blob: f276c221636adb3808f9588f169fdb4660962bb0 [file] [log] [blame]
import abc
import collections
import contextlib
import dataclasses
import enum
import functools
import inspect
import logging
import operator
import re
import sys
import types
from typing import List, NamedTuple, Optional, Union
try:
import numpy as np
except ModuleNotFoundError:
np = None
import torch
from torch import SymInt
from torch._guards import GuardSource, TracingContext
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensor, is_fake, maybe_get_fake_mode
from torch.fx.experimental.symbolic_shapes import (
_constrain_range_for_size,
DimConstraint,
DimDynamic,
RelaxedUnspecConstraint,
)
from torch.fx.immutable_collections import immutable_list
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
from torch.utils.weak import TensorWeakRef, WeakIdRef
from .. import config, mutation_guard, replay_record, skipfiles
from ..allowed_functions import (
is_allowed,
is_builtin_callable,
is_numpy,
is_user_defined_allowed,
)
from ..exc import unimplemented
from ..guards import GuardBuilder, make_dupe_guard
from ..side_effects import SideEffects
from ..source import (
AttrSource,
ConstantSource,
ConvertIntSource,
GetItemSource,
GlobalWeakRefSource,
is_constant_source,
LocalSource,
NumpyTensorSource,
RandomValueSource,
Source,
TupleIteratorGetItemSource,
)
from ..utils import (
build_checkpoint_variable,
clone_input,
get_fake_value,
get_static_address_type,
global_key_name,
is_namedtuple,
is_typing,
is_utils_checkpoint,
istype,
odict_values,
preserve_rng_state,
tensor_always_has_static_shape,
tuple_iterator,
tuple_iterator_getitem,
tuple_iterator_len,
wrap_fake_exception,
)
from .base import MutableLocal, typestr, VariableTracker
from .builtin import BuiltinVariable
from .constant import ConstantVariable, EnumVariable
from .ctx_manager import CUDAStreamVariable, NullContextVariable
from .dicts import (
ConstDictVariable,
DataClassVariable,
DefaultDictVariable,
HFPretrainedConfigVariable,
PythonSysModulesVariable,
)
from .distributed import (
DeviceMeshVariable,
PlacementClassVariable,
PlacementVariable,
ProcessGroupVariable,
)
from .functions import (
CollectiveFunctionRewriteVariable,
FunctoolsPartialVariable,
TritonKernelVariable,
UserFunctionVariable,
UserMethodVariable,
)
from .higher_order_ops import TorchHigherOrderOperatorVariable
from .lists import (
BaseListVariable,
ListVariable,
NamedTupleVariable,
RangeVariable,
SetVariable,
SizeVariable,
SliceVariable,
TupleIteratorVariable,
TupleVariable,
)
from .misc import (
AutogradFunctionContextVariable,
AutogradFunctionVariable,
ComptimeVariable,
GetAttrVariable,
GetSetDescriptorVariable,
InspectSignatureVariable,
LambdaVariable,
MethodWrapperVariable,
NumpyVariable,
PythonModuleVariable,
SkipFilesVariable,
TypingVariable,
)
from .nn_module import FSDPManagedNNModuleVariable, UnspecializedNNModuleVariable
from .optimizer import OptimizerVariable
from .tensor import (
NumpyNdarrayVariable,
SymNodeVariable,
TensorSubclassVariable,
TensorVariable,
TensorWithTFOverrideVariable,
UnspecializedPythonVariable,
)
from .torch import tensor_dunder_fns, torch_special_class_types, TorchVariable
from .user_defined import (
KeyedJaggedTensorVariable,
UserDefinedClassVariable,
UserDefinedObjectVariable,
)
log = logging.getLogger(__name__)
DimList = List
class _missing:
pass
@dataclasses.dataclass
class GraphArg:
source: Source
# TODO: storing a SymInt here but not a FakeTensor is a pretty strange
# thing to do. Probably should have example (which stores an int) and
# fake_example
_example: Union[TensorWeakRef, torch.SymInt]
is_unspecialized: bool
fake_tensor: Optional[torch._subclasses.fake_tensor.FakeTensor]
# UnspecializedPythonVariable often masquerades as a tensor.
# We MUST NOT generate shape guard code
# that actually tries to access tensor properties on these values.
# is_tensor lets us tell if this graph arg actually is a tensor
# or not.
is_tensor: bool = True
# Sometimes, the Tensor we pass to example is freshly allocated (smh).
# Then we cannot only keep a weak reference to it. This lets you
# stash a strong reference too.
example_strong_ref: Optional[torch.Tensor] = None
@property
def example(self):
if isinstance(self._example, TensorWeakRef):
r = self._example()
assert r is not None
return r
else:
return self._example
def __post_init__(self):
if isinstance(self._example, torch.Tensor):
self._example = TensorWeakRef(self._example)
assert is_fake(self.fake_tensor)
def load(self, tx):
return self.source.reconstruct(tx)
def erase(self):
self._example = None
def __eq__(self, other):
return self.source.name() == other.source.name()
@dataclasses.dataclass
class FrameStateSizeEntry:
scalar: Optional[int]
size: Optional[List[int]]
class VariableBuilder:
"""Wrap a python value in a VariableTracker() instance"""
def __init__(
self,
tx,
source: Source,
):
assert (
source is not None
), "Consider SourcelessBuilder for ephemeral objects, usually objects created locally."
