| from __future__ import absolute_import, division, print_function, unicode_literals |
| |
| import copy |
| import math |
| import os |
| import random |
| import signal |
| import sys |
| import tempfile |
| import threading |
| import time |
| import unittest |
| from datetime import timedelta |
| from sys import platform |
| |
| from itertools import groupby |
| from functools import partial, reduce |
| import operator |
| |
| import torch |
| from torch._six import string_classes |
| import common_utils as common |
| from torch import nn |
| import torch.nn.functional as F |
| import torch.distributed as c10d |
| import torch.distributed as dist |
| from torch.nn.parallel import DistributedDataParallel |
| |
| from common_distributed import MultiProcessTestCase, \ |
| requires_gloo, requires_nccl, requires_nccl_version, \ |
| skip_if_not_multigpu, skip_if_lt_x_gpu, skip_for_known_issues, get_timeout, skip_if_rocm |
| from common_utils import TestCase, load_tests, run_tests, retry_on_address_already_in_use_error, TEST_WITH_TSAN |
| |
| # load_tests from common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| if not c10d.is_available(): |
| print('c10d not available, skipping tests') |
| sys.exit(0) |
| |
| |
| if platform == 'darwin': |
| LOOPBACK = 'lo0' |
| else: |
| LOOPBACK = 'lo' |
| |
| |
| def gpus_for_rank(world_size): |
| """Multigpu tests are designed to simulate the multi nodes with multi |
| GPUs on each node. Nccl backend requires equal #GPUs in each process. |
| On a single node, all visible GPUs are evenly |
| divided to subsets, each process only uses a subset. |
| """ |
| visible_devices = list(range(torch.cuda.device_count())) |
| gpus_per_process = torch.cuda.device_count() // world_size |
| gpus_for_rank = [] |
| for rank in range(world_size): |
| gpus_for_rank.append(visible_devices[rank * gpus_per_process: (rank + 1) * gpus_per_process]) |
| return gpus_for_rank |
| |
| |
| def simple_reduce_tests(rank, world_size): |
| tests = [ |
| ( |
| c10d.ReduceOp.SUM, |
| torch.tensor([rank + 1.0]), |
| torch.tensor([float(world_size * (world_size + 1) / 2)]), |
| ), |
| ( |
| c10d.ReduceOp.PRODUCT, |
| torch.tensor([rank + 1.0]), |
| torch.tensor([float(math.factorial(world_size))]), |
| ), |
| ( |
| c10d.ReduceOp.MIN, |
| torch.tensor([rank + 1.0]), |
| torch.tensor([1.0]), |
| ), |
| ( |
| c10d.ReduceOp.MAX, |
| torch.tensor([rank + 1.0]), |
| torch.tensor([world_size]), |
| ), |
| ] |
| |
| # Generate tests for BAND. |
| # The bit that is set changes in every iteration to check |
| # that the output changes accordingly. |
| for i in range(4): |
| vin = rank | (1 << i) |
| vout = (1 << i) |
| tests.append( |
| ( |
| c10d.ReduceOp.BAND, |
| torch.tensor([vin], dtype=torch.int32), |
| torch.tensor([vout], dtype=torch.int32), |
| ), |
| ) |
| |
| # Generate tests for BOR. |
| # These emulate a larger world size per iteration by having every |
| # rank contribute multiple values that are pre-OR'ed. |
| for i in range(1, 5): |
| vin = reduce(operator.or_, [rank * i + j for j in range(i)]) |
| vout = reduce(operator.or_, range(world_size * i)) |
| tests.append( |
| ( |
| c10d.ReduceOp.BOR, |
| torch.tensor([vin], dtype=torch.int32), |
| torch.tensor([vout], dtype=torch.int32), |
| ), |
| ) |
| |
| # Generate tests for XOR. |
| # These emulate a larger world size per iteration by having every |
| # rank contribute multiple values that are pre-XOR'ed. |
| for i in range(1, 5): |
| vin = reduce(operator.xor, [rank * i + j for j in range(i)]) |
| vout = reduce(operator.xor, range(world_size * i)) |
| tests.append( |
| ( |
| c10d.ReduceOp.BXOR, |
| torch.tensor([vin], dtype=torch.int32), |
| torch.tensor([vout], dtype=torch.int32), |
| ), |
| ) |
| |
| return tests |
| |
| |
| def simple_coalesced_reduce_tests(rank, world_size): |
| return [ |
| ( |
| c10d.ReduceOp.SUM, |
| [torch.tensor([rank + 1]), torch.tensor([(rank + 1) ** 2])], |
| [ |
| torch.tensor([float(world_size * (world_size + 1) / 2)]), |
| torch.tensor([float(world_size * (world_size + 1) * (2 * world_size + 1) / 6)]) |
| ] |
| ), |
| ( |
| c10d.ReduceOp.PRODUCT, |
| [torch.tensor([rank + 1.0]), torch.tensor([rank + 2.0])], |
| [ |
| torch.tensor([float(math.factorial(world_size))]), |
| torch.tensor([float(math.factorial(world_size + 1))]) |
| ] |
| ), |
| ( |
| c10d.ReduceOp.MIN, |
| [torch.tensor([rank + x]) for x in [0.0, 1.0]], |
| [torch.tensor([0.0]), torch.tensor([1.0])] |
| ), |
| ( |
| c10d.ReduceOp.MAX, |
| [torch.tensor([rank + x]) for x in [1.0, 2.0]], |
| [torch.tensor([world_size]), torch.tensor([world_size + 1.0])] |
| ) |
| ] |
| |
| |
| def simple_multi_input_reduce_tests(rank, world_size): |
| return [ |
| ( |
| c10d.ReduceOp.SUM, |
| [torch.tensor([2 * rank + 0.0]), torch.tensor([2 * rank + 1.0])], |
| torch.tensor([float(world_size * (2 * world_size - 1))]), |
| ), |
| ( |
| c10d.ReduceOp.PRODUCT, |
| [torch.tensor([2 * rank + 1.0]), torch.tensor([2 * rank + 2.0])], |
| torch.tensor([float(math.factorial(2 * world_size))]), |
| ), |
| ( |
| c10d.ReduceOp.MIN, |
| [torch.tensor([2 * rank + 1.0]), torch.tensor([2 * rank + 2.0])], |
| torch.tensor([1.0]), |
| ), |
| ( |
| c10d.ReduceOp.MAX, |
| [torch.tensor([2 * rank + 1.0]), torch.tensor([2 * rank + 2.0])], |
| torch.tensor([2 * world_size]), |
| ), |
| ] |
| |
| |
| def simple_sparse_reduce_tests(rank, world_size, num_inputs=1): |
| """ |
| Generate a number of basic test cases for sparse reduction. |
| These cover tensors with a varying number of sparse dimensions and a varying |
| number of dense dimensions. The only reduction operation we support is sum. |
| """ |
| def generate(rank, world_size, sparse_dims=1, dense_dims=0): |
| # First sparse dimension is [0..rank]. |
| # Subsequent dimensions are always 0, so we know there is |
| # a non-empty intersection between any two sparse tensors. |
| indices = [range(rank + 1)] |
| shape = [world_size] + [2 for _ in range(dense_dims)] |
| for _ in range(sparse_dims - 1): |
| indices.append([0] * (rank + 1)) |
| shape.append(world_size) |
| values = torch.ones([rank + 1] + [2 for _ in range(dense_dims)]) |
| return torch.sparse_coo_tensor(indices, values, shape) |
| |
| def compute_sum(fn, world_size): |
| return reduce(lambda a, b: a + b, [fn(rank, world_size) for rank in range(world_size)]) |
| |
| return [ |
| ( |
| [ |
| fn(num_inputs * rank + i, num_inputs * world_size) |
| for i in range(num_inputs) |
| ], |
| [ |
| compute_sum(fn, num_inputs * world_size) |
| for i in range(num_inputs) |
| ], |
| ) |
| for fn in [ |
| partial(generate, sparse_dims=1), |
| partial(generate, sparse_dims=2), |
| partial(generate, sparse_dims=3), |
| partial(generate, dense_dims=1), |
| partial(generate, dense_dims=2), |
| partial(generate, dense_dims=3), |
| ] |
| ] |
| |
| |
| class StoreTestBase(object): |
| def _create_store(self, i): |
| raise RuntimeError("not implemented") |
| |
| def _test_set_get(self, fs): |
| fs.add("key", 1) |
| fs.add("key", 2) |
| fs.add("key", 3) |
| fs.set("key0", "value0") |
| fs.add("key3", 1) |
| fs.set("key1", "value1") |
| fs.add("key3", 2) |
| fs.set("key2", "value2") |
