| #pragma once |
| |
| #include <ATen/Context.h> |
| #include <c10/core/ScalarType.h> |
| #include <c10/core/TensorOptions.h> |
| |
| namespace c10 { |
| class Scalar; |
| } |
| namespace at { |
| struct Generator; |
| class Tensor; |
| struct Type; |
| } // namespace at |
| |
| namespace at { |
| namespace native { |
| namespace legacy { |
| namespace cuda { |
| |
| Tensor & _th_masked_fill_(Tensor & self, const Tensor & mask, Scalar value); |
| Tensor & _th_masked_fill_bool_(Tensor & self, const Tensor & mask, Scalar value); |
| Tensor & _th_masked_scatter_(Tensor & self, const Tensor & mask, const Tensor & source); |
| Tensor & _th_masked_scatter_bool_(Tensor & self, const Tensor & mask, const Tensor & source); |
| Tensor & _th_index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source); |
| Tensor & _th_take_out(Tensor & result, const Tensor & self, const Tensor & index); |
| Tensor _th_take(const Tensor & self, const Tensor & index); |
| Tensor & _th_put_(Tensor & self, const Tensor & index, const Tensor & source, bool accumulate); |
| Tensor & _th_index_fill_(Tensor & self, int64_t dim, const Tensor & index, Scalar value); |
| std::tuple<Tensor &,Tensor &> _th_mode_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim, bool keepdim); |
| std::tuple<Tensor,Tensor> _th_mode(const Tensor & self, int64_t dim, bool keepdim); |
| std::tuple<Tensor &,Tensor &> _th_sort_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t dim, bool descending); |
| std::tuple<Tensor,Tensor> _th_sort(const Tensor & self, int64_t dim, bool descending); |
| std::tuple<Tensor &,Tensor &> _th_topk_out(Tensor & values, Tensor & indices, const Tensor & self, int64_t k, int64_t dim, bool largest, bool sorted); |
| std::tuple<Tensor,Tensor> _th_topk(const Tensor & self, int64_t k, int64_t dim, bool largest, bool sorted); |
| Tensor & _th_renorm_out(Tensor & result, const Tensor & self, Scalar p, int64_t dim, Scalar maxnorm); |
| Tensor _th_renorm(const Tensor & self, Scalar p, int64_t dim, Scalar maxnorm); |
| Tensor & _th_renorm_(Tensor & self, Scalar p, int64_t dim, Scalar maxnorm); |
| Tensor & _th_fmod_out(Tensor & result, const Tensor & self, Scalar other); |
| Tensor _th_fmod(const Tensor & self, Scalar other); |
| Tensor & _th_fmod_out(Tensor & result, const Tensor & self, const Tensor & other); |
| Tensor _th_fmod(const Tensor & self, const Tensor & other); |
| Tensor & _th_fmod_(Tensor & self, Scalar other); |
| Tensor & _th_fmod_(Tensor & self, const Tensor & other); |
| Tensor & _th_cross_kernel_out(Tensor & result, const Tensor & self, const Tensor & other, int64_t dim); |
| Tensor _th_cross_kernel(const Tensor & self, const Tensor & other, int64_t dim); |
| Tensor & _th_bmm_out(Tensor & result, const Tensor & self, const Tensor & mat2); |
| Tensor _th_bmm(const Tensor & self, const Tensor & mat2); |
| Tensor & _th_baddbmm_out(Tensor & result, const Tensor & self, const Tensor & batch1, const Tensor & batch2, Scalar beta, Scalar alpha); |
| Tensor _th_baddbmm(const Tensor & self, const Tensor & batch1, const Tensor & batch2, Scalar beta, Scalar alpha); |
| std::tuple<Tensor &,Tensor &> _th_gels_out(Tensor & res1, Tensor & res2, const Tensor & self, const Tensor & A); |
| std::tuple<Tensor,Tensor> _th_gels(const Tensor & self, const Tensor & A); |
| std::tuple<Tensor &,Tensor &> _th_eig_out(Tensor & res1, Tensor & res2, const Tensor & self, bool eigenvectors); |
| std::tuple<Tensor,Tensor> _th_eig(const Tensor & self, bool eigenvectors); |
| Tensor & _th_potri_out(Tensor & output, const Tensor & self, bool upper); |
| Tensor _th_potri(const Tensor & self, bool upper); |
| std::tuple<Tensor &,Tensor &> _th_geqrf_out(Tensor & res1, Tensor & res2, const Tensor & self); |
| std::tuple<Tensor,Tensor> _th_geqrf(const Tensor & self); |
| std::tuple<Tensor &,Tensor &> _th_multinomial_alias_setup_out(Tensor & J, Tensor & q, const Tensor & probs); |
| std::tuple<Tensor,Tensor> _th_multinomial_alias_setup(const Tensor & probs); |
| Tensor & _th_multinomial_alias_draw_out(Tensor & result, const Tensor & q, const Tensor & J, int64_t num_samples, c10::optional<Generator> generator); |
| Tensor _th_multinomial_alias_draw(const Tensor & q, const Tensor & J, int64_t num_samples, c10::optional<Generator> generator); |
| Tensor & _th_copy_ignoring_overlaps_(Tensor & self, const Tensor & src); |
| Tensor & _thnn_multi_margin_loss_forward_out(Tensor & output, const Tensor & self, const Tensor & target, Scalar p, Scalar margin, const Tensor & weight, int64_t reduction); |
| Tensor _thnn_multi_margin_loss_forward(const Tensor & self, const Tensor & target, Scalar p, Scalar margin, const Tensor & weight, int64_t reduction); |
| Tensor & _thnn_multi_margin_loss_backward_out(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, const Tensor & target, Scalar p, Scalar margin, const Tensor & weight, int64_t reduction); |
