \ | 
 |                             self.q_per_channel_axis() | 
 |                     else: | 
 |                         raise RuntimeError(f"Unsupported qscheme {self.qscheme()} in deepcopy") | 
 |                     # TODO: Once we decide to break serialization FC, no longer | 
 |                     # need to wrap with _TypedStorage | 
 |                     new_tensor = torch._utils._rebuild_qtensor( | 
 |                         torch.storage._TypedStorage( | 
 |                             wrap_storage=new_storage._untyped(), | 
 |                             dtype=self.dtype), | 
 |                         self.storage_offset(), | 
 |                         self.size(), | 
 |                         self.stride(), | 
 |                         quantizer_params, | 
 |                         self.requires_grad, | 
 |                         self._backward_hooks) | 
 |                     if type(new_tensor) is not type(self): | 
 |                         raise RuntimeError("The default implementation of __deepcopy__() for quantized tensors " | 
 |                                            "expects the tensor returned by torch._utils._rebuild_qtensor() to " | 
 |                                            "match the type of the instance being copied. If you encounter this, " | 
 |                                            "please open an issue on PyTorch's GitHub.") | 
 |                 else: | 
 |                     new_tensor = self.new_empty([]) | 
 |                     if type(new_tensor) is not type(self): | 
 |                         raise RuntimeError("The default implementation of __deepcopy__() for non-wrapper subclasses " | 
 |                                            "only works for subclass types that implement new_empty() and for which " | 
 |                                            "that function returns another instance of the same subclass. You should " | 
 |                                            "either properly implement new_empty() for your subclass or override " | 
 |                                            "__deepcopy__() if it is intended behavior for new_empty() to return " | 
 |                                            "an instance of a different type.") | 
 |                     new_tensor.set_(new_storage, self.storage_offset(), self.size(), self.stride()) | 
 |                     if self.is_conj(): | 
 |                         new_tensor = new_tensor.conj_physical() | 
 |                     if self.is_neg(): | 
 |                         new_tensor = new_tensor.neg() | 
 |                     new_tensor.requires_grad = self.requires_grad | 
 |             if self.grad is not None: | 
 |                 new_tensor.grad = self.grad.__deepcopy__(memo) | 
 |  | 
 |             if not type(self) is Tensor: | 
 |                 if type(new_tensor) is not type(self): | 
 |                     raise RuntimeError("Type of deepcopy result does not match the type of the source tensor. " | 
 |                                        "If you encounter this, please open an issue on PyTorch's GitHub.") | 
 |  | 
 |                 # Plain Tensors don't have slots | 
 |                 slots_to_save = copyreg._slotnames(self.__class__)  # type: ignore[attr-defined] | 
 |                 for slot in slots_to_save: | 
 |                     if hasattr(self, slot): | 
 |                         setattr(new_tensor, slot, deepcopy(getattr(self, slot), memo)) | 
 |  | 
 |             new_tensor.__dict__ = deepcopy(self.__dict__, memo) | 
 |  | 
 |             memo[id(self)] = new_tensor | 
 |             return new_tensor | 
 |  | 
 |     def __reduce_ex__(self, proto): | 
 |         if type(self) is Tensor: | 
 |             return self._reduce_ex_internal(proto) | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__reduce_ex__, (self,), self, proto) | 
 |         func, args = self._reduce_ex_internal(proto) | 
 |         # Get the state of the python subclass | 
 |         # This loosely mimicks the function on the object class but since Tensor do not inherit | 
 |         # from it, we cannot call that function directly | 
 |         # https://github.com/python/cpython/blob/c83919bd635f4433f1c6ae8504996a9fe3c215e5/Objects/typeobject.c#L4891 | 
 |         getstate_fn = getattr(self, "__getstate__", None) | 
 |         if getstate_fn: | 
 |             state = getstate_fn() | 
 |         else: | 
 |             slots_to_save = copyreg._slotnames(self.__class__)  # type: ignore[attr-defined] | 
 |             if slots_to_save: | 
 |                 state = (self.__dict__, {name: getattr(self, name) for name in slots_to_save if hasattr(self, name)}) | 
 |             else: | 
 |                 state = self.__dict__ | 
 |         return (_rebuild_from_type_v2, (func, type(self), args, state)) | 
 |  | 
 |     def storage(self): | 
 |         r""" | 
 |         storage() -> torch.Storage | 
 |  | 
 |         Returns the underlying storage. | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.storage, (self,), self) | 
 |  | 
 |         if self.dtype not in torch.storage._dtype_to_storage_type_map(): | 
 |             raise RuntimeError(f'unsupported Storage type: {self.dtype}') | 
 |  | 
 |         return torch._TypedStorage(wrap_storage=self._storage(), dtype=self.dtype) | 
 |  | 
 |     def _reduce_ex_internal(self, proto): | 
 |         check_serializing_named_tensor(self) | 
 |         # See Note [Don't serialize hooks] | 
 |         torch.utils.hooks.warn_if_has_hooks(self) | 
 |         backward_hooks: Dict[Any, Any] = OrderedDict() | 
 |         # Note: Numpy array is chosen to be the rebuild component for XLA, ORT, MLC Tensors. | 
 |         # We considered a few options: | 
 |         # 1. CPU tensor can't be used here. | 
 |         #    Otherwise in torch.load CPU storage is reconstructed with randomly | 
 |         #    initialized data, moved onto backend device, and then storage is updated | 
 |         #    to the serialized content. This works perfectly for CPU/CUDA but not these backends; | 
 |         #    their tensors are disconnected with storage so they don't get the update. | 
 |         # 2. Python list is not a good fit due to performance reason. | 
 |         #    `tolist()` converts every single element in the tensor into python objects | 
 |         #    and serialize them one by one. | 
 |         if self.device.type in ['xla', 'ort', 'mlc', 'hpu']: | 
 |             return (torch._utils._rebuild_device_tensor_from_numpy, (self.cpu().numpy(), | 
 |                                                                      self.dtype, | 
 |                                                                      str(self.device), | 