| fs.add("key3", 3) |
| fs.add("key3", 4) |
| fs.add("key3", 5) |
| fs.add("key3", 6) |
| self.assertEqual(b"6", fs.get("key")) |
| self.assertEqual(b"value0", fs.get("key0")) |
| self.assertEqual(b"value1", fs.get("key1")) |
| self.assertEqual(b"value2", fs.get("key2")) |
| self.assertEqual(b"21", fs.get("key3")) |
| |
| def test_set_get(self): |
| self._test_set_get(self._create_store()) |
| |
| |
| class FileStoreTest(TestCase, StoreTestBase): |
| def setUp(self): |
| super(FileStoreTest, self).setUp() |
| self.file = tempfile.NamedTemporaryFile(delete=False) |
| |
| def _create_store(self): |
| store = c10d.FileStore(self.file.name, 1) |
| store.set_timeout(timedelta(seconds=300)) |
| return store |
| |
| |
| class PrefixFileStoreTest(TestCase, StoreTestBase): |
| def setUp(self): |
| super(PrefixFileStoreTest, self).setUp() |
| self.file = tempfile.NamedTemporaryFile(delete=False) |
| self.filestore = c10d.FileStore(self.file.name, 1) |
| self.prefix = "test_prefix" |
| self.filestore.set_timeout(timedelta(seconds=300)) |
| |
| def _create_store(self): |
| return c10d.PrefixStore(self.prefix, self.filestore) |
| |
| |
| def create_tcp_store(addr): |
| """ |
| Creates a TCP store. Retries if the chosen port is already in use. |
| """ |
| ports = [] |
| for _ in range(10): |
| try: |
| port = common.find_free_port() |
| ports.append(port) |
| return c10d.TCPStore(addr, port, 1, True) |
| except RuntimeError as error: |
| if str(error) == "Address already in use": |
| continue |
| raise |
| raise RuntimeError("Unable to find free port (tried %s)" % ", ".join(ports)) |
| |
| |
| class TCPStoreTest(TestCase, StoreTestBase): |
| def _create_store(self): |
| store = create_tcp_store('localhost') |
| store.set_timeout(timedelta(seconds=300)) |
| return store |
| |
| def test_address_already_in_use(self): |
| with self.assertRaisesRegex(RuntimeError, "^Address already in use$"): |
| addr = 'localhost' |
| port = common.find_free_port() |
| |
| # Use noqa to silence flake8. |
| # Need to store in an unused variable here to ensure the first |
| # object is not destroyed before the second object is created. |
| store1 = c10d.TCPStore(addr, port, 1, True) # noqa: F841 |
| store2 = c10d.TCPStore(addr, port, 1, True) # noqa: F841 |
| |
| |
| class PrefixTCPStoreTest(TestCase, StoreTestBase): |
| def setUp(self): |
| super(PrefixTCPStoreTest, self).setUp() |
| self.tcpstore = create_tcp_store('localhost') |
| self.prefix = "test_prefix" |
| self.tcpstore.set_timeout(timedelta(seconds=300)) |
| |
| def _create_store(self): |
| return c10d.PrefixStore(self.prefix, self.tcpstore) |
| |
| |
| class MyPythonStore(c10d.Store): |
| def __init__(self): |
| super(MyPythonStore, self).__init__() |
| self.store = dict() |
| |
| def set(self, key, value): |
| if not isinstance(key, string_classes): |
| raise AssertionError("Expected set to be called with string key") |
| if type(value) is not bytes: |
| raise AssertionError("Expected set to be called with bytes value") |
| self.store[key] = value |
| |
| def get(self, key): |
| value = self.store.get(key, b"") |
| if type(value) is not bytes: |
| raise AssertionError("Expected get to return bytes value") |
| return value |
| |
| def add(self, key, value): |
| new = int(self.store.get(key, 0)) + value |
| self.set(key, bytes(str(new).encode("utf-8"))) |
| return new |
| |
| |
| class PythonStoreTest(TestCase): |
| def setUp(self): |
| super(PythonStoreTest, self).setUp() |
| |
| def test_set_get(self): |
| # If we were to inherit from StoreTestBase and try to use |
| # its test_set_get function, we would exercise the Python |
| # API directly, instead of going through the C++ trampoline. |
| # We care about testing the C++ trampoline, so run the |
| # equivalent of StoreTestBase.test_set_get from C++. |
| # See `torch/csrc/distributed/c10d/init.cpp` for the definition |
| # of this test function. |
| c10d._test_python_store(MyPythonStore()) |
| |
| |
| class RendezvousTest(TestCase): |
| def test_unknown_handler(self): |
| with self.assertRaisesRegex(RuntimeError, "^No rendezvous handler"): |
| c10d.rendezvous('invalid://') |
| |
| |
| class RendezvousEnvTest(TestCase): |
| @retry_on_address_already_in_use_error |
| def test_common_errors(self): |
| # TODO remove this hack |
| if not hasattr(c10d, "ProcessGroupNCCL"): |
| raise unittest.SkipTest("C10D is not built with NCCL process group," |
| " skipping test") |
| vars = { |
| "WORLD_SIZE": "1", |
| "RANK": "0", |
| "MASTER_ADDR": "127.0.0.1", |
| "MASTER_PORT": common.find_free_port(), |
| } |
| |
| class Env(object): |
| def __init__(self, vars): |
| self.vars = vars |
| |
| def __enter__(self): |
| for key, value in self.vars.items(): |
| os.environ[key] = str(value) |
| |
| def __exit__(self, type, value, traceback): |
| for key in self.vars.keys(): |
| del os.environ[key] |
| |
| def without(d, key): |
| d = d.copy() |
| d.pop(key) |
| return d |
| |
| def withouts(d, keys): |
| d = d.copy() |
| for key in keys: |
| d.pop(key) |
| return d |
| |
| with Env(without(vars, 'WORLD_SIZE')): |
| with self.assertRaisesRegex(ValueError, 'WORLD_SIZE expected'): |
| gen = c10d.rendezvous('env://') |
| next(gen) |
| c10d.init_process_group(backend='nccl', world_size=1) |
| self.assertEqual(c10d.get_rank(), 0) |
| self.assertEqual(c10d.get_world_size(), 1) |
| c10d.destroy_process_group() |
| |
| with Env(without(vars, 'RANK')): |
| with self.assertRaisesRegex(ValueError, 'RANK expected'): |
| gen = c10d.rendezvous('env://') |
| next(gen) |
| c10d.init_process_group(backend='nccl', rank=0) |
| self.assertEqual(c10d.get_rank(), 0) |
| self.assertEqual(c10d.get_world_size(), 1) |
| c10d.destroy_process_group() |
| |
| with Env(withouts(vars, ['RANK', 'WORLD_SIZE'])): |
| c10d.init_process_group(backend='nccl', rank=0, world_size=1) |
| self.assertEqual(c10d.get_rank(), 0) |
| self.assertEqual(c10d.get_world_size(), 1) |
| c10d.destroy_process_group() |
| |
| with Env(vars): |
| c10d.init_process_group(backend='nccl') |
| self.assertEqual(c10d.get_rank(), 0) |
| self.assertEqual(c10d.get_world_size(), 1) |
| c10d.destroy_process_group() |
| |
| with Env(without(vars, 'MASTER_ADDR')): |
| with self.assertRaisesRegex(ValueError, 'MASTER_ADDR expected'): |
| gen = c10d.rendezvous('env://') |
| next(gen) |
| |
| with Env(without(vars, 'MASTER_PORT')): |
| with self.assertRaisesRegex(ValueError, 'MASTER_PORT expected'): |
| gen = c10d.rendezvous('env://') |
| next(gen) |
| |
| with Env(without(vars, 'WORLD_SIZE')): |
| gen = c10d.rendezvous('env://?world_size={}'.format(1)) |
| _, _, size = next(gen) |
| self.assertEqual(size, 1) |
| |
| with Env(without(vars, 'RANK')): |
| gen = c10d.rendezvous('env://?rank={}'.format(0)) |
| _, rank, _ = next(gen) |
| self.assertEqual(rank, 0) |
| |
| with Env(withouts(vars, ['RANK', 'WORLD_SIZE'])): |
| gen = c10d.rendezvous('env://?rank={}&world_size={}'.format(0, 1)) |
| _, rank, size = next(gen) |
| self.assertEqual(rank, 0) |
| self.assertEqual(size, 1) |
| |
| @retry_on_address_already_in_use_error |
| def test_nominal(self): |
| os.environ['WORLD_SIZE'] = '1' |
| os.environ['MASTER_ADDR'] = '127.0.0.1' |
