blob: 5e6d04403062640a01900c37b3fca48b9b6b180a [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Lerp.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
namespace at {
namespace native {
namespace {
static void lerp_kernel_scalar(
Tensor& ret,
const Tensor& self,
const Tensor& end,
Scalar weight) {
// lerp() only uses TensorIterator for CPU. Since TensorIterator would
// would attempt to promote types inconsistent with the CUDA implementation,
// restrict types explicitly here
TORCH_CHECK(self.dtype() == end.dtype(), "expected dtype ", self.dtype(), " for `end` but got dtype ", end.dtype());
auto iter = TensorIterator::binary_op(ret, self, end,
/*check_mem_overlap=*/true);
AT_DISPATCH_FLOATING_TYPES(ret.scalar_type(), "lerp_kernel_scalar", [&] {
scalar_t weight_val = weight.to<scalar_t>();
at::native::cpu_kernel(
iter,
[weight_val](scalar_t self_val, scalar_t end_val) {
return (weight_val < 0.5)
? self_val + weight_val * (end_val - self_val)
: end_val - (end_val - self_val) * (1 - weight_val);
});
});
}
static void lerp_kernel_tensor(
Tensor& ret,
const Tensor& self,
const Tensor& end,
const Tensor& weights) {
// lerp() only uses TensorIterator for CPU. Since TensorIterator would
// would attempt to promote types inconsistent with the CUDA implementation,
// restrict types explicitly here
TORCH_CHECK(self.dtype() == end.dtype(), "expected dtype ", self.dtype(), " for `end` but got dtype ", end.dtype());
TORCH_CHECK(self.dtype() == weights.dtype(), "expected dtype ", self.dtype(), " for `weights` but got dtype ", end.dtype());
auto iter = TensorIterator();
iter.set_check_mem_overlap(true);
iter.add_output(ret);
iter.add_input(self);
iter.add_input(end);
iter.add_input(weights);
iter.build();
AT_DISPATCH_FLOATING_TYPES(ret.scalar_type(), "lerp_kernel_tensor", [&] {
at::native::cpu_kernel(
iter,
[](scalar_t self_val, scalar_t end_val, scalar_t weight_val) {
return (weight_val < 0.5)
? self_val + weight_val * (end_val - self_val)
: end_val - (end_val - self_val) * (1 - weight_val);
});
});
}
} // anonymous namespace
REGISTER_DISPATCH(lerp_kernel_scalar_weight, &lerp_kernel_scalar);
REGISTER_DISPATCH(lerp_kernel_tensor_weight, &lerp_kernel_tensor);
} // namespace native
} // namespace at