 |                                                                      self.requires_grad)) | 
 |         if self.device.type == 'meta': | 
 |             # NB: This implementation BREAKS storage sharing.  Current | 
 |             # hypothesis is that no one cares for meta tensors. | 
 |             arg_meta = ( | 
 |                 self.dtype, | 
 |                 tuple(self.size()), | 
 |                 self.stride(), | 
 |                 self.requires_grad, | 
 |             ) | 
 |             return (torch._utils._rebuild_meta_tensor_no_storage, arg_meta) | 
 |         if self.is_quantized: | 
 |             # quantizer_params can be different type based on torch attribute | 
 |             quantizer_params: Union[Tuple[torch.qscheme, float, int], Tuple[Any, Tensor, Tensor, int]] | 
 |             if self.qscheme() == torch.per_tensor_affine: | 
 |                 quantizer_params = (torch.per_tensor_affine, | 
 |                                     self.q_scale(), | 
 |                                     self.q_zero_point()) | 
 |             elif self.qscheme() in (torch.per_channel_affine, torch.per_channel_affine_float_qparams): | 
 |                 # convert scales and zero points to tuple to avoid recursive calls | 
 |                 # when/if we get multi-axis quantized tensors in the future, the shape | 
 |                 # is recoverable from the main tensor shape | 
 |                 quantizer_params = (torch.per_channel_affine, | 
 |                                     self.q_per_channel_scales(), | 
 |                                     self.q_per_channel_zero_points(), | 
 |                                     self.q_per_channel_axis()) | 
 |             else: | 
 |                 raise RuntimeError(f"Serialization is not supported for tensors of type {self.qscheme()}") | 
 |             # TODO: Once we decide to break serialization FC, no longer | 
 |             # need to wrap with _TypedStorage | 
 |             args_qtensor = ( | 
 |                 torch.storage._TypedStorage( | 
 |                     wrap_storage=self.storage()._untyped(), | 
 |                     dtype=self.dtype), | 
 |                 self.storage_offset(), | 
 |                 tuple(self.size()), | 
 |                 self.stride(), | 
 |                 quantizer_params, | 
 |                 self.requires_grad, | 
 |                 backward_hooks) | 
 |             return (torch._utils._rebuild_qtensor, args_qtensor) | 
 |         elif self.is_sparse: | 
 |             if self.layout == torch.sparse_coo: | 
 |                 args_sparse = (self.layout, | 
 |                                (self._indices(), | 
 |                                 self._values(), | 
 |                                 self.size())) | 
 |             else: | 
 |                 raise NotImplementedError( | 
 |                     'sparse tensor __reduce_ex__ for layout `%s`' % (self.layout)) | 
 |             return (torch._utils._rebuild_sparse_tensor, args_sparse) | 
 |         elif self.is_sparse_csr: | 
 |             if self.layout == torch.sparse_csr: | 
 |                 args_sparse_csr = (self.layout, | 
 |                                    (self.crow_indices(), | 
 |                                     self.col_indices(), | 
 |                                     self.values(), | 
 |                                     self.size())) | 
 |             else: | 
 |                 raise NotImplementedError( | 
 |                     'sparse csr tensor __reduce_ex__ for layout `%s`' % (self.layout)) | 
 |             return (torch._utils._rebuild_sparse_csr_tensor, args_sparse_csr) | 
 |         elif self.data_ptr() == 0 and type(self) is not torch.Tensor: | 
 |             arg_wrapper_subclass = ( | 
 |                 type(self), | 
 |                 self.dtype, | 
 |                 tuple(self.size()), | 
 |                 self.stride(), | 
 |                 self.storage_offset(), | 
 |                 self.layout, | 
 |                 self.device, | 
 |                 self.requires_grad | 
 |             ) | 
 |             return (torch._utils._rebuild_wrapper_subclass, arg_wrapper_subclass) | 
 |         else: | 
 |             # TODO: Once we decide to break serialization FC, no longer | 
 |             # need to wrap with _TypedStorage | 
 |             args = ( | 
 |                 torch.storage._TypedStorage( | 
 |                     wrap_storage=self.storage()._untyped(), | 
 |                     dtype=self.dtype), | 
 |                 self.storage_offset(), | 
 |                 tuple(self.size()), | 
 |                 self.stride(), | 
 |                 self.requires_grad, | 
 |                 backward_hooks)  # previously was self._backward_hooks | 
 |             return (torch._utils._rebuild_tensor_v2, args) | 
 |  | 
 |     def __setstate__(self, state): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__setstate__, (self,), self, state) | 
 |         # Warning: this method is NOT called when you torch.load() a tensor; | 
 |         # that is managed by _rebuild_tensor_v2 | 
 |         if not self.is_leaf: | 
 |             raise RuntimeError('__setstate__ can be only called on leaf Tensors') | 
 |         if len(state) == 4: | 
 |             # legacy serialization of Tensor | 
 |             self.set_(*state) | 
 |             return | 
 |         elif len(state) == 5: | 
 |             # legacy serialization of Variable | 
 |             self.data = state[0] | 
 |             state = (state[3], state[4], state[2]) | 
 |         # The setting of _backward_hooks is expected to be a no-op. | 
 |         # See Note [Don't serialize hooks] | 
 |         self.requires_grad, _, self._backward_hooks = state | 
 |  | 
 |     def __repr__(self): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__repr__, (self,), self) | 
 |         # All strings are unicode in Python 3. | 
 |         return torch._tensor_str._str(self) | 
 |  | 
 |     def backward(self, gradient=None, retain_graph=None, create_graph=False, inputs=None): | 
 |         r"""Computes the gradient of current tensor w.r.t. graph leaves. | 
 |  | 
 |         The graph is differentiated using the chain rule. If the tensor is | 
 |         non-scalar (i.e. its data has more than one element) and requires | 
 |         gradient, the function additionally requires specifying ``gradient``. | 
 |         It should be a tensor of matching type and location, that contains | 
 |         the gradient of the differentiated function w.r.t. ``self``. | 
 |  | 
 |         This function accumulates gradients in the leaves - you might need to zero | 
