blob: aa3af92bb94a2f4973f6e74a22937e766b555b69 [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from .qconfig import QConfig
class ConvPackedParams(torch.nn.Module):
def __init__(self):
super(ConvPackedParams, self).__init__()
wq = torch._empty_affine_quantized([1, 1, 1, 1], scale=1.0, zero_point=0, dtype=torch.qint8)
self.stride = [1, 1]
self.padding = [0, 0]
self.dilation = [1, 1]
self.groups = 1
self.set_weight_bias(wq, None)
@torch.jit.export
def set_conv_params(self, stride, padding, dilation, groups):
# type: (List[int], List[int], List[int], int) -> None
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
@torch.jit.export
def set_weight_bias(self, weight, bias):
# type: (torch.Tensor, Optional[torch.Tensor]) -> None
self._packed_params = torch.ops.quantized.conv2d_prepack(weight, bias, self.stride,
self.padding, self.dilation, self.groups)
@torch.jit.export
def _weight_bias(self):
return torch.ops.quantized.conv2d_unpack(self._packed_params)
def forward(self, x):
return x
@torch.jit.export
def __getstate__(self):
qweight, bias = self._weight_bias()
return (qweight,
bias,
self.stride,
self.padding,
self.dilation,
self.groups,
self.training)
@torch.jit.export
def __setstate__(self, state):
self.stride = state[2]
self.padding = state[3]
self.dilation = state[4]
self.groups = state[5]
self.set_weight_bias(state[0],
state[1])
self.training = state[6]
linear_packed_params = None
conv_packed_params = None
if 'fbgemm' in torch.backends.quantized.supported_engines:
linear_packed_params = torch.jit.script(torch.nn.quantized.modules.linear.LinearPackedParams())._c
conv_packed_params = torch.jit.script(ConvPackedParams())._c
def _check_is_script_module(model):
if not isinstance(model, torch.jit.ScriptModule):
raise ValueError('input must be a script module, got: ' + str(type(model)))
def prepare_script(model, qconfig_dict, inplace=False):
_check_is_script_module(model)
if not inplace:
model = model.copy()
torch._C._jit_pass_insert_observers(model._c,
'forward',
qconfig_dict,
True)
return model
def convert_script(model, inplace=False):
_check_is_script_module(model)
if not inplace:
model = model.copy()
torch._C._jit_pass_insert_quant_dequant(model._c, 'forward', True)
if 'fbgemm' in torch.backends.quantized.supported_engines:
torch._C._jit_pass_insert_prepack_unpack(model._c)
return model
# TODO: non-scriptable QConfig will be supported later
def script_qconfig(qconfig):
return QConfig(
activation=torch.jit.script(qconfig.activation())._c,
weight=torch.jit.script(qconfig.weight())._c)
def quantize_script(model, qconfig_dict, run_fn, run_args, inplace=False):
_check_is_script_module(model)
if not model._c._has_method('forward'):
raise ValueError('input script module does not have forward method')
assert not inplace, "We don't support inplace right now"
if not inplace:
model = model.copy()
scripted_qconfig_dict = {k: script_qconfig(v) for k, v in qconfig_dict.items()}
# We are not going to run fold_convbn pass right now
# since it is not able to work correctly, we will
# revisit after constants is properly handled in
# JIT
# torch._C._jit_pass_fold_convbn(model._c)
prepare_script(model, scripted_qconfig_dict, True)
run_fn(model._c._get_method('forward'), *run_args)
# When we mutating graph we didn't create a new ClassType
# and the graph executor will run an out dated version
# of the graph if we do inplace graph mutation, therefore
# we copy the model here
# [TODO] This will be fixed later when we figure out
# how to properly mutate types
model = convert_script(model, False)
return model