assert TracingContext.get() is not None, "Expected active TracingContext"
super().__init__()
self.tx = tx
self.source = source
self.name = source.name()
def __call__(self, value):
if value in self.tx.output.side_effects:
side_effect_result = self.tx.output.side_effects[value]
dup_guard = make_dupe_guard(self.source, side_effect_result.source)
if dup_guard:
side_effect_result = side_effect_result.add_guards(
self.make_guards(dup_guard)
)
return side_effect_result
vt = self._wrap(value).clone(**self.options())
if self._can_lift_attrs_to_inputs(vt):
vt = self.tx.output.side_effects.track_object_existing(
self.source, value, vt
)
return vt
def _can_lift_attrs_to_inputs(self, vt):
if type(vt) in [
TensorVariable,
TensorWithTFOverrideVariable,
UserDefinedObjectVariable,
NumpyNdarrayVariable,
]:
return True
return False
@staticmethod
@functools.lru_cache(None)
def _common_constants():
return {
# We zero-one specialize shapes, so specialize these constants
# too
0,
1,
# NB: There used to be more constants here, but honestly it was
# pretty confusing. Note we specialize floats by default, and
# DON'T specialize ints by default. This all only matters with
# dynamic_shapes
}
def get_source(self):
return self.source
def options(self):
return {"source": self.get_source()}
def make_guards(self, *guards):
source = self.get_source()
if (
isinstance(source, ConstantSource)
or source.guard_source() == GuardSource.CONSTANT
):
return None
return {source.make_guard(guard) for guard in guards}
@classmethod
@functools.lru_cache(None)
def _type_dispatch(cls):
# NB: Careful not to close over self to avoid ref cycle from lru_cache
entries = [
(
(torch.Tensor, torch.nn.Parameter, torch._subclasses.FakeTensor),
cls.wrap_tensor,
),
((tuple, list, odict_values, collections.deque), cls.wrap_listlike),
(tuple_iterator, cls.wrap_tuple_iterator),
((slice, range), cls.wrap_slice_range),
(
(
int,
float,
bool,
type(None),
str,
torch.Size,
torch.device,
torch.dtype,
),
cls.wrap_literal,
),
]
if config.trace_numpy and np:
entries.append((np.ndarray, cls.wrap_numpy_ndarray))
result = {}
for ts, fn in entries:
for t in ts if isinstance(ts, tuple) else (ts,):
assert t not in result
result[t] = fn
return result
@classmethod
@functools.lru_cache(None)
def _id_dispatch(cls):
from ..comptime import comptime
entries = [
(
inspect.signature,
lambda self, value: LambdaVariable(
InspectSignatureVariable.create,
source=self.source,
guards=self.make_guards(GuardBuilder.FUNCTION_MATCH),
),
),
(comptime, lambda self, value: ComptimeVariable()),
(
dataclasses.fields,
lambda self, value: LambdaVariable(
_dataclasses_fields_lambda,
source=self.source,
guards=self.make_guards(GuardBuilder.FUNCTION_MATCH),
),
),
(
tensor_dunder_fns,
lambda self, value: TorchVariable(
value,
source=self.source,
guards=self.make_guards(GuardBuilder.FUNCTION_MATCH),
),
),
]
result = {}
for ts, fn in entries:
for t in ts if isinstance(ts, (tuple, list)) else (ts,):
assert t not in result
result[id(t)] = fn
return result
def _wrap(self, value):
# import here to avoid circular dependencies
from torch.utils._triton import has_triton
if has_triton():
from triton.runtime.jit import JITFunction
else:
class JITFunction:
pass
make_guards = self.make_guards
# Handle exact type() match
type_dispatch = self._type_dispatch().get(type(value))
if type_dispatch is not None:
return type_dispatch(self, value)
# Handle exact id() match
id_dispatch = self._id_dispatch().get(id(value))
if id_dispatch is not None:
return id_dispatch(self, value)
# Note - There are some nested values where types mismatch!
# We want to get those out and wrap those.
value = inspect.getattr_static(value, "_torchdynamo_inline", value)
# Everything else (NB: order matters!)
if is_traceable_wrapper_subclass(value) or istype(
value, config.traceable_tensor_subclasses
):
return self.wrap_tensor(value)
elif is_namedtuple(value):
return self.wrap_listlike(value)
elif value is torch.utils._pytree.SUPPORTED_NODES:
result = {
k: UserDefinedObjectVariable(
value[k],
source=GetItemSource(self.get_source(), k),
# For SUPPORTED_NODES, we guard on the dictionary version (PEP509)
# under the assumption that the values themselves don't change.
guards=self.make_guards(GuardBuilder.DICT_VERSION),
)
for k in value.keys()
}
return ConstDictVariable(result, type(value))
elif value is sys.modules:
return PythonSysModulesVariable(source=self.source)
elif istype(
value, (dict, collections.defaultdict, collections.OrderedDict)
) and all(
ConstantVariable.is_literal(k)
or self.tensor_can_be_dict_key(k)
or isinstance(k, enum.Enum)
for k in value.keys()
):
if not value and self.get_source().is_nn_module():
# It is faster to guard on 'false' property than to guard
# on actual dict keys, but we can't do this fast guard in general because
# it omits a crucial type check that ensures the value is actually still a dict at runtime.
# Why is this OK for (specialized) nnmodules? We set up a setattr hook
# to check for module property mutations, which does a reasonable,
# but not completely secure job ensuring a property wasn't changed.
guards = self.make_guards(GuardBuilder.BOOL_FALSE)
else:
guards = self.make_guards(GuardBuilder.DICT_KEYS)
# store key variables in global location for reconstruction
for key in value.keys():
if self.tensor_can_be_dict_key(key):
self.tx.store_global_weakref(global_key_name(key), key)
def index_source(key):
if self.tensor_can_be_dict_key(key):
return GlobalWeakRefSource(global_key_name(key))
else:
return key
result = {
k: VariableBuilder(
self.tx, GetItemSource(self.get_source(), index_source(k))
)(value[k]).add_guards(guards)
for k in value.keys()
}
if istype(value, collections.defaultdict):
result = DefaultDictVariable(
result,
type(value),
self._wrap(value.default_factory),
guards=guards,
)
else:
result = ConstDictVariable(result, type(value), guards=guards)
return self.tx.output.side_effects.track_dict(self.source, value, result)
elif isinstance(value, torch.nn.Module):
return self.wrap_module(value)
elif ConstantVariable.is_literal(value): # non-atomic literals
return self.wrap_literal(value)
elif istype(value, frozenset) and (
all(is_allowed(x) or ConstantVariable.is_literal(x) for x in value)
):
# For frozenset, we can guard by object ID instead of value
# equality, this allows us to handle non-literal values
return ConstantVariable.create(
value=value,
source=self.source,
guards=make_guards(GuardBuilder.ID_MATCH),
)
elif isinstance(value, enum.Enum):
return EnumVariable(
value=value,
source=self.source,
guards=make_guards(GuardBuilder.ID_MATCH),
)
elif is_builtin_callable(value):
return BuiltinVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.BUILTIN_MATCH),
)
elif is_utils_checkpoint(value):
return build_checkpoint_variable(source=self.source)
elif is_allowed(value):
if is_user_defined_allowed(value):
self.tx.output.has_user_defined_allowed_in_graph = True
return TorchVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif isinstance(value, functools.partial):
func_src = AttrSource(self.get_source(), "func")
func_obj = VariableBuilder(self.tx, func_src)(value.func)
args = []
args_source = AttrSource(self.get_source(), "args")
for i, arg in enumerate(value.args):
args.append(
VariableBuilder(self.tx, GetItemSource(args_source, i))(arg)
)
keywords = {}
keywords_source = AttrSource(self.get_source(), "keywords")
for k, v in value.keywords.items():
keywords[k] = VariableBuilder(
self.tx, GetItemSource(keywords_source, k)
)(v)
guards = {
self.get_source().make_guard(GuardBuilder.TYPE_MATCH),
keywords_source.make_guard(GuardBuilder.DICT_KEYS),
args_source.make_guard(GuardBuilder.LIST_LENGTH),
}
return FunctoolsPartialVariable(
func_obj, args, keywords, original=value, guards=guards
)
elif is_typing(value):
