blob: 45b47c42b7fdc450f56a033c590c83a53b4fdbc7 [file] [log] [blame]
# NOTE: We allow Dynamo to see this file (via torch/_dynamo/skipfiles.py) so that it can
# trace through `grad`.
# Currently, we can't allow Dynamo to see `eager_transforms.py` as that break a lot of thing
# and there isn't a mechanism to selectively expose only some functions (eg. grad) from a file
# to Dynamo.
from torch._functorch.eager_transforms import grad_impl, exposed_in, Callable, argnums_t
import functools
@exposed_in("torch.func")
def grad(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable:
"""``grad`` operator helps computing gradients of ``func`` with respect to the
input(s) specified by ``argnums``. This operator can be nested to
compute higher-order gradients.
Args:
func (Callable): A Python function that takes one or more arguments.
Must return a single-element Tensor. If specified ``has_aux`` equals ``True``,
function can return a tuple of single-element Tensor and other auxiliary objects:
``(output, aux)``.
argnums (int or Tuple[int]): Specifies arguments to compute gradients with respect to.
``argnums`` can be single integer or tuple of integers. Default: 0.
has_aux (bool): Flag indicating that ``func`` returns a tensor and other
auxiliary objects: ``(output, aux)``. Default: False.
Returns:
Function to compute gradients with respect to its inputs. By default, the output of
the function is the gradient tensor(s) with respect to the first argument.
If specified ``has_aux`` equals ``True``, tuple of gradients and output auxiliary objects
is returned. If ``argnums`` is a tuple of integers, a tuple of output gradients with
respect to each ``argnums`` value is returned.
Example of using ``grad``:
>>> # xdoctest: +SKIP
>>> from torch.func import grad
>>> x = torch.randn([])
>>> cos_x = grad(lambda x: torch.sin(x))(x)
>>> assert torch.allclose(cos_x, x.cos())
>>>
>>> # Second-order gradients
>>> neg_sin_x = grad(grad(lambda x: torch.sin(x)))(x)
>>> assert torch.allclose(neg_sin_x, -x.sin())
When composed with ``vmap``, ``grad`` can be used to compute per-sample-gradients:
>>> # xdoctest: +SKIP
>>> from torch.func import grad, vmap
>>> batch_size, feature_size = 3, 5
>>>
>>> def model(weights, feature_vec):
>>> # Very simple linear model with activation
>>> assert feature_vec.dim() == 1
>>> return feature_vec.dot(weights).relu()
>>>
>>> def compute_loss(weights, example, target):
>>> y = model(weights, example)
>>> return ((y - target) ** 2).mean() # MSELoss
>>>
>>> weights = torch.randn(feature_size, requires_grad=True)
>>> examples = torch.randn(batch_size, feature_size)
>>> targets = torch.randn(batch_size)
>>> inputs = (weights, examples, targets)
>>> grad_weight_per_example = vmap(grad(compute_loss), in_dims=(None, 0, 0))(*inputs)
Example of using ``grad`` with ``has_aux`` and ``argnums``:
>>> # xdoctest: +SKIP
>>> from torch.func import grad
>>> def my_loss_func(y, y_pred):
>>> loss_per_sample = (0.5 * y_pred - y) ** 2
>>> loss = loss_per_sample.mean()
>>> return loss, (y_pred, loss_per_sample)
>>>
>>> fn = grad(my_loss_func, argnums=(0, 1), has_aux=True)
>>> y_true = torch.rand(4)
>>> y_preds = torch.rand(4, requires_grad=True)
>>> out = fn(y_true, y_preds)
>>> # > output is ((grads w.r.t y_true, grads w.r.t y_preds), (y_pred, loss_per_sample))
.. note::
Using PyTorch ``torch.no_grad`` together with ``grad``.
Case 1: Using ``torch.no_grad`` inside a function:
>>> # xdoctest: +SKIP
>>> def f(x):
>>> with torch.no_grad():
>>> c = x ** 2
>>> return x - c
In this case, ``grad(f)(x)`` will respect the inner ``torch.no_grad``.
Case 2: Using ``grad`` inside ``torch.no_grad`` context manager:
>>> # xdoctest: +SKIP
>>> with torch.no_grad():
>>> grad(f)(x)
In this case, ``grad`` will respect the inner ``torch.no_grad``, but not the
outer one. This is because ``grad`` is a "function transform": its result
should not depend on the result of a context manager outside of ``f``.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
return grad_impl(func, argnums, has_aux, args, kwargs)
return wrapper