 |         ``.grad`` attributes or set them to ``None`` before calling it. | 
 |         See :ref:`Default gradient layouts<default-grad-layouts>` | 
 |         for details on the memory layout of accumulated gradients. | 
 |  | 
 |         .. note:: | 
 |  | 
 |             If you run any forward ops, create ``gradient``, and/or call ``backward`` | 
 |             in a user-specified CUDA stream context, see | 
 |             :ref:`Stream semantics of backward passes<bwd-cuda-stream-semantics>`. | 
 |  | 
 |         .. note:: | 
 |  | 
 |             When ``inputs`` are provided and a given input is not a leaf, | 
 |             the current implementation will call its grad_fn (though it is not strictly needed to get this gradients). | 
 |             It is an implementation detail on which the user should not rely. | 
 |             See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details. | 
 |  | 
 |         Args: | 
 |             gradient (Tensor or None): Gradient w.r.t. the | 
 |                 tensor. If it is a tensor, it will be automatically converted | 
 |                 to a Tensor that does not require grad unless ``create_graph`` is True. | 
 |                 None values can be specified for scalar Tensors or ones that | 
 |                 don't require grad. If a None value would be acceptable then | 
 |                 this argument is optional. | 
 |             retain_graph (bool, optional): If ``False``, the graph used to compute | 
 |                 the grads will be freed. Note that in nearly all cases setting | 
 |                 this option to True is not needed and often can be worked around | 
 |                 in a much more efficient way. Defaults to the value of | 
 |                 ``create_graph``. | 
 |             create_graph (bool, optional): If ``True``, graph of the derivative will | 
 |                 be constructed, allowing to compute higher order derivative | 
 |                 products. Defaults to ``False``. | 
 |             inputs (sequence of Tensor): Inputs w.r.t. which the gradient will be | 
 |                 accumulated into ``.grad``. All other Tensors will be ignored. If not | 
 |                 provided, the gradient is accumulated into all the leaf Tensors that were | 
 |                 used to compute the attr::tensors. | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function( | 
 |                 Tensor.backward, | 
 |                 (self,), | 
 |                 self, | 
 |                 gradient=gradient, | 
 |                 retain_graph=retain_graph, | 
 |                 create_graph=create_graph, | 
 |                 inputs=inputs) | 
 |         torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs) | 
 |  | 
 |     def register_hook(self, hook): | 
 |         r"""Registers a backward hook. | 
 |  | 
 |         The hook will be called every time a gradient with respect to the | 
 |         Tensor is computed. The hook should have the following signature:: | 
 |  | 
 |             hook(grad) -> Tensor or None | 
 |  | 
 |  | 
 |         The hook should not modify its argument, but it can optionally return | 
 |         a new gradient which will be used in place of :attr:`grad`. | 
 |  | 
 |         This function returns a handle with a method ``handle.remove()`` | 
 |         that removes the hook from the module. | 
 |  | 
 |         Example:: | 
 |  | 
 |             >>> v = torch.tensor([0., 0., 0.], requires_grad=True) | 
 |             >>> h = v.register_hook(lambda grad: grad * 2)  # double the gradient | 
 |             >>> v.backward(torch.tensor([1., 2., 3.])) | 
 |             >>> v.grad | 
 |  | 
 |              2 | 
 |              4 | 
 |              6 | 
 |             [torch.FloatTensor of size (3,)] | 
 |  | 
 |             >>> h.remove()  # removes the hook | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.register_hook, (self,), self, hook) | 
 |         if not self.requires_grad: | 
 |             raise RuntimeError("cannot register a hook on a tensor that " | 
 |                                "doesn't require gradient") | 
 |         if self._backward_hooks is None: | 
 |             self._backward_hooks = OrderedDict() | 
 |             if self.grad_fn is not None: | 
 |                 self.grad_fn._register_hook_dict(self) | 
 |         handle = hooks.RemovableHandle(self._backward_hooks) | 
 |         self._backward_hooks[handle.id] = hook | 
 |         return handle | 
 |  | 
 |     def reinforce(self, reward): | 
 |         def trim(str): | 
 |             return '\n'.join([line.strip() for line in str.split('\n')]) | 
 |  | 
 |         raise RuntimeError(trim(r"""reinforce() was removed. | 
 |             Use torch.distributions instead. | 
 |             See https://pytorch.org/docs/master/distributions.html | 
 |  | 
 |             Instead of: | 
 |  | 
 |             probs = policy_network(state) | 
 |             action = probs.multinomial() | 
 |             next_state, reward = env.step(action) | 
 |             action.reinforce(reward) | 
 |             action.backward() | 
 |  | 
 |             Use: | 
 |  | 
 |             probs = policy_network(state) | 
 |             # NOTE: categorical is equivalent to what used to be called multinomial | 
 |             m = torch.distributions.Categorical(probs) | 
 |             action = m.sample() | 
 |             next_state, reward = env.step(action) | 
 |             loss = -m.log_prob(action) * reward | 
 |             loss.backward() | 
 |         """)) | 
 |  | 
 |     detach = _C._add_docstr(_C._TensorBase.detach, r""" | 
 |     Returns a new Tensor, detached from the current graph. | 
 |  | 
 |     The result will never require gradient. | 
 |  | 
 |     This method also affects forward mode AD gradients and the result will never | 
 |     have forward mode AD gradients. | 
 |  | 
 |     .. note:: | 
 |  | 
 |       Returned Tensor shares the same storage with the original one. | 
 |       In-place modifications on either of them will be seen, and may trigger | 
 |       errors in correctness checks. | 
 |       IMPORTANT NOTE: Previously, in-place size / stride / storage changes | 
 |       (such as `resize_` / `resize_as_` / `set_` / `transpose_`) to the returned tensor | 
 |       also update the original tensor. Now, these in-place changes will not update the | 
 |       original tensor anymore, and will instead trigger an error. | 
 |       For sparse tensors: | 
 |       In-place indices / values changes (such as `zero_` / `copy_` / `add_`) to the | 
 |       returned tensor will not update the original tensor anymore, and will instead | 