# typing.List, typing.Mapping, etc.
return TypingVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.ID_MATCH),
)
elif is_numpy(value):
assert np
return NumpyVariable(
value,
source=self.source,
guards=make_guards(
GuardBuilder.FUNCTION_MATCH
if callable(value)
else GuardBuilder.TYPE_MATCH
),
)
elif (
istype(value, (type, types.FunctionType))
and skipfiles.check(value, allow_torch=True)
and not inspect.getattr_static(value, "_torchdynamo_inline", False)
):
return SkipFilesVariable(
value,
skipfiles.check_verbose(value, allow_torch=True).reason,
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
# NB: These can't be put in type_dispatch, they have to run later
elif CollectiveFunctionRewriteVariable.can_rewrite(value):
new_fn, new_source = CollectiveFunctionRewriteVariable.rewrite(value)
old_source = self.source
self.source = new_source
return CollectiveFunctionRewriteVariable(
new_fn,
orig_fn=value,
orig_source=old_source,
source=new_source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif istype(value, (types.FunctionType, torch.jit.ScriptFunction)):
return UserFunctionVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif istype(value, (types.ModuleType, replay_record.DummyModule)):
return PythonModuleVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.PYMODULE_MATCH),
)
elif istype(value, torch.autograd.function.FunctionMeta):
return AutogradFunctionVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif isinstance(value, torch.autograd.function.FunctionCtx):
# The autograd.function context
return self.tx.output.side_effects.track_object_existing(
self.source,
value,
AutogradFunctionContextVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.TYPE_MATCH),
),
)
elif (
isinstance(value, types.MethodType)
and istype(
getattr(value, "__self__", None), torch.autograd.function.FunctionMeta
)
and getattr(value, "__name__", "") == "apply"
and value == getattr(value.__self__, "apply", None)
):
# handle aliased autograd function `apply` calls
return GetAttrVariable(
AutogradFunctionVariable(
value.__self__,
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
),
"apply",
)
elif np and isinstance(value, np.number):
return self.wrap_unspecialized_primitive(value)
elif DataClassVariable.is_matching_object(value):
return DataClassVariable.wrap(self, value).add_guards(
make_guards(GuardBuilder.TYPE_MATCH)
)
elif HFPretrainedConfigVariable.is_matching_object(value):
return HFPretrainedConfigVariable(
value, guards=make_guards(GuardBuilder.TYPE_MATCH)
)
elif isinstance(value, HigherOrderOperator):
return TorchHigherOrderOperatorVariable.make(
value,
source=self.source,
guards=self.make_guards(
GuardBuilder.TYPE_MATCH, GuardBuilder.NAME_MATCH
),
)
elif type(value).__name__ == "builtin_function_or_method" and isinstance(
value.__self__, torch_special_class_types
):
return TorchVariable(
value,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif isinstance(value, torch.cuda.streams.Stream):
unimplemented("CUDAStreamVariable does not currently work soundly.")
# return CUDAStreamVariable(
# None,
# value,
# source=self.source,
# guards=self.make_guards(GuardBuilder.ID_MATCH),
# )
elif (
isinstance(value, torch._C._TensorMeta)
and value in config.traceable_tensor_subclasses
):
return TensorSubclassVariable(value, source=self.source)
elif isinstance(value, types.MethodType) and isinstance(
value.__self__, torch.nn.Module
):
# don't let MethodTypes fall through to UserDefinedObject,
# which doesn't support 'CALL_FUNCTION'
# TODO(whc): Why do we limit this to methods on NNModules?
# I don't have a good reason for this, but it preserves the existing behavior
# for MBartForConditionalGeneration, which generates many graph breaks and OOMs otherwise.
# I suspect we probably want to relax this check and dig deeper there.
# In order to construct a MethodVariable in Dynamo, we start with an actual method obj from python,
# but need to separately wrap its underlying `__func__` and its `self` argument. We wrap `self` here
# and then `__func__` gets wrapped inside UserMethodVariable.
self_obj = VariableBuilder(
self.tx, source=AttrSource(self.source, "__self__")
)(value.__self__)
assert self_obj and isinstance(
self_obj, VariableTracker
), "Failed to produce a valid self obj"
return UserMethodVariable(
value.__func__,
self_obj,
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif (
istype(value, contextlib.nullcontext)
and inspect.getattr_static(value, "enter_result", None) is None
):
return NullContextVariable(
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif KeyedJaggedTensorVariable.is_matching_object(value):
result = KeyedJaggedTensorVariable(
value,
source=self.source,
guards=self.make_guards(GuardBuilder.TYPE_MATCH),
)
# TODO: this doing it manually is bad
return self.tx.output.side_effects.track_object_existing(
self.source, value, result
)
elif isinstance(value, types.GetSetDescriptorType):
return GetSetDescriptorVariable(
value, guards=self.make_guards(GuardBuilder.FUNCTION_MATCH)
)
elif isinstance(value, types.MethodWrapperType):
return MethodWrapperVariable(
value, guards=self.make_guards(GuardBuilder.FUNCTION_MATCH)
)
elif isinstance(value, torch.optim.Optimizer):
return OptimizerVariable(
value,
source=self.source,
guards=self.make_guards(GuardBuilder.TYPE_MATCH),
)
elif ProcessGroupVariable.is_process_group(value):
return ProcessGroupVariable(
value,
source=self.source,
guards=self.make_guards(GuardBuilder.ID_MATCH),
)
elif DeviceMeshVariable.is_device_mesh(value):
# TODO: see if we need to add custom guard instead
# of a simple ID_MATCH
return DeviceMeshVariable(
value,
source=self.source,
guards=self.make_guards(GuardBuilder.ID_MATCH),
)
elif PlacementClassVariable.is_placement_type(value):
# TODO: see if we need to add custom guard instead
# of a simple ID_MATCH
return PlacementClassVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.ID_MATCH),
)
elif PlacementVariable.is_placement(value):
# TODO: see if we need to add custom guard instead
# of a simple ID_MATCH
return PlacementVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.ID_MATCH),
)
elif issubclass(type(value), type):
# TODO(whc) the following seems preferable but breaks some tests, debug
# elif inspect.isclass(value):
return UserDefinedClassVariable(
value,
source=self.source,
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
)
elif isinstance(value, torch.SymBool):
