blob: 8a6819d11bb7556b0e1f772f4cd33db060f3ff66 [file] [log] [blame]
graph(%0 : Double(1, 3, 224, 224)
%1 : Double(64, 3, 11, 11)
%2 : Double(64)
%3 : Double(192, 64, 5, 5)
%4 : Double(192)
%5 : Double(384, 192, 3, 3)
%6 : Double(384)
%7 : Double(256, 384, 3, 3)
%8 : Double(256)
%9 : Double(256, 256, 3, 3)
%10 : Double(256)
%11 : Double(4096, 9216)
%12 : Double(4096)
%13 : Double(4096, 4096)
%14 : Double(4096)
%15 : Double(1000, 4096)
%16 : Double(1000)) {
%17 : Double(1, 64, 55, 55) = aten::_convolution[stride=[4, 4], padding=[2, 2], dilation=[1, 1], transposed=0, output_padding=[0, 0], groups=1, benchmark=0, deterministic=0, cudnn_enabled=1](%0, %1, %2), scope: AlexNet/Sequential[features]/Conv2d[0]
%18 : Double(1, 64, 55, 55) = aten::threshold[threshold={0}, value={0}](%17), scope: AlexNet/Sequential[features]/ReLU[1]
%19 : Double(1, 64, 27, 27), %20 : Long(1, 64, 27, 27) = aten::max_pool2d[kernel_size=[3, 3], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=0](%18), scope: AlexNet/Sequential[features]/MaxPool2d[2]
%21 : Double(1, 192, 27, 27) = aten::_convolution[stride=[1, 1], padding=[2, 2], dilation=[1, 1], transposed=0, output_padding=[0, 0], groups=1, benchmark=0, deterministic=0, cudnn_enabled=1](%19, %3, %4), scope: AlexNet/Sequential[features]/Conv2d[3]
%22 : Double(1, 192, 27, 27) = aten::threshold[threshold={0}, value={0}](%21), scope: AlexNet/Sequential[features]/ReLU[4]
%23 : Double(1, 192, 13, 13), %24 : Long(1, 192, 13, 13) = aten::max_pool2d[kernel_size=[3, 3], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=0](%22), scope: AlexNet/Sequential[features]/MaxPool2d[5]
%25 : Double(1, 384, 13, 13) = aten::_convolution[stride=[1, 1], padding=[1, 1], dilation=[1, 1], transposed=0, output_padding=[0, 0], groups=1, benchmark=0, deterministic=0, cudnn_enabled=1](%23, %5, %6), scope: AlexNet/Sequential[features]/Conv2d[6]
%26 : Double(1, 384, 13, 13) = aten::threshold[threshold={0}, value={0}](%25), scope: AlexNet/Sequential[features]/ReLU[7]
%27 : Double(1, 256, 13, 13) = aten::_convolution[stride=[1, 1], padding=[1, 1], dilation=[1, 1], transposed=0, output_padding=[0, 0], groups=1, benchmark=0, deterministic=0, cudnn_enabled=1](%26, %7, %8), scope: AlexNet/Sequential[features]/Conv2d[8]
%28 : Double(1, 256, 13, 13) = aten::threshold[threshold={0}, value={0}](%27), scope: AlexNet/Sequential[features]/ReLU[9]
%29 : Double(1, 256, 13, 13) = aten::_convolution[stride=[1, 1], padding=[1, 1], dilation=[1, 1], transposed=0, output_padding=[0, 0], groups=1, benchmark=0, deterministic=0, cudnn_enabled=1](%28, %9, %10), scope: AlexNet/Sequential[features]/Conv2d[10]
%30 : Double(1, 256, 13, 13) = aten::threshold[threshold={0}, value={0}](%29), scope: AlexNet/Sequential[features]/ReLU[11]
%31 : Double(1, 256, 6, 6), %32 : Long(1, 256, 6, 6) = aten::max_pool2d[kernel_size=[3, 3], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=0](%30), scope: AlexNet/Sequential[features]/MaxPool2d[12]
%33 : Long() = aten::size[dim=0](%31), scope: AlexNet
%34 : Long() = prim::Constant[value={9216}](), scope: AlexNet
%35 : Dynamic = aten::stack[dim=0](%33, %34), scope: AlexNet
%36 : Double(1, 9216) = aten::view(%31, %35), scope: AlexNet
%37 : Double(1, 9216) = ^Dropout(0.5, True, False)(%36), scope: AlexNet/Sequential[classifier]/Dropout[0]
%38 : Double(9216!, 4096!) = aten::t(%11), scope: AlexNet/Sequential[classifier]/Linear[1]
%39 : Double(1, 4096) = aten::expand[size=[1, 4096], implicit=1](%12), scope: AlexNet/Sequential[classifier]/Linear[1]
%40 : Double(1, 4096) = aten::addmm[beta={1}, alpha={1}](%39, %37, %38), scope: AlexNet/Sequential[classifier]/Linear[1]
%41 : Double(1, 4096) = aten::threshold[threshold={0}, value={0}](%40), scope: AlexNet/Sequential[classifier]/ReLU[2]
%42 : Double(1, 4096) = ^Dropout(0.5, True, False)(%41), scope: AlexNet/Sequential[classifier]/Dropout[3]
%43 : Double(4096!, 4096!) = aten::t(%13), scope: AlexNet/Sequential[classifier]/Linear[4]
%44 : Double(1, 4096) = aten::expand[size=[1, 4096], implicit=1](%14), scope: AlexNet/Sequential[classifier]/Linear[4]
%45 : Double(1, 4096) = aten::addmm[beta={1}, alpha={1}](%44, %42, %43), scope: AlexNet/Sequential[classifier]/Linear[4]
%46 : Double(1, 4096) = aten::threshold[threshold={0}, value={0}](%45), scope: AlexNet/Sequential[classifier]/ReLU[5]
%47 : Double(4096!, 1000!) = aten::t(%15), scope: AlexNet/Sequential[classifier]/Linear[6]
%48 : Double(1, 1000) = aten::expand[size=[1, 1000], implicit=1](%16), scope: AlexNet/Sequential[classifier]/Linear[6]
%49 : Double(1, 1000) = aten::addmm[beta={1}, alpha={1}](%48, %46, %47), scope: AlexNet/Sequential[classifier]/Linear[6]
return (%49);
}