| #ifdef BUILD_LITE_INTERPRETER |
| |
| #import "Benchmark.h" |
| #include <string> |
| #include <vector> |
| #include <torch/script.h> |
| #include <torch/csrc/jit/mobile/function.h> |
| #include <torch/csrc/jit/mobile/import.h> |
| #include <torch/csrc/jit/mobile/interpreter.h> |
| #include <torch/csrc/jit/mobile/module.h> |
| #include <torch/csrc/jit/mobile/observer.h> |
| #include "ATen/ATen.h" |
| #include "caffe2/core/timer.h" |
| #include "caffe2/utils/string_utils.h" |
| #include "torch/csrc/autograd/grad_mode.h" |
| |
| static std::string model = "model_lite.ptl"; |
| static std::string input_dims = "1,3,224,224"; |
| static std::string input_type = "float"; |
| static BOOL print_output = false; |
| static int warmup = 10; |
| static int iter = 10; |
| |
| @implementation Benchmark |
| |
| + (BOOL)setup:(NSDictionary*)config { |
| NSString* modelPath = [[NSBundle mainBundle] pathForResource:@"model_lite" ofType:@"ptl"]; |
| if (![[NSFileManager defaultManager] fileExistsAtPath:modelPath]) { |
| NSLog(@"model_lite.ptl doesn't exist!"); |
| return NO; |
| } |
| model = std::string(modelPath.UTF8String); |
| input_dims = std::string(((NSString*)config[@"input_dims"]).UTF8String); |
| input_type = std::string(((NSString*)config[@"input_type"]).UTF8String); |
| warmup = ((NSNumber*)config[@"warmup"]).intValue; |
| iter = ((NSNumber*)config[@"iter"]).intValue; |
| print_output = ((NSNumber*)config[@"print_output"]).boolValue; |
| return YES; |
| } |
| |
| + (NSString*)run { |
| std::vector<std::string> logs; |
| #define UI_LOG(fmt, ...) \ |
| { \ |
| NSString* log = [NSString stringWithFormat:fmt, __VA_ARGS__]; \ |
| NSLog(@"%@", log); \ |
| logs.push_back(log.UTF8String); \ |
| } |
| |
| CAFFE_ENFORCE_GE(input_dims.size(), 0, "Input dims must be specified."); |
| CAFFE_ENFORCE_GE(input_type.size(), 0, "Input type must be specified."); |
| |
| std::vector<std::string> input_dims_list = caffe2::split(';', input_dims); |
| std::vector<std::string> input_type_list = caffe2::split(';', input_type); |
| CAFFE_ENFORCE_EQ(input_dims_list.size(), input_type_list.size(), |
| "Input dims and type should have the same number of items."); |
| |
| std::vector<c10::IValue> inputs; |
| for (size_t i = 0; i < input_dims_list.size(); ++i) { |
| auto input_dims_str = caffe2::split(',', input_dims_list[i]); |
| std::vector<int64_t> input_dims; |
| for (const auto& s : input_dims_str) { |
| input_dims.push_back(c10::stoi(s)); |
| } |
| if (input_type_list[i] == "float") { |
| inputs.push_back(torch::ones(input_dims, at::ScalarType::Float)); |
| } else if (input_type_list[i] == "uint8_t") { |
| inputs.push_back(torch::ones(input_dims, at::ScalarType::Byte)); |
| } else { |
| CAFFE_THROW("Unsupported input type: ", input_type_list[i]); |
| } |
| } |
| |
| c10::InferenceMode mode; |
| auto module = torch::jit::_load_for_mobile(model); |
| |
| // module.eval(); |
| if (print_output) { |
| std::cout << module.forward(inputs) << std::endl; |
| } |
| UI_LOG(@"Running warmup runs", nil); |
| CAFFE_ENFORCE(warmup >= 0, "Number of warm up runs should be non negative, provided ", warmup, |
| "."); |
| for (int i = 0; i < warmup; ++i) { |
| module.forward(inputs); |
| } |
| UI_LOG(@"Main runs", nil); |
| CAFFE_ENFORCE(iter >= 0, "Number of main runs should be non negative, provided ", iter, "."); |
| caffe2::Timer timer; |
| auto millis = timer.MilliSeconds(); |
| for (int i = 0; i < iter; ++i) { |
| module.forward(inputs); |
| } |
| millis = timer.MilliSeconds(); |
| UI_LOG(@"Main run finished. Milliseconds per iter: %.3f", millis / iter, nil); |
| UI_LOG(@"Iters per second: : %.3f", 1000.0 * iter / millis, nil); |
| UI_LOG(@"Done.", nil); |
| |
| NSString* results = @""; |
| for (auto& msg : logs) { |
| results = [results stringByAppendingString:[NSString stringWithUTF8String:msg.c_str()]]; |
| results = [results stringByAppendingString:@"\n"]; |
| } |
| return results; |
| } |
| |
| @end |
| #endif |