# Note: the idea here is to re-use the infra we've built for SymInt by simulating the
# user provided SymBool with a SymInt in dynamo.
# Concretely,
# 1. We create a SymInt in dynamo's shape_env, whose source is constructed as ConvertIntSource(self.source).
# so that guards on the SymInts can be effectively applied on the original SymBool in user program.
# 2. We create a SymBool based on the SymInt in dynamo's ShapeEnv. Because the original user program
# depends on the value being a SymBool. This allows dynamo to interpret the user's program correctly.
value_hint = value.node.require_hint()
new_source = ConvertIntSource(self.source)
new_symint = self.tx.output.shape_env.create_unspecified_symint_and_symbol(
int(value_hint),
new_source,
dynamic_dim=DimDynamic.DYNAMIC,
)
sym_node_proxy = self.tx.output.root_tracer.create_graph_input(
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
type(new_symint),
source=new_source,
)
sym_node_proxy.node.meta["grapharg"] = GraphArg(
new_source,
new_symint,
False,
None,
is_tensor=False,
example_strong_ref=new_symint,
)
self.tx.output.tracked_fakes.append(
TrackedFake(new_symint, new_source, None)
)
return SymNodeVariable(
sym_node_proxy,
new_symint == 1,
)
elif isinstance(value, JITFunction):
return TritonKernelVariable(
value,
None, # No kernel idx provided
None, # No grid provided
source=self.source,
guards=make_guards(GuardBuilder.ID_MATCH),
)
else:
result = UserDefinedObjectVariable(
value,
source=self.source,
guards=self.make_guards(GuardBuilder.TYPE_MATCH),
)
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
# don't allow STORE_ATTR mutation with custom __setattr__
return result
return self.tx.output.side_effects.track_object_existing(
self.source, value, result
)
def tensor_can_be_dict_key(self, value):
# only allow Parameter and another specific Tensor can be used as dict key
return (
isinstance(value, torch.nn.Parameter)
or isinstance(self.source, AttrSource)
and self.source.member == "state"
and isinstance(self.source.base, LocalSource)
)
def tensor_should_specialize(self):
return (
self.source
and isinstance(self.source, GetItemSource)
and isinstance(self.source.base, GetItemSource)
and self.source.base.index == "params"
and isinstance(self.source.base.base, GetItemSource)
and isinstance(self.source.base.base.base, AttrSource)
and self.source.base.base.base.member == "param_groups"
and isinstance(self.source.base.base.base.base, LocalSource)
and (
isinstance(
self.tx.f_locals[self.source.base.base.base.base.local_name],
torch.optim.Optimizer,
)
if self.source.base.base.base.base.local_name in self.tx.f_locals.keys()
else True
)
)
def wrap_listlike(self, value: Union[tuple, list, odict_values, NamedTuple]):
# One can index a tensor with a list/tuple. Therefore, we need to
# have a stricter match.
guards = self.make_guards(GuardBuilder.LIST_LENGTH)
for item in value:
if item is value:
unimplemented("list elements are pointing to the list itself")
output = [
VariableBuilder(self.tx, GetItemSource(self.get_source(), i))(
item
).add_guards(guards)
for i, item in enumerate(value)
]
result = BaseListVariable.cls_for_instance(value)(
output, mutable_local=MutableLocal(), guards=guards
)
if istype(value, list):
return self.tx.output.side_effects.track_list(self.source, value, result)
return result
def wrap_tuple_iterator(self, value: tuple_iterator):
guards = self.make_guards(GuardBuilder.TUPLE_ITERATOR_LEN)
output = [
VariableBuilder(self.tx, TupleIteratorGetItemSource(self.get_source(), i))(
tuple_iterator_getitem(value, i)
).add_guards(guards)
for i in range(tuple_iterator_len(value))
]
return TupleIteratorVariable(
output, mutable_local=MutableLocal(), guards=guards
)
def wrap_slice_range(self, value: Union[slice, range]):
items = [
VariableBuilder(self.tx, AttrSource(self.get_source(), k))(
getattr(value, k)
)
for k in ("start", "stop", "step")
]
if isinstance(value, slice):
return SliceVariable(
items, guards=self.make_guards(GuardBuilder.TYPE_MATCH)
)
else:
return RangeVariable(
items, guards=self.make_guards(GuardBuilder.EQUALS_MATCH)
)
def wrap_module(self, value: torch.nn.Module):
from ..eval_frame import OptimizedModule
if istype(value, OptimizedModule):
guards = self.make_guards(GuardBuilder.TYPE_MATCH)
self.source = AttrSource(self.source, "_orig_mod")
return self.wrap_module(value._orig_mod).add_guards(guards)
if (
isinstance(value, (torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM))
and not config.allow_rnn
):
unimplemented("TorchDynamo purposely graph breaks on RNN, GRU, LSTMs")
if mutation_guard.is_dynamic_nn_module(value):
# created dynamically, don't specialize on it
result = UnspecializedNNModuleVariable(
value, guards=self.make_guards(GuardBuilder.TYPE_MATCH)
)
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
# don't allow STORE_ATTR mutation with custom __setattr__
return result
return self.tx.output.side_effects.track_object_existing(
self.source, value, result
)
elif issubclass(
value.__class__, torch.nn.parallel.distributed.DistributedDataParallel
):
return UnspecializedNNModuleVariable(
value, guards=self.make_guards(GuardBuilder.TYPE_MATCH)
)
elif getattr(value, "_is_fsdp_managed_module", False):
# See note [Dynamo treats FSDP wrapped modules as UnspecializedNNModule]
# in fully_sharded_data_parallel.py for more information
# we can't do this assert inside FSDP constructor,
# since we don't know yet whether dynamo will be used
assert getattr(
value, "_fsdp_use_orig_params", False
), "Dynamo only supports FSDP with use_orig_params=True"
# Note on FSDP guarding
# 1. We expect FSDP wrapping mutates an nn module irreversably (no way to de-wrap).
# 2. Eager FSDP already assumes (requires, but without enforcement) that users don't mutate their
# model parameters/structure after FSDP wrapping, because FSDP wouldn't notice or update its FlatParams.
#
# Due to (1), once we enter this path we expect not to go back nor have to guard on type
# or _is_fsdp_managed_module.
#
# TODO(whc) We could add a guard on the opposite case, where a user compiled/ran
# pre-FSDP-wrapped model, then wrapped, to ensure that we recompile with the FSDP handling.
#
# Due to (2), we skip guards on inner contents of fsdp_managed modules, by using FSDPNNModuleSource as the
# guard source. This behavior is gated on config.skip_fsdp_guards.
#
# ID_MATCH is required to disambiguate cases as simple as a unit test that constructs 2 models and wraps
# them differently with different FSDP configs. (test_dynamo_distributed.py -k test_fsdp_aot_eager)
return FSDPManagedNNModuleVariable(
value,
guards=self.make_guards(GuardBuilder.TYPE_MATCH, GuardBuilder.ID_MATCH),
source=self.get_source(),
)
else:
return self.tx.output.register_attr_or_module(
value,
self.name,
source=self.get_source(),
# Guards are added inside register_attr_or_module
)
def wrap_literal(self, value):
unspec = not config.specialize_int
if unspec and type(value) is torch.Size:
return SizeVariable(
[
VariableBuilder(self.tx, GetItemSource(self.get_source(), i))(v)
for i, v in enumerate(value)
],
guards=self.make_guards(GuardBuilder.LIST_LENGTH),
)
elif unspec and type(value) is int:
# unspecializing int by default, but still
# specialize for the following conditions
if not TracingContext.get().force_unspec_int_unbacked_size_like and (
value in self._common_constants()
# Assume integers from global variables want to be specialized
or not self.source.guard_source().is_local()
# Assume that integers that came from NN modules want to be
# specialized (as we don't expect users to be changing the
# NN modules on the fly)
or self.source.guard_source().is_nn_module()
):
return ConstantVariable.create(
value=value,
guards=self.make_guards(GuardBuilder.CONSTANT_MATCH),
)
else:
return self.wrap_unspecialized_primitive(value)
else:
return ConstantVariable.create(
value=value,
guards=self.make_guards(GuardBuilder.CONSTANT_MATCH),
)
def wrap_tensor(self, value: torch.Tensor):
source = self.get_source()
if (
source.guard_source().is_nn_module()
or get_static_address_type(value) is not None
) and not source.guard_source().is_fsdp_module():
return self.tx.output.register_attr_or_module(
value,
self.name,
source=source,
# Guards are done inside register_attr_or_module
# guards=self.make_guards(GuardBuilder.TENSOR_MATCH),
)
if is_constant_source(source):
return self.tx.output.register_attr_or_module(
value,
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
source=source,
# Guards are added inside register_attr_or_module
)
if type(value) in config.traceable_tensor_subclasses:
# Ordinarily, we would fakeify a tensor so that it can get dynamic
# shapes and be computed on without triggering actual operations.
# However, how can we fakeify a tensor subclass? Ordinary
# inheritance (nor multiple inheritance) won't work work.
#
# Instead, our plan is to *manually simulate* the tensor subclass
# inheriting from a fake tensor with dynamo. This means our
# data representation for a tensor subclass will be a fake tensor
# + tensor subclass type + any extra data the subclass may have
# been storing on the tensor. Because all Python accesses are
# mediated through TensorWithTFOverrideVariable, we can ensure
# that we dispatch differently, e.g., according to
# __torch_function__
#
# To simplify things for now, the __dict__ tracking bits haven't
# been implemented yet, but they can be added into this design at
# a later point in time.
ignore_subclass = True
else:
assert type(value) in (
torch.Tensor,
torch.nn.Parameter,
torch._subclasses.fake_tensor.FakeTensor,
) or is_traceable_wrapper_subclass(value), type(value)
ignore_subclass = False
# NB: this just says we accessed a tensor from the same source again
# (e.g., a tensor lives in a global foo, and we LOAD_GLOBAL it twice).
# This is distinct from two distinct sources mapping to the same
# Tensor (per id())! No guard is necessary here. See below for the
# other case.
is_duplicate_tensor = source in self.tx.output.input_source_to_var
if is_duplicate_tensor:
return self.tx.output.input_source_to_var[source]
# We have accessed the SAME tensor from a different source. In some
# situations, it doesn't matter if you have the same tensor identity
# or not, but we are unable to do this fine-grained tracking. So
# instead we just say, if x is y, then to successfully reuse this
# compiled tensor again, you must have x is y again. Negative
# aliases, that is, that x is not y, are IMPLICITLY checked as part of
# the code cache matching process, you don't need to explicitly
# generate a guard for it (nor would you want to, you need O(n^2)
# pairwise 'is not' tests to do it.)
if value in self.tx.output.real_value_tensor_positive_aliases:
stored_value = self.tx.output.real_value_tensor_positive_aliases[value]
# TODO(voz): Decently common pattern, refactor at some point.
dup_guard = self._make_dupe_guard(stored_value)
if dup_guard:
stored_value = stored_value.add_guards(self.make_guards(dup_guard))
return stored_value
# tx.output has multiple tracers if we're introspecting HigherOrderOperator.
# When we've discovered an untracked tensor, then we actually need
# to get Dynamo to track the tensor (which is what this function does)
# and put it as a graph input on the root tracer. Later on,
# if the input is actually used in the body of the HigherOrderOperator,
# then the relevant SubgraphTracer will lift it to being an input of
# the subgraph.
# See NOTE [HigherOrderOperator tracing design] for more details.
tensor_proxy = self.tx.output.root_tracer.create_graph_input(
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value), source=source
)
tensor_variable = wrap_fx_proxy(
tx=self.tx,
proxy=tensor_proxy,
example_value=value,
guards=self.make_guards(
functools.partial(
GuardBuilder.TENSOR_MATCH,
value=value
if isinstance(source, NumpyTensorSource)
else TensorWeakRef(value),
)
),
should_specialize=self.tensor_should_specialize(),
ignore_subclass=ignore_subclass,
source=source,
)
self.tx.output.input_source_to_var[source] = tensor_variable
assert "tensor_dict" not in tensor_proxy.node.meta
tensor_proxy.node.meta["tensor_dict"] = value.__dict__.copy()
# TODO: I think the result is guaranteed to be fake with
# ignore_subclass changes
fake_tensor_value = None
example_value = tensor_variable.proxy.node.meta["example_value"]
if is_fake(example_value):
fake_tensor_value = example_value
grapharg = GraphArg(source, value, False, fake_tensor_value)
tensor_proxy.node.meta["grapharg"] = grapharg
self.tx.output.add_symbol_bindings(grapharg)
if type(value) in config.traceable_tensor_subclasses:
# NB: This is slightly misnamed, a tensor subclass might not have
# any explicit __torch_function__ implementation and is relying
# on the default inherited from torch.Tensor
return TensorWithTFOverrideVariable.create(
self.tx,
tensor_variable,
source,
value.__torch_function__.__func__,
type(value),
)
return tensor_variable
def wrap_numpy_ndarray(self, value):
assert np is not None
assert isinstance(value, np.ndarray)
source = NumpyTensorSource(self.get_source())
tensor_value = torch.as_tensor(value)
# We do this because we want the full behavior of guarding the numpy ndarray as if it were
# a tensor. It's a little annoying to make a VT to throw out, but there's so many side effects here
# that there's not another great way to do this atm.
# This creates the right graphargs, as well as registration for guards in tensor names and shape env.
tensor_vt = VariableBuilder(self.tx, source)(tensor_value)
proxy = self.tx.output.root_tracer.create_graph_input(
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(tensor_value), source=source
)
options = {"source": source, "guards": tensor_vt.guards}
numpy_ndarray_variable = wrap_fx_proxy_cls(
target_cls=NumpyNdarrayVariable,
tx=self.tx,
proxy=proxy,
example_value=tensor_value,
**options,
)
self.tx.output.input_source_to_var[source] = numpy_ndarray_variable
example_value = numpy_ndarray_variable.proxy.node.meta["example_value"]
# is_unspecialized should be true because we are wrapping a np.ndarray as argument input, and it needs to be
# converted to a tensor.
grapharg = GraphArg(
source,
tensor_value,
is_unspecialized=True,
fake_tensor=example_value,
is_tensor=True,
example_strong_ref=tensor_value,
)
proxy.node.meta["grapharg"] = grapharg
return numpy_ndarray_variable
def wrap_unspecialized_primitive(self, value):
if self.name in self.tx.output.unspec_variable_map:
return self.tx.output.unspec_variable_map[self.name]
else:
shape_env = self.tx.output.shape_env
if TracingContext.get().force_unspec_int_unbacked_size_like and isinstance(
value, int
):
wrapped_value = shape_env.create_unbacked_symint()
_constrain_range_for_size(wrapped_value)
self.tx.output.tracked_fakes.append(
TrackedFake(wrapped_value, self.source, None)
)
# NB: We do not do float. For motivation, see
# https://docs.google.com/document/d/1INSCdYu1PxXcr43HrD82OudeEuS-qxQe1yZmLg2wy6A/edit
# but the general idea is that we generate kernels that can
# take unspecialized floats and use them in sizevar computation
elif (
isinstance(value, int)
and not is_constant_source(self.get_source())
and not isinstance(self.get_source(), RandomValueSource)
):
if torch._dynamo.config.specialize_int:
# If specialize_int is False, also return
# a constant (but this should have been handled
# in the caller, TBH)
return ConstantVariable.create(
value=value,
guards=self.make_guards(GuardBuilder.CONSTANT_MATCH),
)
name = self.source.name()
if name not in self.tx.output.frame_state:
# Note - this essentially means that if this name gets reused as a tensor,
# it will start fully dynamic. That should always be a safe option, and not awfully inefficient.
# Alternatively, if we want to improve pef here, we can add a third state of unset, but I am not
# sure that is necessary for now.
frame_state_entry = FrameStateSizeEntry(scalar=value, size=None)
else:
frame_state_entry = self.tx.output.frame_state[name]
if frame_state_entry.scalar != value:
log.debug(
"automatic dynamic int %s val %s != %s",
name,
value,
frame_state_entry.scalar,
)
frame_state_entry.scalar = None
self.tx.output.frame_state[name] = frame_state_entry
# TODO: This should be dynamic, as we in general do not
# know if bare integers are actually going to be sizevars
# and it is inappropriate to eagerly duck size them with
# real sizevars
if (
config.automatic_dynamic_shapes and frame_state_entry.scalar is None
) or not config.assume_static_by_default:
dynamic_dim = DimDynamic.DYNAMIC
else: # assume_static_by_default
# TODO: dynamic_dim = DimDynamic.STATIC should work but
# for some reason it doesn't
return ConstantVariable.create(
value=value,
guards=self.make_guards(GuardBuilder.CONSTANT_MATCH),
)
wrapped_value = shape_env.create_unspecified_symint_and_symbol(
value,
source=self.source,
dynamic_dim=dynamic_dim,
)
self.tx.output.tracked_fakes.append(
TrackedFake(wrapped_value, self.source, None)
)
else:
wrapped_value = torch.tensor(value)
if not isinstance(self.get_source(), RandomValueSource):
guards = {self.get_source().make_guard(GuardBuilder.TYPE_MATCH, True)}
options = {"guards": guards}
else:
options = {}
options.update({"source": self.get_source()})
if isinstance(wrapped_value, torch.Tensor):
options.update({"raw_value": value})
proxy = self.tx.output.root_tracer.create_graph_input(
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
type(wrapped_value),
source=self.get_source(),
)
unspec_var = wrap_fx_proxy_cls(
UnspecializedPythonVariable,
tx=self.tx,
proxy=proxy,
example_value=wrapped_value,
**options,
)
self.tx.output.unspec_variable_map[self.name] = unspec_var
if not is_constant_source(self.get_source()):
if self.tx.export and not isinstance(self.get_source(), LocalSource):
raise AssertionError(
"Dynamo attempts to add additional input during export: value={}, source={}".format(
wrapped_value, self.get_source()
)
)
fake_tensor_value = None
if isinstance(unspec_var, ConstantVariable):
example_value = unspec_var.value
else:
example_value = unspec_var.proxy.node.meta["example_value"]
if is_fake(example_value):
fake_tensor_value = example_value
assert fake_tensor_value.fake_mode is self.tx.fake_mode, (
f"fake mode ({fake_tensor_value.fake_mode}) from fake tensor metadata doesn't match mode"
"({self.tx.fake_mode}) from InstructionTranslator"
)
proxy.node.meta["grapharg"] = GraphArg(
self.get_source(),
wrapped_value,
isinstance(wrapped_value, torch.Tensor),
fake_tensor_value,
is_tensor=False,
example_strong_ref=wrapped_value,
)
return unspec_var
def _dataclasses_fields_lambda(obj):
if isinstance(obj, UserDefinedObjectVariable):
value = obj.value
elif isinstance(obj, DataClassVariable):
value = obj.user_cls
else:
unimplemented(f"Dataclass fields handling fails for type {obj}")
items = []
for field in dataclasses.fields(value):
source = None
if obj.source:
source = GetItemSource(
AttrSource(obj.source, "__dataclass_fields__"), field.name
)
items.append(UserDefinedObjectVariable(field, source=source).add_options(obj))
return TupleVariable(items).add_options(obj)
def wrap_fx_proxy(tx, proxy, example_value=None, **options):
return wrap_fx_proxy_cls(
target_cls=TensorVariable,
tx=tx,
proxy=proxy,
example_value=example_value,
**options,
)
# Note: Unfortunate split due to some gross classes existing that subclass TensorVariable
# Should be compositional instead
#
# This is a horribly complicated function that does too many things, to
# explain what it does, let's first talk about the classic usage wrap_fx_proxy
# for a TensorVariable. There are two primary modes of use:
#
# 1. Wrapping a pre-existing Tensor. In this case, example_value is set
# to the pre-existing Tensor. (Note that this example_value will NOT
# be the final example_value we put into node.meta['example_value'],
# instead it is converted into a fake tensor using
# wrap_to_fake_tensor_and_record and registered as a graph input.)
#
# 2. "Wrapping" the result of some Tensor operation Dynamo traced over. In
# this case, example_value is None (and we are going to figure it out
# ourselves using FakeTensors, via get_fake_value, which will run
# the operation represented by the (singular!) FX node referenced by
# the passed in proxy.)
#
# The expectation is you end up with a Tensor output, and everything is
# straightforwardly traced into the graph.
#
# Upon closer inspection, you may notice that there are a slurry of non-Tensor
# output cases. What gives? Well, we sometimes trace operations into the
# graph that don't involve tensors.
#
# * Some operators return tuples; we need to recursively handle their
# contents
#
# * Some operators have side effects that will affect subsequent AOTAutograd
# tracing but don't otherwise return anything.
#
# * Some operators return symbolic ints/floats/bools which can go in the
# graph and be traced (but only if they're actually symbolic! If they're
# static you don't want to put them in the graph, which means you
# shouldn't call this function.)
#
# The common theme is that you only use this function WHEN YOU ARE TRACING
# SOMETHING INTO THE GRAPH. This is sort of obvious, because you can't call
# this function without a proxy.
def wrap_fx_proxy_cls(
target_cls, tx, proxy, example_value=None, ignore_subclass=False, **options
):
from ..symbolic_convert import InstructionTranslatorBase
assert isinstance(tx, InstructionTranslatorBase)
if "guards" in options and options["guards"] is not None:
tx.output.guards.update(options["guards"])
assert "example_value" not in proxy.node.meta, f"{proxy.node.meta['example_value']}"
initial_example_value = example_value
def _is_functional_tensor_fakified_by_dynamo(x):
if isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrapped = torch._C._functorch._unwrap_functional_tensor(x, reapply_views)
return (
isinstance(unwrapped, FakeTensor)
and unwrapped.fake_mode == tx.fake_mode
)
return False
def _clone_input(value):
if isinstance(value, torch.Tensor):
# tensor subclasses will not be converted to FakeTensors and need to be cloned
if not (
isinstance(value, FakeTensor)
or _is_functional_tensor_fakified_by_dynamo(value)
or value.is_nested
):
# NB: ensure strides are preserved
value = clone_input(value)
return value
with preserve_rng_state():
if example_value is None:
example_value = get_fake_value(proxy.node, tx)
# Handle recursive calls here
elif (
is_fake(example_value)
and maybe_get_fake_mode(example_value) is tx.fake_mode
) or _is_functional_tensor_fakified_by_dynamo(example_value):
pass
elif isinstance(example_value, torch.Tensor):
if tx.export:
# The legacy behavior for real value cache with subclasses was
# to perform a clone WITHOUT preserving the subclass. It's
# not entirely clear this is what you actually want though.
with torch._C.DisableTorchFunctionSubclass():
proxy.tracer.real_value_cache[proxy.node] = _clone_input(
example_value
)
# NB: If we're ignoring subclass, then the expectation is you will
# take the returned TensorVariable and wrap it into a more
# accurate TensorVariable that is able to track subclass-ness;
# otherwise this is wrong!
kwargs = {
"ignore_subclass": ignore_subclass,
"is_tensor": target_cls is TensorVariable,
}
assert "source" in options and options["source"] is not None
kwargs["source"] = options["source"]
example_value = wrap_to_fake_tensor_and_record(
example_value, tx=tx, **kwargs
)
if isinstance(example_value, torch.Tensor):
is_parameter = isinstance(example_value, torch.nn.Parameter)
should_specialize = options.pop("should_specialize", False)
if is_parameter or should_specialize:
specialized_value = initial_example_value
else:
specialized_value = None
# NB: In most (all?) cases, this does not actually do a clone.
# (WARNING: this means that if we mutate metadata on the fake
# tensor, the stored example value will update too!)
example_value = _clone_input(example_value)
proxy.node.meta["example_value"] = example_value
specialized_props = target_cls.specialize(example_value)
# TODO: not sure about this fake mode test
if (
isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor)
and example_value.fake_mode is tx.fake_mode
):
# NB: This will be wrong for ignore_subclass; fix it up later!
specialized_props["class_type"] = (
torch.nn.Parameter if is_parameter else torch.Tensor
)
specialized_props["specialized_value"] = specialized_value
options.update(specialized_props)
return target_cls(proxy, **options)
elif (
hasattr(proxy.node.target, "__name__")
and proxy.node.target.__name__ == "set_state"
and isinstance(proxy.node.target.__self__, torch._C.Generator)
or proxy.node.target == torch.random.set_rng_state
):
from . import TorchVariable
return TorchVariable(proxy.node.target)
elif (
proxy.node.target == torch._C._DisableFuncTorch
or proxy.node.target == torch.cuda._is_in_bad_fork
):
from . import UserDefinedObjectVariable
return UserDefinedObjectVariable(example_value)
elif istype(example_value, torch.Size) and all(
isinstance(x, int) for x in example_value
):
sizes = [ConstantVariable.create(x) for x in example_value]
return SizeVariable(sizes, **options)
elif isinstance(example_value, (tuple, list, set)):
proxy.node.meta["example_value"] = example_value
unpacked = []
for i, val in enumerate(example_value):
if val is None:
# nn.MultiheadAttention() can return None, see issue #175
unpacked.append(
ConstantVariable.create(None, **options),
)
else:
unpacked.append(
wrap_fx_proxy_cls(
target_cls,
tx,
proxy.tracer.create_proxy(
"call_function", operator.getitem, (proxy, i), {}
),
example_value=val,
**options,
)
)
if isinstance(example_value, torch.Size):
# NB: Keep the old proxy around. See SizeVariable for an
# explanation why
return SizeVariable(unpacked, proxy, **options)
elif istype(example_value, tuple):
return TupleVariable(unpacked, **options)
elif istype(example_value, (list, immutable_list)):
return ListVariable(unpacked, mutable_local=MutableLocal(), **options)
elif istype(example_value, set):
return SetVariable(unpacked, mutable_local=MutableLocal(), **options)
else:
assert example_value.__class__.__module__ == "torch.return_types" or hasattr(
example_value, "_fields"
), f"expected {example_value.__class__.__module__} == torch.return_types or named tuple but got {type(example_value)}"
return NamedTupleVariable(unpacked, example_value.__class__, **options)
elif example_value is None or proxy.node.target is torch.manual_seed:
return ConstantVariable.create(None, **options)
elif isinstance(example_value, (torch.SymInt, torch.SymFloat, torch.SymBool)):
proxy.node.meta["example_value"] = example_value
return SymNodeVariable(proxy, example_value, **options)
elif proxy.node.target in [torch.cuda.streams.Stream, torch.cuda.current_stream]:
proxy.node.meta["example_value"] = example_value
return CUDAStreamVariable(proxy, example_value, **options)
elif isinstance(example_value, int) and proxy.node.target in [
torch.sym_int,
getattr,
operator.getitem,
torch._utils._element_size,
torch.seed,
operator.mod,
# some mac builds are missing torch.distributed.get_rank()
getattr(torch.distributed, "get_rank", _missing),
getattr(torch.distributed, "get_world_size", _missing),
# This always wants to be in the graph, even if the constraint
# results in a constant int
torch._constrain_as_value,
torch._constrain_as_size,
]:
proxy.node.meta["example_value"] = example_value
return ConstantVariable.create(example_value, **options)
else:
unimplemented(
"torch.* op returned non-Tensor "
+ f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}"
)
# Tracks the sources of all fake tensors we wrap in Dynamo.
# Used by shape guard computation.
@dataclasses.dataclass
class TrackedFake:
fake: Union[FakeTensor, SymInt]
source: Source
# Is None when fake is SymInt
constraint_dims: Optional[DimList[DimConstraint]]
def __hash__(self) -> int:
return hash((self.fake, self.source.name()))
def __eq__(self, other: object) -> bool:
if isinstance(other, TrackedFake):
return self.fake is other.fake and self.source.name() == other.source.name()
return False
# Performs automatic dynamic dim determination.
# Returns tuple of (dynamic_dims, constraint_dims) where each is either a list of dims or None.
def _automatic_dynamic(e, tx, name, static_shapes):
if static_shapes:
return [DimDynamic.STATIC] * e.dim(), [None] * e.dim()
# We preserve the dynamism of inputs. For example, when users call
# make_fx(torch.cond, tracing_mode="symbolic")(*args), inputs have SymInt sizes.
if any(isinstance(s, SymInt) for s in e.size()):
return [
DimDynamic.DYNAMIC if isinstance(s, SymInt) else DimDynamic.STATIC
for s in e.size()
], [None] * e.dim()
# Prep for automatic dynamic
frame_state_entry = None
if name not in tx.output.frame_state:
# If there is no entry for this source, add the tensor to frame state with its current static size.
# E.g., {} -> {"x": [2, 4]}
frame_state_entry = FrameStateSizeEntry(None, None)
frame_state_entry.size = list(e.size())
else:
frame_state_entry = tx.output.frame_state[name]
if frame_state_entry.size is not None:
if e.ndim != len(frame_state_entry.size):