 |       trigger an error. | 
 |     """) | 
 |  | 
 |     detach_ = _C._add_docstr(_C._TensorBase.detach_, r""" | 
 |     Detaches the Tensor from the graph that created it, making it a leaf. | 
 |     Views cannot be detached in-place. | 
 |  | 
 |     This method also affects forward mode AD gradients and the result will never | 
 |     have forward mode AD gradients. | 
 |     """) | 
 |  | 
 |     def is_shared(self): | 
 |         r"""Checks if tensor is in shared memory. | 
 |  | 
 |         This is always ``True`` for CUDA tensors. | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.is_shared, (self,), self) | 
 |         return self.storage().is_shared() | 
 |  | 
 |     def share_memory_(self): | 
 |         r"""Moves the underlying storage to shared memory. | 
 |  | 
 |         This is a no-op if the underlying storage is already in shared memory | 
 |         and for CUDA tensors. Tensors in shared memory cannot be resized. | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.share_memory_, (self,), self) | 
 |         self.storage().share_memory_() | 
 |         return self | 
 |  | 
 |     def __reversed__(self): | 
 |         r"""Reverses the tensor along dimension 0.""" | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__reversed__, (self,), self) | 
 |         if self.dim() == 0: | 
 |             return self | 
 |         else: | 
 |             return self.flip(0) | 
 |  | 
 |     def norm(self, p="fro", dim=None, keepdim=False, dtype=None): | 
 |         r"""See :func:`torch.norm`""" | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.norm, (self,), self, p=p, dim=dim, keepdim=keepdim, dtype=dtype) | 
 |         return torch.norm(self, p, dim, keepdim, dtype=dtype) | 
 |  | 
 |     def lu(self, pivot=True, get_infos=False): | 
 |         r"""See :func:`torch.lu`""" | 
 |         # If get_infos is True, then we don't need to check for errors and vice versa | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.lu, (self,), self, pivot=pivot, get_infos=get_infos) | 
 |  | 
 |         LU, pivots, infos = torch._lu_with_info(self, pivot=pivot, check_errors=(not get_infos)) | 
 |         if get_infos: | 
 |             return LU, pivots, infos | 
 |         else: | 
 |             return LU, pivots | 
 |  | 
 |     def stft(self, n_fft: int, hop_length: Optional[int] = None, | 
 |              win_length: Optional[int] = None, window: 'Optional[Tensor]' = None, | 
 |              center: bool = True, pad_mode: str = 'reflect', normalized: bool = False, | 
 |              onesided: Optional[bool] = None, return_complex: Optional[bool] = None): | 
 |         r"""See :func:`torch.stft` | 
 |  | 
 |         .. warning:: | 
 |           This function changed signature at version 0.4.1. Calling with | 
 |           the previous signature may cause error or return incorrect result. | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function( | 
 |                 Tensor.stft, (self,), self, n_fft, hop_length=hop_length, | 
 |                 win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=normalized, | 
 |                 onesided=onesided, return_complex=return_complex | 
 |             ) | 
 |         return torch.stft(self, n_fft, hop_length, win_length, window, center, | 
 |                           pad_mode, normalized, onesided, return_complex=return_complex) | 
 |  | 
 |     def istft(self, n_fft: int, hop_length: Optional[int] = None, | 
 |               win_length: Optional[int] = None, window: 'Optional[Tensor]' = None, | 
 |               center: bool = True, normalized: bool = False, | 
 |               onesided: Optional[bool] = None, length: Optional[int] = None, | 
 |               return_complex: bool = False): | 
 |         r"""See :func:`torch.istft`""" | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function( | 
 |                 Tensor.istft, (self,), self, n_fft, hop_length=hop_length, win_length=win_length, | 
 |                 window=window, center=center, normalized=normalized, onesided=onesided, length=length, | 
 |                 return_complex=return_complex | 
 |             ) | 
 |         return torch.istft(self, n_fft, hop_length, win_length, window, center, | 
 |                            normalized, onesided, length, return_complex=return_complex) | 
 |  | 
 |     def resize(self, *sizes): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.resize, (self,), self, *sizes) | 
 |         warnings.warn("non-inplace resize is deprecated") | 
 |         from torch.autograd._functions import Resize | 
 |         return Resize.apply(self, sizes) | 
 |  | 
 |     def resize_as(self, tensor): | 
 |         if has_torch_function_variadic(self, tensor): | 
 |             return handle_torch_function(Tensor.resize_as, (self, tensor), self, tensor) | 
 |         warnings.warn("non-inplace resize_as is deprecated") | 
 |         from torch.autograd._functions import Resize | 
 |         return Resize.apply(self, tensor.size()) | 
 |  | 
 |     def split(self, split_size, dim=0): | 
 |         r"""See :func:`torch.split` | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.split, (self,), self, split_size, dim=dim) | 
 |         if isinstance(split_size, int): | 
 |             return super(Tensor, self).split(split_size, dim) | 
 |         elif isinstance(split_size, Tensor): | 
 |             try: | 
 |                 split_size = int(split_size) | 
 |                 return super(Tensor, self).split(split_size, dim) | 
 |             except ValueError: | 
 |                 return super(Tensor, self).split_with_sizes(split_size, dim) | 
 |         else: | 
 |             return super(Tensor, self).split_with_sizes(split_size, dim) | 
 |  | 
 |     def unique(self, sorted=True, return_inverse=False, return_counts=False, dim=None): | 
 |         r"""Returns the unique elements of the input tensor. | 
 |  | 
 |         See :func:`torch.unique` | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function( | 
 |                 Tensor.unique, (self,), self, sorted=sorted, return_inverse=return_inverse, | 
 |                 return_counts=return_counts, dim=dim | 
 |             ) | 
 |         return torch.unique(self, sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, dim=dim) | 
 |  | 
 |     def unique_consecutive(self, return_inverse=False, return_counts=False, dim=None): | 
 |         r"""Eliminates all but the first element from every consecutive group of equivalent elements. | 
 |  | 
 |         See :func:`torch.unique_consecutive` | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function( | 
 |                 Tensor.unique_consecutive, (self,), self, return_inverse=return_inverse, | 