| Tensor _thnn_multi_margin_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, Scalar p, Scalar margin, const Tensor & weight, int64_t reduction); |
| std::tuple<Tensor &,Tensor &> _thnn_multilabel_margin_loss_forward_out(Tensor & output, Tensor & is_target, const Tensor & self, const Tensor & target, int64_t reduction); |
| std::tuple<Tensor,Tensor> _thnn_multilabel_margin_loss_forward(const Tensor & self, const Tensor & target, int64_t reduction); |
| Tensor & _thnn_multilabel_margin_loss_backward_out(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, const Tensor & is_target); |
| Tensor _thnn_multilabel_margin_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, const Tensor & is_target); |
| std::tuple<Tensor &,Tensor &> _thnn_nll_loss_forward_out(Tensor & output, Tensor & total_weight, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index); |
| std::tuple<Tensor,Tensor> _thnn_nll_loss_forward(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index); |
| Tensor & _thnn_nll_loss_backward_out(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, const Tensor & total_weight); |
| Tensor _thnn_nll_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, const Tensor & total_weight); |
| std::tuple<Tensor &,Tensor &> _thnn_nll_loss2d_forward_out(Tensor & output, Tensor & total_weight, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index); |
| std::tuple<Tensor,Tensor> _thnn_nll_loss2d_forward(const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index); |
| Tensor & _thnn_nll_loss2d_backward_out(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, const Tensor & total_weight); |
| Tensor _thnn_nll_loss2d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Tensor & weight, int64_t reduction, int64_t ignore_index, const Tensor & total_weight); |
| Tensor & _thnn_glu_forward_out(Tensor & output, const Tensor & self, int64_t dim); |
| Tensor _thnn_glu_forward(const Tensor & self, int64_t dim); |
| Tensor & _thnn_glu_backward_out(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, int64_t dim); |
| Tensor _thnn_glu_backward(const Tensor & grad_output, const Tensor & self, int64_t dim); |
| std::tuple<Tensor &,Tensor &> _thnn_log_sigmoid_forward_out(Tensor & output, Tensor & buffer, const Tensor & self); |
| std::tuple<Tensor,Tensor> _thnn_log_sigmoid_forward(const Tensor & self); |
| Tensor & _thnn_log_sigmoid_backward_out(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, const Tensor & buffer); |
| Tensor _thnn_log_sigmoid_backward(const Tensor & grad_output, const Tensor & self, const Tensor & buffer); |
| Tensor & _thnn_rrelu_with_noise_forward_out(Tensor & output, const Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training, c10::optional<at::Generator> generator); |
| Tensor _thnn_rrelu_with_noise_forward(const Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training, c10::optional<at::Generator> generator); |
| Tensor & _thnn_rrelu_with_noise_backward_out(Tensor & grad_input, const Tensor & grad_output, const Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training); |
| Tensor _thnn_rrelu_with_noise_backward(const Tensor & grad_output, const Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training); |
| Tensor & _thnn_rrelu_with_noise_forward_(Tensor & self, const Tensor & noise, Scalar lower, Scalar upper, bool training, c10::optional<at::Generator> generator); |
| std::tuple<Tensor &,Tensor &,Tensor &> _thnn_conv2d_forward_out(Tensor & output, Tensor & columns, Tensor & ones, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding); |
| std::tuple<Tensor,Tensor,Tensor> _thnn_conv2d_forward(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding); |
| std::tuple<Tensor &,Tensor &,Tensor &> _thnn_conv2d_backward_out(Tensor & grad_input, Tensor & grad_weight, Tensor & grad_bias, const Tensor & grad_output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, const Tensor & columns, const Tensor & ones); |
| std::tuple<Tensor,Tensor,Tensor> _thnn_conv2d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, const Tensor & columns, const Tensor & ones, std::array<bool,3> output_mask); |
| Tensor & _thnn_conv_depthwise2d_forward_out(Tensor & output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation); |
| Tensor _thnn_conv_depthwise2d_forward(const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation); |
| std::tuple<Tensor &,Tensor &> _thnn_conv_depthwise2d_backward_out(Tensor & grad_input, Tensor & grad_weight, const Tensor & grad_output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation); |
| std::tuple<Tensor,Tensor> _thnn_conv_depthwise2d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, std::array<bool,2> output_mask); |
| |
| } // namespace th |
| } // namespace legacy |
| } // namespace native |
| } // namespace at |