| os.environ['MASTER_PORT'] = str(common.find_free_port()) |
| |
| # Single rank |
| os.environ['RANK'] = '0' |
| gen0 = c10d.rendezvous('env://') |
| store0, rank0, size0 = next(gen0) |
| self.assertEqual(0, rank0) |
| self.assertEqual(1, size0) |
| |
| store0.set("key0", "value0") |
| |
| # check with get |
| self.assertEqual(b"value0", store0.get("key0")) |
| |
| |
| class RendezvousFileTest(TestCase): |
| def test_common_errors(self): |
| with self.assertRaisesRegex(ValueError, 'path missing'): |
| gen = c10d.rendezvous('file://?rank=0&world_size=1') |
| next(gen) |
| with self.assertRaisesRegex(ValueError, 'rank parameter missing'): |
| gen = c10d.rendezvous('file:///tmp/foo?world_size=1') |
| next(gen) |
| with self.assertRaisesRegex(ValueError, 'size parameter missing'): |
| gen = c10d.rendezvous('file:///tmp/foo?rank=0') |
| next(gen) |
| |
| def test_nominal(self): |
| with tempfile.NamedTemporaryFile(delete=False) as file: |
| url = 'file://%s?world_size=%d' % (file.name, 2) |
| gen0 = c10d.rendezvous(url + "&rank=0") |
| store0, rank0, size0 = next(gen0) |
| self.assertEqual(0, rank0) |
| self.assertEqual(2, size0) |
| gen1 = c10d.rendezvous(url + "&rank=1") |
| store1, rank1, size1 = next(gen1) |
| self.assertEqual(1, rank1) |
| self.assertEqual(2, size1) |
| |
| # Set value on both stores |
| store0.set("key0", "value0") |
| store1.set("key1", "value1") |
| |
| # Cross check with get |
| self.assertEqual(b"value0", store1.get("key0")) |
| self.assertEqual(b"value1", store0.get("key1")) |
| |
| |
| class RendezvousTCPTest(TestCase): |
| def test_common_errors(self): |
| with self.assertRaisesRegex(ValueError, 'port number missing'): |
| gen = c10d.rendezvous('tcp://127.0.0.1?rank=0&world_size=1') |
| next(gen) |
| with self.assertRaisesRegex(ValueError, 'rank parameter missing'): |
| gen = c10d.rendezvous('tcp://127.0.0.1:23456?world_size=1') |
| next(gen) |
| with self.assertRaisesRegex(ValueError, 'size parameter missing'): |
| gen = c10d.rendezvous('tcp://127.0.0.1:23456?rank=0') |
| next(gen) |
| |
| @retry_on_address_already_in_use_error |
| def test_nominal(self): |
| addr = 'localhost' |
| port = common.find_free_port() |
| url = 'tcp://%s:%d?world_size=%d' % (addr, port, 1) |
| gen0 = c10d.rendezvous(url + "&rank=0") |
| store0, rank0, size0 = next(gen0) |
| self.assertEqual(0, rank0) |
| self.assertEqual(1, size0) |
| |
| # Set value on the single store |
| store0.set("key0", "value0") |
| |
| # check with get |
| self.assertEqual(b"value0", store0.get("key0")) |
| |
| |
| class TimeoutTest(TestCase): |
| def _test_store_timeout(self, backend, init_method, c2p): |
| try: |
| c10d.distributed_c10d.init_process_group( |
| backend=backend, init_method=init_method, world_size=1, rank=0, |
| timeout=timedelta(seconds=1)) |
| default_store = c10d.distributed_c10d._get_default_store() |
| tik = time.time() |
| with self.assertRaisesRegex(RuntimeError, "Timeout"): |
| default_store.get("nonexistent key") |
| tok = time.time() |
| c10d.destroy_process_group() |
| c2p.append(float(tok - tik)) |
| except RuntimeError as e: |
| # catch "Address already in use" error and report it to the main |
| # thread |
| c2p.append(e) |
| |
| def _init_methods(self): |
| f = tempfile.NamedTemporaryFile(delete=False) |
| yield "file://%s" % f.name |
| f.close() |
| yield "tcp://127.0.0.1:%d" % common.find_free_port() |
| |
| def _test_default_store_timeout(self, backend): |
| for init_method in self._init_methods(): |
| c2p = [] |
| t = threading.Thread( |
| target=self._test_store_timeout, |
| args=(backend, init_method, c2p)) |
| t.daemon = True |
| t.start() |
| t.join(5) |
| |
| self.assertEqual(1, len(c2p)) |
| if isinstance(c2p[0], float): |
| # waiting time should be 1s, use 3s to rule out false alarm |
| self.assertGreater(3, c2p[0]) |
| elif isinstance(c2p[0], RuntimeError): |
| # let @retry_on_address_already_in_use_error handle the error |
| raise c2p[0] |
| else: |
| raise RuntimeError("Unexpected type {}".format(type(c2p[0]))) |
| |
| @requires_nccl() |
| @retry_on_address_already_in_use_error |
| def test_default_store_timeout_nccl(self): |
| self._test_default_store_timeout('nccl') |
| |
| @requires_gloo() |
| @retry_on_address_already_in_use_error |
| def test_default_store_timeout_gloo(self): |
| self._test_default_store_timeout('gloo') |
| |
| |
| @requires_gloo() |
| @unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment") |
| class ProcessGroupGlooTest(MultiProcessTestCase): |
| def setUp(self): |
| super(ProcessGroupGlooTest, self).setUp() |
| self._fork_processes() |
| |
| def opts(self, threads=2): |
| opts = c10d.ProcessGroupGloo.Options() |
| opts.devices = [c10d.ProcessGroupGloo.create_device(interface=LOOPBACK)] |
| opts.timeout = 5.0 |
| opts.threads = threads |
| return opts |
| |
| def test_multi_device_constructor(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| opts = c10d.ProcessGroupGloo.Options() |
| opts.timeout = 5.0 |
| opts.devices = [ |
| c10d.ProcessGroupGloo.create_device(interface=LOOPBACK), |
| c10d.ProcessGroupGloo.create_device(interface=LOOPBACK), |
| ] |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, opts) |
| |
| # Execute 2x the number of operations to ensure we use every device. |
| for work in [pg.allreduce(torch.ones(i + 1)) for i in range(4)]: |
| work.wait() |
| |
| def test_empty_tensors(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| xs = [torch.FloatTensor([])] |
| pg.broadcast(xs).wait() |
| self.assertEqual(0, xs[0].numel()) |
| |
| def test_broadcast_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros([1], dtype=torch.float32) |
| t2 = torch.zeros([1], dtype=torch.float64) |
| t3 = torch.zeros([2], dtype=torch.float32) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = -1 |
| opts.rootTensor = 0 |
| pg.broadcast([t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = self.world_size |
| opts.rootTensor = 0 |
| pg.broadcast([t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root tensor"): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = self.rank |
| opts.rootTensor = -1 |
| pg.broadcast([t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root tensor"): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = self.rank |
| opts.rootTensor = 1 |
| pg.broadcast([t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root tensor"): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = self.rank |
| opts.rootTensor = 0 |
| pg.broadcast([], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor type"): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = self.rank |
| opts.rootTensor = 0 |
| pg.broadcast([t1, t2], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor size"): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = self.rank |
| opts.rootTensor = 0 |
| pg.broadcast([t1, t3], opts) |
| |
| def _test_broadcast_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| def broadcast(xs, rootRank, rootTensor): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = rootRank |
| opts.rootTensor = rootTensor |
| work = pg.broadcast(xs, opts) |
| work.wait() |
| |
| # Every rank is root once |