 |                 return_counts=return_counts, dim=dim | 
 |             ) | 
 |         return torch.unique_consecutive(self, return_inverse=return_inverse, return_counts=return_counts, dim=dim) | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rsub__(self, other): | 
 |         return _C._VariableFunctions.rsub(self, other) | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rdiv__(self, other): | 
 |         return self.reciprocal() * other | 
 |  | 
 |     __rtruediv__ = __rdiv__ | 
 |     __itruediv__ = _C._TensorBase.__idiv__ | 
 |  | 
 |     __pow__ = _handle_torch_function_and_wrap_type_error_to_not_implemented(_C._TensorBase.pow) | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rmod__(self, other): | 
 |         return torch.remainder(other, self) | 
 |  | 
 |     def __format__(self, format_spec): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__format__, (self,), self, format_spec) | 
 |         if self.dim() == 0 and not self.is_meta: | 
 |             return self.item().__format__(format_spec) | 
 |         return object.__format__(self, format_spec) | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __ipow__(self, other):  # type: ignore[misc] | 
 |         return NotImplemented | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rpow__(self, other): | 
 |         dtype = torch.result_type(other, self) | 
 |         return torch.tensor(other, dtype=dtype, device=self.device) ** self | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __floordiv__(self, other): | 
 |         warnings.warn("__floordiv__ is deprecated, and its behavior will change in a future version of pytorch. " | 
 |                       "It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). " | 
 |                       "This results in incorrect rounding for negative values. " | 
 |                       "To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), " | 
 |                       "or for actual floor division, use torch.div(a, b, rounding_mode='floor').", stacklevel=3) | 
 |         return torch.div(self, other, rounding_mode='trunc') | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rfloordiv__(self, other): | 
 |         warnings.warn("__rfloordiv__ is deprecated, and its behavior will change in a future version of pytorch. " | 
 |                       "It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). " | 
 |                       "This results in incorrect rounding for negative values. " | 
 |                       "To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), " | 
 |                       "or for actual floor division, use torch.div(a, b, rounding_mode='floor').", stacklevel=3) | 
 |         return torch.div(other, self, rounding_mode='trunc') | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rlshift__(self, other): | 
 |         return torch.bitwise_left_shift(other, self) | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rrshift__(self, other): | 
 |         return torch.bitwise_right_shift(other, self) | 
 |  | 
 |     @_handle_torch_function_and_wrap_type_error_to_not_implemented | 
 |     def __rmatmul__(self, other): | 
 |         return torch.matmul(other, self) | 
 |  | 
 |     __pos__ = _C._TensorBase.positive | 
 |     __neg__ = _C._TensorBase.neg | 
 |     __abs__ = _C._TensorBase.abs | 
 |  | 
 |     def __len__(self): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__len__, (self,), self) | 
 |         if self.dim() == 0: | 
 |             raise TypeError("len() of a 0-d tensor") | 
 |         if torch._C._get_tracing_state(): | 
 |             warnings.warn('Using len to get tensor shape might cause the trace to be incorrect. ' | 
 |                           'Recommended usage would be tensor.shape[0]. ' | 
 |                           'Passing a tensor of different shape might lead to errors or silently give ' | 
 |                           'incorrect results.', category=torch.jit.TracerWarning, stacklevel=2) | 
 |         return self.shape[0] | 
 |  | 
 |     def __iter__(self): | 
 |         # NB: we use 'imap' and not 'map' here, so that in Python 2 we get a | 
 |         # generator and don't eagerly perform all the indexes.  This could | 
 |         # save us work, and also helps keep trace ordering deterministic | 
 |         # (e.g., if you zip(*hiddens), the eager map will force all the | 
 |         # indexes of hiddens[0] before hiddens[1], while the generator | 
 |         # map will interleave them.) | 
 |         # NB: We have intentionally skipped __torch_function__ dispatch here. | 
 |         # See gh-54457 | 
 |         if self.dim() == 0: | 
 |             raise TypeError('iteration over a 0-d tensor') | 
 |         if torch._C._get_tracing_state(): | 
 |             warnings.warn('Iterating over a tensor might cause the trace to be incorrect. ' | 
 |                           'Passing a tensor of different shape won\'t change the number of ' | 
 |                           'iterations executed (and might lead to errors or silently give ' | 
 |                           'incorrect results).', category=torch.jit.TracerWarning, stacklevel=2) | 
 |         return iter(self.unbind(0)) | 
 |  | 
 |     def __hash__(self): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__hash__, (self,), self) | 
 |         return id(self) | 
 |  | 
 |     def __dir__(self): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__dir__, (self,), self) | 
 |         tensor_methods = dir(self.__class__) | 
 |         tensor_methods.remove('volatile')  # deprecated | 
 |         attrs = list(self.__dict__.keys()) | 
 |         keys = tensor_methods + attrs | 
 |  | 
 |         # property only available dense, cuda tensors | 
 |         if (not self.is_cuda) or self.is_sparse: | 
 |             keys.remove("__cuda_array_interface__") | 
 |  | 
 |         return sorted(keys) | 
 |  | 
 |     # Numpy array interface, to support `numpy.asarray(tensor) -> ndarray` | 
 |     __array_priority__ = 1000    # prefer Tensor ops over numpy ones | 
 |  | 
 |     def __array__(self, dtype=None): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__array__, (self,), self, dtype=dtype) | 
 |         if dtype is None: | 
 |             return self.numpy() | 
 |         else: | 
 |             return self.numpy().astype(dtype, copy=False) | 
 |  | 
 |     # Wrap Numpy array again in a suitable tensor when done, to support e.g. | 
 |     # `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor` | 
 |     def __array_wrap__(self, array): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__array_wrap__, (self,), self, array=array) | 
 |         if array.dtype == bool: | 
