blob: bd09c47197ce4822a570f423a6bc8fd2e9844aff [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import torch
from torch.nn import Conv2d, BatchNorm2d, ReLU
from torch.nn.intrinsic.qat import ConvBn2d, ConvBnReLU2d
from torch.quantization.qconfig import default_qat_qconfig
import torch.backends.mkldnn
from common_utils import TestCase, run_tests
from hypothesis import given
from hypothesis import strategies as st
import hypothesis_utils as hu
hu.assert_deadline_disabled()
from functools import reduce
class IntrinsicQATModuleTest(TestCase):
@given(batch_size=st.integers(2, 4),
input_channels_per_group=st.sampled_from([2, 3, 4]),
height=st.integers(5, 10),
width=st.integers(5, 10),
output_channels_per_group=st.sampled_from([2, 3]),
groups=st.integers(1, 3),
kernel_h=st.integers(1, 3),
kernel_w=st.integers(1, 3),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 1),
padding_mode=st.sampled_from(['zeros', 'circular']),
use_relu=st.booleans(),
eps=st.sampled_from([1e-5, 1e-4, 1e-3]),
momentum=st.sampled_from([0.1, 0.2, 0.3]),
freeze_bn=st.booleans())
def test_conv_bn_relu(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
padding_mode,
use_relu,
eps,
momentum,
freeze_bn
):
# **** WARNING: This is used to temporarily disable MKL-DNN convolution due
# to a bug: https://github.com/pytorch/pytorch/issues/23825
# Once this bug is fixed, this context manager as well as its callsites
# should be removed!
with torch.backends.mkldnn.flags(enabled=False):
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
dilation_h = dilation_w = dilation
conv_op = Conv2d(
input_channels,
output_channels,
(kernel_h, kernel_w),
(stride_h, stride_w),
(pad_h, pad_w),
(dilation_h, dilation_w),
groups,
False, # No bias
padding_mode
).to(dtype=torch.double)
bn_op = BatchNorm2d(output_channels, eps, momentum).to(dtype=torch.double)
relu_op = ReLU()
cls = ConvBnReLU2d if use_relu else ConvBn2d
qat_op = cls(
input_channels,
output_channels,
(kernel_h, kernel_w),
(stride_h, stride_w),
(pad_h, pad_w),
(dilation_h, dilation_w),
groups,
padding_mode,
eps,
momentum,
freeze_bn=True,
qconfig=default_qat_qconfig
).to(dtype=torch.double)
qat_op.apply(torch.quantization.disable_fake_quant)
if freeze_bn:
qat_op.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
else:
qat_op.apply(torch.nn.intrinsic.qat.update_bn_stats)
# align inputs and internal parameters
input = torch.randn(batch_size, input_channels, height, width, dtype=torch.double, requires_grad=True)
conv_op.weight = torch.nn.Parameter(qat_op.weight.detach())
bn_op.running_mean = qat_op.running_mean.clone()
bn_op.running_var = qat_op.running_var.clone()
bn_op.weight = torch.nn.Parameter(qat_op.gamma.detach())
bn_op.bias = torch.nn.Parameter(qat_op.beta.detach())
def compose(functions):
# functions are reversed for natural reading order
return reduce(lambda f, g: lambda x: f(g(x)), functions[::-1], lambda x: x)
if not use_relu:
def relu_op(x):
return x
if freeze_bn:
def ref_op(x):
x = conv_op(x)
x = (x - bn_op.running_mean.reshape([1, -1, 1, 1])) * \
(bn_op.weight / torch.sqrt(bn_op.running_var + bn_op.eps)) \
.reshape([1, -1, 1, 1]) + bn_op.bias.reshape([1, -1, 1, 1])
x = relu_op(x)
return x
else:
ref_op = compose([conv_op, bn_op, relu_op])
input_clone = input.clone().detach().requires_grad_()
for i in range(2):
result_ref = ref_op(input)
result_actual = qat_op(input_clone)
self.assertEqual(result_ref, result_actual)
# backward
dout = torch.randn(result_ref.size(), dtype=torch.double)
loss = (result_ref - dout).sum()
loss.backward()
input_grad_ref = input.grad.cpu()
weight_grad_ref = conv_op.weight.grad.cpu()
gamma_grad_ref = bn_op.weight.grad.cpu()
beta_grad_ref = bn_op.bias.grad.cpu()
running_mean_ref = bn_op.running_mean
running_var_ref = bn_op.running_var
num_batches_tracked_ref = bn_op.num_batches_tracked
loss = (result_actual - dout).sum()
loss.backward()
input_grad_actual = input_clone.grad.cpu()
weight_grad_actual = qat_op.weight.grad.cpu()
gamma_grad_actual = qat_op.gamma.grad.cpu()
beta_grad_actual = qat_op.beta.grad.cpu()
running_mean_actual = qat_op.running_mean
running_var_actual = qat_op.running_var
num_batches_tracked_actual = qat_op.num_batches_tracked
precision = 1e-10
self.assertEqual(input_grad_ref, input_grad_actual, prec=precision)
self.assertEqual(weight_grad_ref, weight_grad_actual, prec=precision)
self.assertEqual(gamma_grad_ref, gamma_grad_actual, prec=precision)
self.assertEqual(beta_grad_ref, beta_grad_actual, prec=precision)
self.assertEqual(num_batches_tracked_ref, num_batches_tracked_actual, prec=precision)
self.assertEqual(running_mean_ref, running_mean_actual, prec=precision)
self.assertEqual(running_var_ref, running_var_actual, prec=precision)
if __name__ == '__main__':
run_tests()