| for i in range(self.world_size): |
| # Run with 1 input tensor |
| x = fn(torch.tensor([self.rank])) |
| broadcast([x], i, 0) |
| self.assertEqual(torch.tensor([i]), x) |
| |
| # Run with 2 input tensors |
| num = 2 |
| for j in range(num): |
| xs = [ |
| fn(torch.tensor([self.rank * num + 0.0])), |
| fn(torch.tensor([self.rank * num + 1.0])), |
| ] |
| |
| broadcast(xs, i, j) |
| self.assertEqual(torch.tensor([i * num + j]), xs[0]) |
| self.assertEqual(torch.tensor([i * num + j]), xs[1]) |
| |
| # Test overloaded convenience function |
| x = torch.tensor([self.rank + 1.0]) |
| work = pg.broadcast(x, root=0) |
| work.wait() |
| self.assertEqual(torch.tensor([1.0]), x) |
| |
| def test_broadcast_basics(self): |
| self._test_broadcast_basics(lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_broadcast_basics_cuda(self): |
| self._test_broadcast_basics(lambda t: t.clone().cuda()) |
| |
| def _test_broadcast_stress(self, inputs): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) |
| work_handles = [ |
| pg.broadcast(inputs[i], root=(i % self.world_size)) |
| for i in range(len(inputs)) |
| ] |
| for i, work_handle in enumerate(work_handles): |
| work_handle.wait() |
| self.assertEqual( |
| torch.tensor([ |
| (i * self.world_size) + (i % self.world_size) |
| ]), |
| inputs[i], |
| message=("Mismatch in iteration %d" % i), |
| ) |
| |
| def test_broadcast_stress(self): |
| inputs = [torch.tensor([i * self.world_size + self.rank]) for i in range(1000)] |
| self._test_broadcast_stress(inputs) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_broadcast_stress_cuda(self): |
| inputs = [torch.tensor([i * self.world_size + self.rank]).cuda() for i in range(1000)] |
| self._test_broadcast_stress(inputs) |
| |
| def test_allreduce_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros([1], dtype=torch.float32) |
| t2 = torch.zeros([1], dtype=torch.float64) |
| t3 = torch.zeros([2], dtype=torch.float32) |
| |
| with self.assertRaisesRegex(ValueError, "requires non-empty tensor list"): |
| opts = c10d.AllreduceOptions() |
| pg.allreduce([], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor type"): |
| opts = c10d.AllreduceOptions() |
| pg.allreduce([t1, t2], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor size"): |
| opts = c10d.AllreduceOptions() |
| pg.allreduce([t1, t3], opts) |
| |
| def _test_allreduce_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| # Single input tests |
| tests = simple_reduce_tests(self.rank, self.world_size) |
| for (op, input, output) in tests: |
| opts = c10d.AllreduceOptions() |
| opts.reduceOp = op |
| tensor = fn(input) |
| work = pg.allreduce([tensor], opts) |
| work.wait() |
| self.assertEqual(output, tensor) |
| |
| # Multi input tests |
| tests = simple_multi_input_reduce_tests(self.rank, self.world_size) |
| for (op, inputs, output) in tests: |
| opts = c10d.AllreduceOptions() |
| opts.reduceOp = op |
| tensors = [fn(input) for input in inputs] |
| work = pg.allreduce(tensors, opts) |
| work.wait() |
| for tensor in tensors: |
| self.assertEqual(output, tensor) |
| |
| # Test overloaded convenience function (defaults to using sum) |
| x = fn(torch.tensor([self.rank + 1.0])) |
| work = pg.allreduce(x) |
| work.wait() |
| self.assertEqual(torch.tensor([float(self.world_size * (self.world_size + 1) / 2)]), x) |
| |
| def test_allreduce_basics(self): |
| self._test_allreduce_basics(lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_allreduce_basics_cuda(self): |
| self._test_allreduce_basics(lambda t: t.clone().cuda()) |
| |
| def _test_allreduce_stress(self, inputs): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) |
| work_handles = [pg.allreduce(inputs[i]) for i in range(len(inputs))] |
| for i, work_handle in enumerate(work_handles): |
| work_handle.wait() |
| self.assertEqual( |
| torch.tensor([ |
| (i * self.world_size) + |
| (self.world_size * (self.world_size - 1) / 2) |
| ]), |
| inputs[i], |
| message=("Mismatch in iteration %d" % i), |
| ) |
| |
| def test_allreduce_stress(self): |
| inputs = [torch.tensor([i + self.rank]) for i in range(1000)] |
| self._test_allreduce_stress(inputs) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_allreduce_stress_cuda(self): |
| inputs = [torch.tensor([i + self.rank]).cuda() for i in range(1000)] |
| self._test_allreduce_stress(inputs) |
| |
| def test_allreduce_coalesced_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros(1, dtype=torch.float32) |
| t2 = torch.zeros(1, dtype=torch.float64) |
| t3 = torch.sparse_coo_tensor([[0]], [1], size=(1,)) |
| |
| with self.assertRaisesRegex(ValueError, "requires non-empty tensor list"): |
| opts = c10d.AllreduceCoalescedOptions() |
| pg.allreduce_coalesced([], opts) |
| |
| with self.assertRaisesRegex(ValueError, "tensors must all have the same type"): |
| opts = c10d.AllreduceCoalescedOptions() |
| pg.allreduce_coalesced([t1, t2], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor layout at index"): |
| opts = c10d.AllreduceCoalescedOptions() |
| pg.allreduce_coalesced([t1, t3], opts) |
| |
| with self.assertRaisesRegex(ValueError, "unsupported layout"): |
| opts = c10d.AllreduceCoalescedOptions() |
| pg.allreduce_coalesced([t3, t3.clone()], opts) |
| |
| @skip_if_lt_x_gpu(1) |
| def test_allreduce_coalesced_checks_cuda(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros(1, dtype=torch.float32) |
| |
| with self.assertRaisesRegex(ValueError, "unsupported device type"): |
| opts = c10d.AllreduceCoalescedOptions() |
| pg.allreduce_coalesced([t1.cuda(), t1.cuda()], opts) |
| |
| def _test_allreduce_coalesced_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| test_cases = simple_coalesced_reduce_tests(self.rank, self.world_size) |
| for op, inputs, outputs in test_cases: |
| opts = c10d.AllreduceCoalescedOptions() |
| opts.reduceOp = op |
| tensors = [fn(x) for x in inputs] |
| work = pg.allreduce_coalesced(tensors, opts) |
| work.wait() |
| for result_tensor, expected in zip(tensors, outputs): |
| self.assertEqual(result_tensor, expected) |
| |
| def test_allreduce_coalesced_basics(self): |
| self._test_allreduce_coalesced_basics(lambda t: t.clone()) |
| |
| def _test_allreduce_coalesced_stress(self, inputs): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) |
| work_handles = [pg.allreduce_coalesced(input) for input in inputs] |
| for i, work_handle in enumerate(work_handles): |
| work_handle.wait() |
| self.assertEqual( |
| 2 * [torch.tensor([(i * self.world_size) + (self.world_size * (self.world_size - 1) / 2)])], |
| inputs[i], |
| message="Mismatch in interation {}".format(i) |
| ) |
| |
| def test_allreduce_coalesced_stress(self): |
| inputs = [2 * [torch.tensor([i + self.rank])] for i in range(1000)] |
| self._test_allreduce_coalesced_stress(inputs) |
| |
| def test_sparse_allreduce_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros([1]) |
| t2 = torch.sparse_coo_tensor([[0]], [1], size=(2,)) |
| t3 = torch.sparse_coo_tensor([[0]], [1], size=(4,)) |
| |
| with self.assertRaisesRegex(ValueError, "requires non-empty tensor list"): |
| opts = c10d.AllreduceOptions() |