 |             # Workaround, torch has no built-in bool tensor | 
 |             array = array.astype('uint8') | 
 |         return torch.from_numpy(array) | 
 |  | 
 |     def __contains__(self, element): | 
 |         r"""Check if `element` is present in tensor | 
 |  | 
 |         Args: | 
 |             element (Tensor or scalar): element to be checked | 
 |                 for presence in current tensor" | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__contains__, (self,), self, element) | 
 |         if isinstance(element, (torch.Tensor, Number)): | 
 |             # type hint doesn't understand the __contains__ result array | 
 |             return (element == self).any().item()  # type: ignore[union-attr] | 
 |  | 
 |         raise RuntimeError( | 
 |             "Tensor.__contains__ only supports Tensor or scalar, but you passed in a %s." % | 
 |             type(element) | 
 |         ) | 
 |  | 
 |     @property | 
 |     def __cuda_array_interface__(self): | 
 |         """Array view description for cuda tensors. | 
 |  | 
 |         See: | 
 |         https://numba.pydata.org/numba-doc/latest/cuda/cuda_array_interface.html | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 | 
 |             return handle_torch_function(Tensor.__cuda_array_interface__.__get__, (self,), self)  # type: ignore[attr-defined] | 
 |  | 
 |         # raise AttributeError for unsupported tensors, so that | 
 |         # hasattr(cpu_tensor, "__cuda_array_interface__") is False. | 
 |         if not self.is_cuda: | 
 |             raise AttributeError( | 
 |                 "Can't get __cuda_array_interface__ on non-CUDA tensor type: %s " | 
 |                 "If CUDA data is required use tensor.cuda() to copy tensor to device memory." % | 
 |                 self.type() | 
 |             ) | 
 |  | 
 |         if self.is_sparse: | 
 |             raise AttributeError( | 
 |                 "Can't get __cuda_array_interface__ on sparse type: %s " | 
 |                 "Use Tensor.to_dense() to convert to a dense tensor first." % | 
 |                 self.type() | 
 |             ) | 
 |  | 
 |         # RuntimeError, matching tensor.__array__() behavior. | 
 |         if self.requires_grad: | 
 |             raise RuntimeError( | 
 |                 "Can't get __cuda_array_interface__ on Variable that requires grad. " | 
 |                 "If gradients aren't required, use var.detach() to get Variable that doesn't require grad." | 
 |             ) | 
 |  | 
 |         # CUDA devices are little-endian and tensors are stored in native byte | 
 |         # order. 1-byte entries are endian-agnostic. | 
 |         typestr = { | 
 |             torch.complex64: "<c8", | 
 |             torch.complex128: "<c16", | 
 |             torch.float16: "<f2", | 
 |             torch.float32: "<f4", | 
 |             torch.float64: "<f8", | 
 |             torch.uint8: "|u1", | 
 |             torch.int8: "|i1", | 
 |             torch.int16: "<i2", | 
 |             torch.int32: "<i4", | 
 |             torch.int64: "<i8", | 
 |         }[self.dtype] | 
 |  | 
 |         itemsize = self.storage().element_size() | 
 |  | 
 |         shape = tuple(self.shape) | 
 |         if self.is_contiguous(): | 
 |             # __cuda_array_interface__ v2 requires the strides to be omitted | 
 |             # (either not set or set to None) for C-contiguous arrays. | 
 |             strides = None | 
 |         else: | 
 |             strides = tuple(s * itemsize for s in self.stride()) | 
 |         data_ptr = self.data_ptr() if self.numel() > 0 else 0 | 
 |         data = (data_ptr, False)  # read-only is false | 
 |  | 
 |         return dict(typestr=typestr, shape=shape, strides=strides, data=data, version=2) | 
 |  | 
 |     def storage_type(self): | 
 |         r"""storage_type() -> type | 
 |  | 
 |         Returns the type of the underlying storage. | 
 |  | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.storage_type, (self,), self) | 
 |  | 
 |         return self.storage()._get_legacy_storage_class() | 
 |  | 
 |     def refine_names(self, *names): | 
 |         r"""Refines the dimension names of :attr:`self` according to :attr:`names`. | 
 |  | 
 |         Refining is a special case of renaming that "lifts" unnamed dimensions. | 
 |         A ``None`` dim can be refined to have any name; a named dim can only be | 
 |         refined to have the same name. | 
 |  | 
 |         Because named tensors can coexist with unnamed tensors, refining names | 
 |         gives a nice way to write named-tensor-aware code that works with both | 
 |         named and unnamed tensors. | 
 |  | 
 |         :attr:`names` may contain up to one Ellipsis (``...``). | 
 |         The Ellipsis is expanded greedily; it is expanded in-place to fill | 
 |         :attr:`names` to the same length as ``self.dim()`` using names from the | 
 |         corresponding indices of ``self.names``. | 
 |  | 
 |         Python 2 does not support Ellipsis but one may use a string literal | 
 |         instead (``'...'``). | 
 |  | 
 |         Args: | 
 |             names (iterable of str): The desired names of the output tensor. May | 
 |                 contain up to one Ellipsis. | 
 |  | 
 |         Examples:: | 
 |  | 
 |             >>> imgs = torch.randn(32, 3, 128, 128) | 
 |             >>> named_imgs = imgs.refine_names('N', 'C', 'H', 'W') | 
 |             >>> named_imgs.names | 
 |             ('N', 'C', 'H', 'W') | 
 |  | 
 |             >>> tensor = torch.randn(2, 3, 5, 7, 11) | 
 |             >>> tensor = tensor.refine_names('A', ..., 'B', 'C') | 
 |             >>> tensor.names | 
 |             ('A', None, None, 'B', 'C') | 
 |  | 
 |         .. warning:: | 
 |             The named tensor API is experimental and subject to change. | 
 |  | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.refine_names, (self,), self, *names) | 
 |         names = resolve_ellipsis(names, self.names, 'refine_names') | 
 |         return super(Tensor, self).refine_names(names) | 
 |  | 
 |     def align_to(self, *names): | 
 |         r"""Permutes the dimensions of the :attr:`self` tensor to match the order | 
 |         specified in :attr:`names`, adding size-one dims for any new names. | 
 |  | 
 |         All of the dims of :attr:`self` must be named in order to use this method. | 
 |         The resulting tensor is a view on the original tensor. | 
 |  | 
 |         All dimension names of :attr:`self` must be present in :attr:`names`. | 
 |         :attr:`names` may contain additional names that are not in ``self.names``; | 
 |         the output tensor has a size-one dimension for each of those new names. | 