# If there is already an entry, and the dim mismatches, replace the frame state entry with None.
# E.g. {"x": [2, 3, 4]} -> {"x": None}
log.debug(
"automatic dynamic %s dim %s != %s",
name,
e.ndim,
frame_state_entry.size,
)
frame_state_entry.size = None
else:
# If there is already an entry, and the dim matches, for every size in the frame state which
# disagrees with the current static size, replace it with None. E.g., {"x": [2, 3]} -> {"x": [2, None]}
for i, dim in enumerate(frame_state_entry.size):
if dim is not None and e.size()[i] != dim:
log.debug(
"automatic dynamic %s size(%s) %s != %s",
name,
i,
e.size(i),
dim,
)
frame_state_entry.size[i] = None
# TODO: index export_constraints ahead of time so we don't have to
# do a linear scan every time here
t_id = id(e)
dim2constraint = {}
def update_dim2constraint(dim, constraint_range, debug_name):
if dim in dim2constraint:
from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint
old_constraint_range, old_debug_name = dim2constraint[dim]
new_constraint_range = StrictMinMaxConstraint(
vr=constraint_range.vr & old_constraint_range.vr,
warn_only=False,
)
if old_debug_name is not None:
assert debug_name is None or debug_name == old_debug_name
new_debug_name = old_debug_name
else:
new_debug_name = debug_name
dim2constraint[dim] = new_constraint_range, new_debug_name
else:
dim2constraint[dim] = constraint_range, debug_name
if tx.output.export_constraints:
for constraint in tx.output.export_constraints:
if constraint.t_id == t_id:
update_dim2constraint(
constraint.dim, constraint.constraint_range, constraint.debug_name
)
if constraint.shared is not None and constraint.shared.t_id == t_id:
# We process constraint ranges for each shared dimension separately
# so that we can directly check range constraint violations on them
# without looking up which other shared dimensions have this info.
# In other words, for this t_id, we will have processed all of its
# constraint ranges, no matter where / how they were specified, by
# by the end of this loop.
update_dim2constraint(
constraint.shared.dim,
constraint.constraint_range,
constraint.debug_name,
)
dynamic_dims = []
constraint_dims = []
for i in range(e.dim()):
# NB: mark dynamic has precedence over static
marked_dynamic = i in getattr(e, "_dynamo_dynamic_indices", set())
marked_weak_dynamic = i in getattr(e, "_dynamo_weak_dynamic_indices", set())
marked_static = i in getattr(e, "_dynamo_static_indices", set())
# NB: both static and dynamic have precedence over
automatic_dynamic = config.automatic_dynamic_shapes and (
frame_state_entry.size is None or frame_state_entry.size[i] is None
)
# Reflect the user directive in the frame_state
# For dynamic, apply None always
if frame_state_entry.size and marked_dynamic:
log.debug("automatic dynamic %s marked dynamic", name)
frame_state_entry.size[i] = None
# We will process constraints first, as they will imply that we
# have a dynamic dimension
# Precedence: export constraints > eager constraints
constraint = dim2constraint.get(i)
if constraint is None:
if marked_dynamic and not config.allow_ignore_mark_dynamic:
constraint_dim = RelaxedUnspecConstraint(warn_only=False)
elif not marked_static and automatic_dynamic:
constraint_dim = RelaxedUnspecConstraint(warn_only=True)
else:
constraint_dim = None
else:
constraint_dim, debug_name = constraint
if debug_name is not None:
dim_name = f"{name}.size()[{i}]"
tx.output.shape_env.source_name_to_debug_name[dim_name] = debug_name
constraint_dims.append(constraint_dim)
# Now, figure out if the dim is dynamic/duck/static
if constraint_dim is not None or marked_dynamic or marked_weak_dynamic:
# NB: We could assert static_shapes is False here, but it
# seems better to allow the user to override policy in this
# case
dynamic = DimDynamic.DYNAMIC
elif static_shapes or config.assume_static_by_default or marked_static:
dynamic = DimDynamic.STATIC
else:
dynamic = DimDynamic.DUCK
dynamic_dims.append(dynamic)
tx.output.frame_state[name] = frame_state_entry
return dynamic_dims, constraint_dims
def wrap_to_fake_tensor_and_record(
e, tx, ignore_subclass=False, *, source: Optional[Source], is_tensor: bool
):
if (
type(e) in (torch.Tensor, torch.nn.Parameter, FakeTensor)
or (ignore_subclass and isinstance(e, torch.Tensor))
or is_traceable_wrapper_subclass(e)
):
assert source is not None
static_shapes, reason = tensor_always_has_static_shape(
e, is_tensor, guard_source=source.guard_source()
)
dynamic_dims, constraint_dims = None, None
if not e.is_nested:
# TODO: We should probably support this for nested tensors too
dynamic_dims, constraint_dims = _automatic_dynamic(
e, tx, source.name(), static_shapes
)
log.debug(
"wrap_to_fake %s %s %s %s",
source.name(),
tuple(e.shape),
dynamic_dims,
constraint_dims,
)
fake_e = wrap_fake_exception(
lambda: tx.fake_mode.from_tensor(
e,
ignore_subclass=ignore_subclass,
source=source,
dynamic_dims=dynamic_dims,
constraint_dims=constraint_dims,
)
)
if is_tensor and not (static_shapes and source.is_nn_module()):
tx.output.tracked_fakes.append(TrackedFake(fake_e, source, constraint_dims))
tx.output.tracked_fakes_id_to_source[id(e)].append(source)
tx.output.tensor_weakref_to_sizes_strides[WeakIdRef(e)] = {
"size": fake_e.size(),
"stride": fake_e.stride(),
}
return fake_e
else:
return e
class SourcelessBuilder:
"""
Like builder, but stateless and does not require a source. Useful for simple type->VT objects, or objects
that are being created/evaporated during inlining (ex: consider a locally made list of tensors we then iterate over
.), such a list should not show up as an artifact from inputs, nor in reconstruction, nor in the graph. However,
there may be reasons to represent it as a ListVariable internally.
NOTE - Objects produced here are born UNGUARDED due to the nature of sources!
NOTE - This class is very new! It will have some rough edges, but it was created to stem the bleeding of giant
if/else type->VariableTracker trees that were cropping up all over dynamo.
"""
def __call__(self, tx, value) -> VariableTracker:
if isinstance(value, VariableTracker):
# This is always valid to call, and useful for recursive calls.
return value
if isinstance(value, dataclasses._HAS_DEFAULT_FACTORY_CLASS):
return UserDefinedObjectVariable(value)
if ConstantVariable.is_literal(value):
return SourcelessBuilder.wrap_constant_literal(value)
elif is_builtin_callable(value):
return BuiltinVariable(value)
elif is_allowed(value):
if is_user_defined_allowed(value):
self.tx.output.has_user_defined_allowed_in_graph = True
return TorchVariable(value)
elif isinstance(value, types.FunctionType):
return UserFunctionVariable(value)
elif isinstance(value, enum.Enum):
return EnumVariable(value)
elif isinstance(value, (type, abc.ABCMeta)):
return UserDefinedClassVariable(value)
elif isinstance(value, dict):
return ConstDictVariable(
{k: self(tx, v) for k, v in value.items()},
dict,
mutable_local=MutableLocal(),
)
elif isinstance(value, (tuple, list)):
cls = BaseListVariable.cls_for(type(value))
return cls([self(tx, x) for x in value], mutable_local=MutableLocal())
elif isinstance(value, types.MethodWrapperType):
return MethodWrapperVariable(value)
unimplemented(f"Unexpected type in sourceless builder {type(value)}")
@staticmethod
def wrap_constant_literal(value):
assert ConstantVariable.is_literal(value)
return ConstantVariable.create(value=value)