| pg.allreduce([], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor layout"): |
| opts = c10d.AllreduceOptions() |
| pg.allreduce([t1, t2], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor size"): |
| opts = c10d.AllreduceOptions() |
| pg.allreduce([t2, t3], opts) |
| |
| # Sparse allreduce only works with c10d.ReduceOp.SUM. |
| for op in [c10d.ReduceOp.PRODUCT, c10d.ReduceOp.MIN, c10d.ReduceOp.MAX]: |
| with self.assertRaisesRegex(ValueError, "unsupported reduction operation"): |
| opts = c10d.AllreduceOptions() |
| opts.reduceOp = op |
| pg.allreduce([t3], opts) |
| |
| def _test_sparse_allreduce_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| for num_inputs_per_rank in [1, 2]: |
| tests = simple_sparse_reduce_tests( |
| self.rank, |
| self.world_size, |
| num_inputs=num_inputs_per_rank) |
| for (inputs, outputs) in tests: |
| work = pg.allreduce([fn(input) for input in inputs]) |
| work.wait() |
| self.assertEqual(work.result(), outputs) |
| |
| def test_sparse_allreduce_basics(self): |
| self._test_sparse_allreduce_basics(lambda t: t) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_sparse_allreduce_basics_cuda(self): |
| self._test_sparse_allreduce_basics(lambda t: t.clone().cuda()) |
| |
| def test_scatter_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros([1], dtype=torch.float32) |
| t2 = torch.zeros([1], dtype=torch.float64) |
| t3 = torch.zeros([2], dtype=torch.float32) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = -1 |
| pg.scatter([t1], [], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = self.world_size |
| pg.scatter([t1], [], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element output tensor list"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = 0 |
| pg.scatter([], [], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element output tensor list"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = 0 |
| pg.scatter([t1, t1], [], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element input list"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = self.rank |
| pg.scatter([t1], [], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element input list"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = self.rank |
| pg.scatter([t1], [[t1] * self.world_size, [t1] * self.world_size], opts) |
| |
| desired_list_size = self.world_size |
| incorrect_list_size = self.world_size - 1 |
| err_str = "Incorrect input list size {}. Input list size should be {}" |
| with self.assertRaisesRegex(ValueError, err_str.format(incorrect_list_size, desired_list_size)): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = self.rank |
| pg.scatter([t1], [[t1] * incorrect_list_size], opts) |
| |
| incorrect_list_size = self.world_size + 1 |
| with self.assertRaisesRegex(ValueError, err_str.format(incorrect_list_size, desired_list_size)): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = self.rank |
| pg.scatter([t1], [[t1] * incorrect_list_size], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor type"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = self.rank |
| pg.scatter([t1], [[t2] * self.world_size], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor size"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = self.rank |
| pg.scatter([t1], [[t3] * self.world_size], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires empty input on non-root"): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = (self.rank + 1) % self.world_size |
| pg.scatter([t1], [[t1] * self.world_size], opts) |
| |
| def _test_scatter_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| # Preallocate tensors for input/output |
| input = [fn(torch.tensor([self.rank])) for _ in range(self.world_size)] |
| outputs = [fn(torch.tensor([-1])) for _ in range(self.world_size)] |
| |
| # Take turns being the scatter root and accumulate work items |
| work = [] |
| for i in range(self.world_size): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = i |
| if i == self.rank: |
| work.append(pg.scatter([outputs[i]], [input], opts)) |
| else: |
| work.append(pg.scatter([outputs[i]], [], opts)) |
| |
| # Wait for work to complete |
| for i in range(self.world_size): |
| work[i].wait() |
| self.assertEqual(torch.tensor([i]), outputs[i]) |
| |
| def test_scatter_basics(self): |
| self._test_scatter_basics(lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_scatter_basics_cuda(self): |
| self._test_scatter_basics(lambda t: t.clone().cuda()) |
| |
| def _test_scatter_stress(self, inputs, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) |
| outputs = [ |
| [fn(torch.tensor([-1])) for _ in range(self.world_size)] |
| for _ in range(len(inputs)) |
| ] |
| work_handles = [] |
| for i in range(len(inputs)): |
| for root in range(self.world_size): |
| opts = c10d.ScatterOptions() |
| opts.rootRank = root |
| if root == self.rank: |
| work = pg.scatter([outputs[i][root]], [[fn(e) for e in inputs[i]]], opts) |
| else: |
| work = pg.scatter([outputs[i][root]], [], opts) |
| work_handles.append(work) |
| |
| for i, work_handle in enumerate(work_handles): |
| work_handle.wait() |
| iter = i // self.world_size |
| root = i % self.world_size |
| |
| self.assertEqual( |
| torch.tensor([iter + root]), |
| outputs[iter][root], |
| message=("Mismatch in iteration %d for rank %d" % (iter, root)), |
| ) |
| |
| def test_scatter_stress(self): |
| inputs = [ |
| [torch.tensor([i + self.rank]) for _ in range(self.world_size)] |
| for i in range(1000) |
| ] |
| self._test_scatter_stress(inputs, lambda t: t.clone()) |
| |
| @unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/15963") |
| @skip_if_not_multigpu |
| def test_scatter_stress_cuda(self): |
| inputs = [ |
| [torch.tensor([i + self.rank]) for _ in range(self.world_size)] |
| for i in range(1000) |
| ] |
| self._test_scatter_stress(inputs, lambda t: t.clone().cuda()) |
| |
| def test_gather_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros([1], dtype=torch.float32) |
| t2 = torch.zeros([1], dtype=torch.float64) |
| t3 = torch.zeros([2], dtype=torch.float32) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = -1 |
| pg.gather([], [t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = self.world_size |
| pg.gather([], [t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element input tensor list"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = 0 |
| pg.gather([], [], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element input tensor list"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = 0 |
| pg.gather([], [t1, t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element output list"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = self.rank |
| pg.gather([], [t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element output list"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = self.rank |
| pg.gather([[t1] * self.world_size, [t1] * self.world_size], [t1], opts) |
| |
| desired_list_size = self.world_size |
| incorrect_list_size = self.world_size - 1 |
| err_str = "Incorrect output list size {}. Output list size should be {}" |
| with self.assertRaisesRegex(ValueError, err_str.format(incorrect_list_size, desired_list_size)): |