 |  | 
 |         :attr:`names` may contain up to one Ellipsis (``...``). | 
 |         The Ellipsis is expanded to be equal to all dimension names of :attr:`self` | 
 |         that are not mentioned in :attr:`names`, in the order that they appear | 
 |         in :attr:`self`. | 
 |  | 
 |         Python 2 does not support Ellipsis but one may use a string literal | 
 |         instead (``'...'``). | 
 |  | 
 |         Args: | 
 |             names (iterable of str): The desired dimension ordering of the | 
 |                 output tensor. May contain up to one Ellipsis that is expanded | 
 |                 to all unmentioned dim names of :attr:`self`. | 
 |  | 
 |         Examples:: | 
 |  | 
 |             >>> tensor = torch.randn(2, 2, 2, 2, 2, 2) | 
 |             >>> named_tensor = tensor.refine_names('A', 'B', 'C', 'D', 'E', 'F') | 
 |  | 
 |             # Move the F and E dims to the front while keeping the rest in order | 
 |             >>> named_tensor.align_to('F', 'E', ...) | 
 |  | 
 |         .. warning:: | 
 |             The named tensor API is experimental and subject to change. | 
 |  | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.align_to, (self,), self, *names) | 
 |         ellipsis_idx = single_ellipsis_index(names, 'align_to') | 
 |         if ellipsis_idx is None: | 
 |             return super(Tensor, self).align_to(names) | 
 |         return super(Tensor, self).align_to( | 
 |             [name for name in names if not is_ellipsis(name)], | 
 |             ellipsis_idx) | 
 |  | 
 |     def unflatten(self, dim, sizes): | 
 |         r"""Expands the dimension :attr:`dim` of the :attr:`self` tensor over multiple dimensions | 
 |         of sizes given by :attr:`sizes`. | 
 |  | 
 |         * :attr:`sizes` is the new shape of the unflattened dimension and it can be a `Tuple[int]` as well | 
 |           as `torch.Size` if :attr:`self` is a `Tensor`, or `namedshape` (Tuple[(name: str, size: int)]) | 
 |           if :attr:`self` is a `NamedTensor`. The total number of elements in sizes must match the number | 
 |           of elements in the original dim being unflattened. | 
 |  | 
 |         Args: | 
 |             dim (Union[int, str]): Dimension to unflatten | 
 |             sizes (Union[Tuple[int] or torch.Size, Tuple[Tuple[str, int]]]): New shape of the unflattened dimension | 
 |  | 
 |         Examples: | 
 |             >>> torch.randn(3, 4, 1).unflatten(1, (2, 2)).shape | 
 |             torch.Size([3, 2, 2, 1]) | 
 |             >>> torch.randn(3, 4, 1).unflatten(1, (-1, 2)).shape # the size -1 is inferred from the size of dimension 1 | 
 |             torch.Size([3, 2, 2, 1]) | 
 |             >>> torch.randn(2, 4, names=('A', 'B')).unflatten('B', (('B1', 2), ('B2', 2))) | 
 |             tensor([[[-1.1772,  0.0180], | 
 |                     [ 0.2412,  0.1431]], | 
 |                     [[-1.1819, -0.8899], | 
 |                     [ 1.5813,  0.2274]]], names=('A', 'B1', 'B2')) | 
 |             >>> torch.randn(2, names=('A',)).unflatten('A', (('B1', -1), ('B2', 1))) | 
 |             tensor([[-0.8591], | 
 |                     [ 0.3100]], names=('B1', 'B2')) | 
 |  | 
 |         .. warning:: | 
 |             The named tensor API is experimental and subject to change. | 
 |  | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.unflatten, (self,), self, dim, sizes) | 
 |  | 
 |         if not sizes: | 
 |             raise RuntimeError("unflatten: sizes must be non-empty") | 
 |  | 
 |         names = None | 
 |         if isinstance(sizes, OrderedDict) or (isinstance(sizes, (tuple, list)) and isinstance(sizes[0], (tuple, list))): | 
 |             names, sizes = unzip_namedshape(sizes) | 
 |         return super(Tensor, self).unflatten(dim, sizes, names) | 
 |  | 
 |  | 
 |     def rename_(self, *names, **rename_map): | 
 |         """In-place version of :meth:`~Tensor.rename`.""" | 
 |  | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.rename_, (self,), self, *names, **rename_map) | 
 |  | 
 |         # Note [rename_ / rename API] | 
 |         # The Python API for these is different from the C++ API. In Python: | 
 |         # 1) tensor.rename(*names) takes a vararglist of names | 
 |         # 2) tensor.rename(**rename_map) takes a map of names to rename. | 
 |         # C++ is static, making it difficult to implement similar behavior. | 
 |         return update_names(self, names, rename_map, inplace=True) | 
 |  | 
 |     def rename(self, *names, **rename_map): | 
 |         """Renames dimension names of :attr:`self`. | 
 |  | 
 |         There are two main usages: | 
 |  | 
 |         ``self.rename(**rename_map)`` returns a view on tensor that has dims | 
 |         renamed as specified in the mapping :attr:`rename_map`. | 
 |  | 
 |         ``self.rename(*names)`` returns a view on tensor, renaming all | 
 |         dimensions positionally using :attr:`names`. | 
 |         Use ``self.rename(None)`` to drop names on a tensor. | 
 |  | 
 |         One cannot specify both positional args :attr:`names` and keyword args | 
 |         :attr:`rename_map`. | 
 |  | 
 |         Examples:: | 
 |  | 
 |             >>> imgs = torch.rand(2, 3, 5, 7, names=('N', 'C', 'H', 'W')) | 
 |             >>> renamed_imgs = imgs.rename(N='batch', C='channels') | 
 |             >>> renamed_imgs.names | 
 |             ('batch', 'channels', 'H', 'W') | 
 |  | 
 |             >>> renamed_imgs = imgs.rename(None) | 
 |             >>> renamed_imgs.names | 
 |             (None,) | 
 |  | 
 |             >>> renamed_imgs = imgs.rename('batch', 'channel', 'height', 'width') | 
 |             >>> renamed_imgs.names | 
 |             ('batch', 'channel', 'height', 'width') | 
 |  | 
 |         .. warning:: | 
 |             The named tensor API is experimental and subject to change. | 
 |  | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.rename, (self,), self, *names, **rename_map) | 
 |  | 
 |         # See Note [rename_ / rename API] | 
 |         return update_names(self, names, rename_map, inplace=False) | 
 |  | 
 |     def to_sparse_coo(self): | 
 |         """ Convert a tensor to :ref:`coordinate format <sparse-coo-docs>`. | 
 |  | 
 |        Examples:: | 
 |  | 
 |             >>> dense = torch.randn(5, 5) | 
 |             >>> sparse = dense.to_sparse_coo() | 
 |             >>> sparse._nnz() | 
 |             25 | 
 |  | 
 |        """ | 
 |         return self.to_sparse() | 
 |  | 
 |     def _update_names(self, names, inplace): | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor._update_names, (self,), self, names, inplace) | 
 |  | 
 |         # See Note [rename_ / rename API] | 