| opts = c10d.GatherOptions() |
| opts.rootRank = self.rank |
| pg.gather([[t1] * incorrect_list_size], [t1], opts) |
| |
| incorrect_list_size = self.world_size + 1 |
| with self.assertRaisesRegex(ValueError, err_str.format(incorrect_list_size, desired_list_size)): |
| opts = c10d.GatherOptions() |
| opts.rootRank = self.rank |
| pg.gather([[t1] * incorrect_list_size], [t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor type"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = self.rank |
| pg.gather([[t2] * self.world_size], [t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor size"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = self.rank |
| pg.gather([[t3] * self.world_size], [t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires empty output on non-root"): |
| opts = c10d.GatherOptions() |
| opts.rootRank = (self.rank + 1) % self.world_size |
| pg.gather([[t1] * self.world_size], [t1], opts) |
| |
| def _test_gather_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| # Preallocate tensors for input/output |
| input = [fn(torch.tensor([self.rank]))] |
| outputs = [fn(torch.tensor([-1])) for _ in range(self.world_size)] |
| |
| # Take turns being the gather root and accumulate work items |
| work = [] |
| for i in range(self.world_size): |
| opts = c10d.GatherOptions() |
| opts.rootRank = i |
| if i == self.rank: |
| work.append(pg.gather([outputs], input, opts)) |
| else: |
| work.append(pg.gather([], input, opts)) |
| |
| # Wait for work to complete |
| expected = [torch.tensor([rank]) for rank in range(self.world_size)] |
| for i in range(self.world_size): |
| work[i].wait() |
| if i == self.rank: |
| self.assertEqual(expected, outputs) |
| |
| def test_gather_basics(self): |
| self._test_gather_basics(lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_gather_basics_cuda(self): |
| self._test_gather_basics(lambda t: t.clone().cuda()) |
| |
| def _test_gather_stress(self, inputs, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) |
| work_handles = [] |
| outputs = [ |
| [ |
| [fn(torch.tensor([-1])) for _ in range(self.world_size)] |
| ] for _ in range(len(inputs)) |
| ] |
| expected_outputs = [ |
| [ |
| [torch.tensor([i + j]) for j in range(self.world_size)] |
| ] for i in range(len(inputs)) |
| ] |
| for i in range(len(inputs)): |
| for root in range(self.world_size): |
| opts = c10d.GatherOptions() |
| opts.rootRank = root |
| if root == self.rank: |
| work = pg.gather(outputs[i], [fn(inputs[i])], opts) |
| else: |
| work = pg.gather([], [fn(inputs[i])], opts) |
| work_handles.append(work) |
| |
| for i, work_handle in enumerate(work_handles): |
| work_handle.wait() |
| iter = i // self.world_size |
| root = i % self.world_size |
| if root == self.rank: |
| self.assertEqual( |
| expected_outputs[iter], |
| outputs[iter], |
| message=("Mismatch in iteration %d for root %d" % (iter, root)) |
| ) |
| |
| def test_gather_stress(self): |
| inputs = [torch.tensor([i + self.rank]) for i in range(1000)] |
| self._test_gather_stress(inputs, lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_gather_stress_cuda(self): |
| inputs = [torch.tensor([i + self.rank]).cuda() for i in range(1000)] |
| self._test_gather_stress(inputs, lambda t: t.clone().cuda()) |
| |
| def test_allgather_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros([1], dtype=torch.float32) |
| t2 = torch.zeros([1], dtype=torch.float64) |
| t3 = torch.zeros([2], dtype=torch.float32) |
| |
| with self.assertRaisesRegex(ValueError, "requires non-empty input tensor list"): |
| pg.allgather([], []) |
| |
| with self.assertRaisesRegex(ValueError, "requires input/output tensor lists to have the same length"): |
| pg.allgather([], [t1]) |
| |
| with self.assertRaisesRegex(ValueError, "requires input/output tensor lists to have the same length"): |
| pg.allgather([[t1] * self.world_size, [t1] * self.world_size], [t1]) |
| |
| with self.assertRaisesRegex(ValueError, "invalid output tensor list"): |
| pg.allgather([[t1] * (self.world_size - 1)], [t1]) |
| |
| with self.assertRaisesRegex(ValueError, "invalid output tensor list"): |
| pg.allgather([[t1] * (self.world_size + 1)], [t1]) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor type"): |
| pg.allgather([[t1, t1] * (self.world_size), [t1, t1] * (self.world_size)], [t1, t2]) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor size"): |
| pg.allgather([[t1, t1] * (self.world_size), [t1, t1] * (self.world_size)], [t1, t3]) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor type"): |
| pg.allgather([([t1, t2] * (self.world_size))[:self.world_size]], [t1]) |
| |
| with self.assertRaisesRegex(ValueError, "invalid tensor size"): |
| pg.allgather([([t1, t3] * (self.world_size))[:self.world_size]], [t1]) |
| |
| def _test_allgather_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| # Run with N input tensor per rank |
| for n in [1, 2, 3]: |
| input = [ |
| fn(torch.tensor([n * self.rank + i])) for i in range(n) |
| ] |
| output = [ |
| [ |
| fn(torch.tensor([-1])) for _ in range(n * self.world_size) |
| ] for _ in range(n) |
| ] |
| expected_output = [ |
| [ |
| torch.tensor([i]) for i in range(n * self.world_size) |
| ] for _ in range(n) |
| ] |
| work = pg.allgather(output, input) |
| work.wait() |
| self.assertEqual(expected_output, output) |
| |
| def test_allgather_basics(self): |
| self._test_allgather_basics(lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_allgather_basics_cuda(self): |
| self._test_allgather_basics(lambda t: t.clone().cuda()) |
| |
| def _test_allgather_stress(self, inputs, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) |
| work_handles = [] |
| outputs = [ |
| [ |
| [fn(torch.tensor([-1])) for _ in range(self.world_size)] |
| ] for _ in range(len(inputs)) |
| ] |
| expected_outputs = [ |
| [ |
| [torch.tensor([i + j]) for j in range(self.world_size)] |
| ] for i in range(len(inputs)) |
| ] |
| for i in range(len(inputs)): |
| work = pg.allgather(outputs[i], [fn(inputs[i])]) |
| work_handles.append(work) |
| |
| for i, work_handle in enumerate(work_handles): |
| work_handle.wait() |
| self.assertEqual( |
| expected_outputs[i], |
| outputs[i], |
| message=("Mismatch in iteration %d" % i), |
| ) |
| |
| def test_allgather_stress(self): |
| inputs = [torch.tensor([i + self.rank]) for i in range(1000)] |
| self._test_allgather_stress(inputs, lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_allgather_stress_cuda(self): |
| inputs = [torch.tensor([i + self.rank]).cuda() for i in range(1000)] |
| self._test_allgather_stress(inputs, lambda t: t.clone().cuda()) |
| |
| def test_allgather_coalesced_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| dummy_input = [torch.zeros([1], dtype=torch.float32)] |
| dummy_output_lists = [ |
| [torch.zeros([1], dtype=torch.float32)] for _ in range(self.world_size) |
| ] |
| |
| # One of output tensors does not match input list. |
| dummy_output_lists[0] = [torch.zeros([0], dtype=torch.float32)] |
| with self.assertRaisesRegex(ValueError, |
| "invalid size of output tensor at index 0"): |
| c10d.all_gather_coalesced(dummy_output_lists, dummy_input, pg) |