 |         if inplace: | 
 |             return super(Tensor, self).rename_(names) | 
 |         else: | 
 |             return super(Tensor, self).rename(names) | 
 |  | 
 |     @property | 
 |     def grad(self): | 
 |         """ | 
 |         This attribute is ``None`` by default and becomes a Tensor the first time a call to | 
 |         :func:`backward` computes gradients for ``self``. | 
 |         The attribute will then contain the gradients computed and future calls to | 
 |         :func:`backward` will accumulate (add) gradients into it. | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 | 
 |             return handle_torch_function(Tensor.grad.__get__, (self,), self)  # type: ignore[attr-defined] | 
 |  | 
 |         return self._grad | 
 |  | 
 |     @grad.setter | 
 |     def grad(self, new_grad): | 
 |         if has_torch_function_unary(self): | 
 |             # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 | 
 |             return handle_torch_function(Tensor.grad.__set__, (self,), self, new_grad)  # type: ignore[attr-defined] | 
 |         self._grad = new_grad | 
 |  | 
 |     @grad.deleter | 
 |     def grad(self): | 
 |         if has_torch_function_unary(self): | 
 |             # TODO mypy doesn't support @property, see: https://github.com/python/mypy/issues/6185 | 
 |             return handle_torch_function(Tensor.grad.__delete__, (self,), self)  # type: ignore[attr-defined] | 
 |         del self._grad | 
 |  | 
 |     @classmethod | 
 |     def __torch_function__(cls, func, types, args=(), kwargs=None): | 
 |         """ | 
 |         This __torch_function__ implementation wraps subclasses such that | 
 |         methods called on subclasses return a subclass instance instead of | 
 |         a ``torch.Tensor`` instance. | 
 |  | 
 |         One corollary to this is that you need coverage for torch.Tensor | 
 |         methods if implementing __torch_function__ for subclasses. | 
 |  | 
 |         We recommend always calling ``super().__torch_function__`` as the base | 
 |         case when doing the above. | 
 |  | 
 |         While not mandatory, we recommend making `__torch_function__` a classmethod. | 
 |         """ | 
 |         if kwargs is None: | 
 |             kwargs = {} | 
 |  | 
 |         if not all(issubclass(cls, t) for t in types): | 
 |             return NotImplemented | 
 |  | 
 |         with _C.DisableTorchFunction(): | 
 |             ret = func(*args, **kwargs) | 
 |             if func in get_default_nowrap_functions(): | 
 |                 return ret | 
 |             else: | 
 |                 return _convert(ret, cls) | 
 |  | 
 |     __torch_dispatch__ = _C._disabled_torch_dispatch_impl | 
 |  | 
 |     def __dlpack__(self, stream=None): | 
 |         """ | 
 |         Creates a DLpack `capsule https://data-apis.org/array-api/latest/design_topics/data_interchange.html#data-interchange`_ | 
 |         of the current tensor to be exported to other libraries. | 
 |  | 
 |         This function will be called from the `from_dlpack` method | 
 |         of the library that will consume the capsule. `from_dlpack` passes the current | 
 |         stream to this method as part of the specification. | 
 |  | 
 |         Args: | 
 |             stream (integer or None): An optional Python integer representing a | 
 |             pointer to a CUDA stream. The current stream is synchronized with | 
 |             this stream before the capsule is created, and since the capsule | 
 |             shares its storage with the tensor this make it safe to access from | 
 |             both streams.  If None or -1 is passed then no synchronization is performed. | 
 |         """ | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__dlpack__, (self,), self, stream) | 
 |  | 
 |         # DLPack capsules can't capture all of PyTorch's semantics, | 
 |         # so we prohibit exporting tensors that would lose their properties like | 
 |         # requires_grad and having the conjugate bit set. | 
 |         if self.requires_grad: | 
 |             raise RuntimeError('Can\'t export tensors that require gradient, use tensor.detach()') | 
 |         if self.is_conj(): | 
 |             raise RuntimeError('Can\'t export tensors with the conjugate bit set') | 
 |         if self.layout != torch.strided: | 
 |             raise RuntimeError('Can\'t export tensors with layout other than torch.strided') | 
 |  | 
 |         if stream is not None and type(stream) is not int: | 
 |             # Stream pointers in CUDA/ROCm are uniquely numbered and can | 
 |             # be retrieved from their integer value. | 
 |             raise TypeError('stream must be ``int`` or ``none``') | 
 |         elif stream is not None and stream != -1: | 
 |             if self.device.type == 'cuda': | 
 |                 stream = torch.cuda.ExternalStream(stream) | 
 |                 # Only synchronize on different streams | 
 |                 if stream != torch.cuda.current_stream: | 
 |                     event = torch.cuda.Event() | 
 |                     event.record(torch.cuda.current_stream()) | 
 |                     stream.wait_event(event) | 
 |         return torch.to_dlpack(self) | 
 |  | 
 |     def __dlpack_device__(self) -> Tuple[enum.IntEnum, int]: | 
 |         # Avoid circular import | 
 |         from torch.utils.dlpack import DLDeviceType | 
 |         if has_torch_function_unary(self): | 
 |             return handle_torch_function(Tensor.__dlpack_device__, (self,), self) | 
 |         idx = self.device.index if self.device.index is not None else 0 | 
 |         if self.device.type == 'cuda' and torch.version.hip is not None: | 
 |             device_type = DLDeviceType.kDLROCM | 
 |         elif self.device.type == 'cpu' and self.is_pinned(): | 
 |             device_type = DLDeviceType.kDLCPUPinned | 
 |         elif self.device.type == 'cuda': | 
 |             device_type = DLDeviceType.kDLGPU | 
 |         elif self.device.type == 'cpu': | 
 |             device_type = DLDeviceType.kDLCPU | 
 |         else: | 
 |             raise ValueError('Unknown device type {} for Dlpack'.format(self.device.type)) | 
 |         return (device_type, idx) | 
 |  | 
 |     __module__ = 'torch' | 
 |  | 
 | def _convert(ret, cls): | 
 |     if cls is Tensor: | 
 |         return ret | 
 |  | 
 |     if isinstance(ret, Tensor) and not isinstance(ret, cls): | 
 |         ret = ret.as_subclass(cls) | 
 |  | 
 |     if isinstance(ret, (tuple, list)): | 
 |         # Also handles things like namedtuples | 
 |         ret = type(ret)(_convert(r, cls) for r in ret) | 
 |  | 
 |     return ret |