| |
| # One of output tensors does not match input list. |
| dummy_output_lists[0] = [torch.zeros([1], dtype=torch.float64)] |
| with self.assertRaisesRegex(ValueError, |
| "invalid tensor type at index 0"): |
| c10d.all_gather_coalesced(dummy_output_lists, dummy_input, pg) |
| |
| # Output lists have too many elements |
| dummy_output_lists = [ |
| [ |
| torch.zeros([1], dtype=torch.float32) |
| ] for _ in range(self.world_size + 1) |
| ] |
| with self.assertRaisesRegex(ValueError, |
| "output lists should be equal to world size"): |
| c10d.all_gather_coalesced(dummy_output_lists, dummy_input, pg) |
| |
| # Output is not a list of lists. |
| dummy_output_lists = [torch.zeros([0], dtype=torch.float32)] |
| with self.assertRaisesRegex(RuntimeError, |
| "Invalid function argument.*output_tensor_lists"): |
| c10d.all_gather_coalesced(dummy_output_lists, dummy_input, pg) |
| |
| |
| def test_reduce_checks(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| t1 = torch.zeros([1], dtype=torch.float32) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.ReduceOptions() |
| opts.rootRank = -1 |
| opts.rootTensor = 0 |
| pg.reduce([t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root rank"): |
| opts = c10d.ReduceOptions() |
| opts.rootRank = self.world_size |
| opts.rootTensor = 0 |
| pg.reduce([t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "invalid root tensor"): |
| opts = c10d.ReduceOptions() |
| opts.rootRank = self.rank |
| opts.rootTensor = 1 |
| pg.reduce([t1], opts) |
| |
| with self.assertRaisesRegex(ValueError, "requires a single-element tensor list"): |
| opts = c10d.ReduceOptions() |
| opts.rootRank = self.rank |
| opts.rootTensor = 0 |
| pg.reduce([t1, t1], opts) |
| |
| def _test_reduce_basics(self, fn): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| for (op, input, output) in simple_reduce_tests(self.rank, self.world_size): |
| for root in range(self.world_size): |
| opts = c10d.ReduceOptions() |
| opts.reduceOp = op |
| opts.rootRank = root |
| tmp = fn(input) |
| work = pg.reduce([tmp], opts) |
| work.wait() |
| if root == self.rank: |
| self.assertEqual(output, tmp) |
| |
| def test_reduce_basics(self): |
| self._test_reduce_basics(lambda t: t.clone()) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_reduce_basics_cuda(self): |
| self._test_reduce_basics(lambda t: t.clone().cuda()) |
| |
| def _test_reduce_stress(self, inputs): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) |
| work_handles = [] |
| outputs = [] |
| for i in range(len(inputs)): |
| for root in range(self.world_size): |
| opts = c10d.ReduceOptions() |
| opts.rootRank = root |
| tmp = inputs[i].clone() |
| outputs.append(tmp) |
| work = pg.reduce([tmp], opts) |
| work_handles.append(work) |
| |
| for i, work_handle in enumerate(work_handles): |
| work_handle.wait() |
| iter = i // self.world_size |
| root = i % self.world_size |
| if root == self.rank: |
| self.assertEqual( |
| torch.tensor([ |
| (iter * self.world_size) + |
| (self.world_size * (self.world_size - 1) / 2) |
| ]), |
| outputs[i], |
| message=("Mismatch in iteration %d with root rank %d" % (iter, root)), |
| ) |
| |
| def test_reduce_stress(self): |
| inputs = [torch.tensor([i + self.rank]) for i in range(1000)] |
| self._test_reduce_stress(inputs) |
| |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_reduce_stress_cuda(self): |
| inputs = [torch.tensor([i + self.rank]).cuda() for i in range(1000)] |
| self._test_reduce_stress(inputs) |
| |
| def test_send_recv_all_to_all(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) |
| |
| # Preallocate tensors for input/output |
| inputs = [torch.tensor([self.rank]) for _ in range(self.world_size)] |
| outputs = [torch.tensor([-1]) for _ in range(self.world_size)] |
| |
| # Issue sends |
| send_work = [] |
| for i in range(self.world_size): |
| if i == self.rank: |
| continue |
| send_work.append(pg.send([inputs[i]], i, 0)) |
| |
| # Issue recvs |
| recv_work = [] |
| for i in range(self.world_size): |
| if i == self.rank: |
| continue |
| recv_work.append(pg.recv([outputs[i]], i, 0)) |
| |
| # Wait for sends to complete |
| for work in send_work: |
| work.wait() |
| self.assertTrue(work.is_completed()) |
| |
| # Wait for recvs to complete |
| for work in recv_work: |
| work.wait() |
| self.assertTrue(work.is_completed()) |
| |
| # Test that every output other than our own contains the respective rank |
| for i in range(self.world_size): |
| if i == self.rank: |
| continue |
| self.assertEqual(torch.tensor([i]), outputs[i]) |
| |
| @unittest.skipIf(platform == 'darwin', 'ProcessGroup timeout not yet supported on macOS') |
| def test_timeout_kwarg(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo( |
| store, |
| self.rank, |
| self.world_size, |
| timeout=timedelta(seconds=0.5)) |
| |
| # Wait on barrier |
| pg.barrier().wait() |
| |
| # Sleep on one of the processes to trigger barrier timeout |
| if self.rank == 0: |
| time.sleep(1.0) |
| |
| # The barrier will now time out |
| with self.assertRaisesRegex(RuntimeError, " (Timed out|closed) "): |
| pg.barrier().wait() |
| |
| def test_barrier_implies_wait(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size) |
| |
| # Kick off allreduce operations |
| size = (100, 100) |
| num = 16 |
| tensors = [torch.full(size, float(i)) for i in range(num)] |
| for tensor in tensors: |
| # Note: leak the returned work handle |
| pg.allreduce(tensor) |
| |
| # Barrier should ensure all previous work has completed |
| pg.barrier().wait() |
| |
| for i, tensor in enumerate(tensors): |
| self.assertEqual(torch.full(size, float(i * self.world_size)), tensor) |
| |
| def test_round_robin(self): |
| num_process_groups = 2 |
| store = c10d.FileStore(self.file_name, self.world_size) |
| pg = c10d._round_robin_process_groups([ |
| c10d.ProcessGroupGloo( |
| c10d.PrefixStore(str(i), store), |
| self.rank, |
| self.world_size) |
| for i in range(num_process_groups) |
| ]) |
| |
| # Run a few collectives so that we have called each process group |
| for _ in range(num_process_groups + 1): |
| tensor = torch.full([100, 100], self.rank) |
| pg.broadcast(tensor, root=0).wait() |
| self.assertEqual(torch.full([100, 100], 0), tensor) |
| |
| def test_round_robin_create_destroy(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| |
| def create(num, prefix): |
| return c10d._round_robin_process_groups([ |
| c10d.ProcessGroupGloo( |
| c10d.PrefixStore("%s/%d" % (prefix, i), store), |
| self.rank, |
| self.world_size) |
| for i in range(num) |
| ]) |
| |
| # Run create/use/destroy twice |
| for i in range(2): |
| num_process_groups = 2 |
| pg = create(num=num_process_groups, prefix=i) |
| for _ in range(3): |
| tensor = torch.ones([10, 10]) |
| pg.allreduce(tensor).wait() |
| self.assertEqual(torch.full([10, 10], self.world_size), tensor) |
| del pg |
| |
| |
| @requires_nccl() |
| class ProcessGroupNCCLTest(TestCase): |
| MAIN_PROCESS_RANK = 0 |
| |
| def setUp(self): |
| self.rank = self.MAIN_PROCESS_RANK |
| self.world_size = 1 |
| self.file = tempfile.NamedTemporaryFile(delete=False) |
| self.num_gpus = torch.cuda.device_count() |
| if self.num_gpus < 2: |
| raise unittest.SkipTest("NCCL test requires 2+ GPUs") |
| |
| def tearDown(self): |
| pass |
| |
| def test_empty_tensors(self): |
| store = c10d.FileStore(self.file.name, self.world_size) |
| pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| xs = [torch.cuda.FloatTensor([])] |
| pg.broadcast(xs).wait() |
| self.assertEqual(0, xs[0].numel()) |
| |
| pg.allreduce(xs).wait() |
| self.assertEqual(0, xs[0].numel()) |
| |
| pg.reduce(xs).wait() |
| self.assertEqual(0, xs[0].numel()) |
| |
| ys = [[torch.cuda.FloatTensor([]) for _ in range(self.world_size)]] |
| pg.allgather(ys, xs).wait() |
| for y in ys[0]: |
| self.assertEqual(0, y.numel()) |
| |
| ys = [torch.cuda.FloatTensor([])] |
| xs = [[torch.cuda.FloatTensor([]) for _ in range(self.world_size)]] |
| pg.reduce_scatter(ys, xs).wait() |
| self.assertEqual(0, ys[0].numel()) |
| |
| def test_broadcast_ops(self): |
| store = c10d.FileStore(self.file.name, self.world_size) |
| pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| def broadcast(xs, rootRank, rootTensor): |
| opts = c10d.BroadcastOptions() |
| opts.rootRank = rootRank |
| opts.rootTensor = rootTensor |
| work = pg.broadcast(xs, opts) |
| work.wait() |
| |
| # for every root tensor |
| for rt in range(self.num_gpus): |
| tensors = [] |
| for i in range(self.num_gpus): |
| tensors.append(torch.tensor([i]).cuda(i)) |
| |
| broadcast(tensors, self.rank, rt) |
| |
| for i in range(self.num_gpus): |
| self.assertEqual(tensors[i], tensors[rt]) |
| |
| def test_allreduce_ops(self): |
| store = c10d.FileStore(self.file.name, self.world_size) |
| pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| def allreduce(tensors, op): |
| opts = c10d.AllreduceOptions() |
| opts.reduceOp = op |
| work = pg.allreduce(tensors, opts) |
| work.wait() |
| |
| # Sum |
| tensors = [] |
| for i in range(self.num_gpus): |
| tensors.append(torch.tensor([i + 1]).cuda(i)) |
| |
| allreduce(tensors, c10d.ReduceOp.SUM) |
| |
| for i in range(self.num_gpus): |
| self.assertEqual( |
| torch.tensor([float(self.num_gpus * (self.num_gpus + 1) / 2)]), |
| tensors[i]) |
| |
| # Product |
| tensors = [] |
| for i in range(self.num_gpus): |
| tensors.append(torch.tensor([i + 1]).cuda(i)) |
| |
| allreduce(tensors, c10d.ReduceOp.PRODUCT) |
| |
| for i in range(self.num_gpus): |
| self.assertEqual( |
| torch.tensor([float(math.factorial(self.num_gpus))]), |
| tensors[i]) |
| |
| # Min |
| tensors = [] |
| for i in range(self.num_gpus): |
| tensors.append(torch.tensor([i + 1]).cuda(i)) |
| |
| allreduce(tensors, c10d.ReduceOp.MIN) |
| |
| for i in range(self.num_gpus): |
| self.assertEqual(torch.tensor([1.0]), tensors[i]) |
| |
| # Max |
| tensors = [] |
| for i in range(self.num_gpus): |
| tensors.append(torch.tensor([i + 1]).cuda(i)) |
| |
| allreduce(tensors, c10d.ReduceOp.MAX) |
| |
| for i in range(self.num_gpus): |
| self.assertEqual(torch.tensor([self.num_gpus]), tensors[i]) |
| |
| def test_reduce_ops(self): |
| store = c10d.FileStore(self.file.name, self.world_size) |
| pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| def reduce(xs, rootRank, rootTensor): |
| opts = c10d.ReduceOptions() |
| opts.rootRank = rootRank |
| opts.rootTensor = rootTensor |
| work = pg.reduce(xs, opts) |
| work.wait() |
| |
| # for every root tensor |
| for rt in range(self.num_gpus): |
| tensors = [] |
| for i in range(self.num_gpus): |
| tensors.append(torch.tensor([i + 1]).cuda(i)) |
| |
| reduce(tensors, self.rank, rt) |
| |
| self.assertEqual( |
| torch.tensor([float(self.num_gpus * (self.num_gpus + 1) / 2)]), |
| tensors[rt]) |
| |
| def test_allgather_ops(self): |
| store = c10d.FileStore(self.file.name, self.world_size) |
| pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| def allgather(output_ts, input_ts): |
| work = pg.allgather(output_ts, input_ts) |
| work.wait() |
| |
| tensors = [] |
| output_ts = [[] for _ in range(self.num_gpus)] |
| |
| for idx, ls in enumerate(output_ts): |
| for _ in range(self.world_size * self.num_gpus): |
| ls.append(torch.tensor([0]).cuda(idx)) |
| |
| for i in range(self.num_gpus): |
| tensors.append(torch.tensor([i]).cuda(i)) |
| |
| allgather(output_ts, tensors) |
| |
| # Verification |
| for device_ts in output_ts: |
| for s_idx, t in enumerate(device_ts): |
| self.assertEqual(torch.tensor([s_idx]), t) |
| |
| def test_reduce_scatter_ops(self): |
| store = c10d.FileStore(self.file.name, self.world_size) |
| pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| def reduce_scatter(outputs, input_lists, op): |
| opts = c10d.ReduceScatterOptions() |
| opts.reduceOp = op |
| work = pg.reduce_scatter(outputs, input_lists, opts) |
| work.wait() |
| |
| virtual_rank = self.rank * self.world_size |
| virtual_world_size = self.num_gpus * self.world_size |
| |
| output = [ |
| torch.tensor([0]).cuda(i) |
| for i in range(self.num_gpus) |
| ] |
| |
| # 0 1 2 |
| # 0 [0..11] [1..12] |
| # 1 [3..14] |
| # 2 |
| # 3 |
| |
| # Sum |
| tensor_lists = [ |
| [ |
| torch.tensor([self.rank * self.num_gpus + i + j]).cuda(i) |
| for j in range(virtual_world_size) |
| ] |
| for i in range(self.num_gpus) |
| ] |
| |
| reduce_scatter(output, tensor_lists, c10d.ReduceOp.SUM) |
| |
| for i in range(self.num_gpus): |
| expected = torch.tensor([ |
| float(self.num_gpus * (self.num_gpus - 1) / 2) + |
| (virtual_rank + i) * virtual_world_size |
| ]) |
| self.assertEqual(expected, output[i]) |
| |
| # Min |
| reduce_scatter(output, tensor_lists, c10d.ReduceOp.MIN) |
| |
| for i in range(self.num_gpus): |
| expected = torch.tensor([self.rank * self.world_size + i]) |
| self.assertEqual(expected, output[i]) |
| |
| # Max |
| reduce_scatter(output, tensor_lists, c10d.ReduceOp.MAX) |
| |
| for i in range(self.num_gpus): |
| expected = torch.tensor( |
| [self.rank * self.world_size + i + virtual_world_size - 1] |
| ) |
| self.assertEqual(expected, output[i]) |
| |
| # Product |
| tensor_lists = [ |
| [ |
| torch.tensor([ |
| (self.rank * self.num_gpus + i + j) % virtual_world_size + 1 |
| ]).cuda(i) |
| for j in range(virtual_world_size) |
| ] |
| for i in range(self.num_gpus) |
| ] |
| |
| reduce_scatter(output, tensor_lists, c10d.ReduceOp.PRODUCT) |
| |
| for i in range(self.num_gpus): |
| expected = torch.tensor([float(math.factorial(virtual_world_size))]) |
| self.assertEqual(expected, output[i]) |
| |
| def test_barrier(self): |
| store = c10d.FileStore(self.file.name, self.world_size) |
| pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| def allreduce(tensors): |
| opts = c10d.AllreduceOptions() |
| work = pg.allreduce(tensors, opts) |
| return work |
| |
| # Making the collective to operate on |
| # 1, 2, 3, 4, .... self.num_gpus GPUs |
| tensors_list = [[] for _ in range(2, self.num_gpus + 1)] |
| for i in range(2, self.num_gpus + 1): |
| for j in range(i): |
| tensors_list[i - 2].append(torch.tensor([j + 1]).cuda(j)) |
| |
| works = [] |
| for tensors in tensors_list: |
| work = allreduce(tensors) |
| works.append(work) |
| |
| # Barrier will ensure that all previous work is completed |
| pg.barrier().wait() |
| |
| for i in range(2, self.num_gpus + 1): |
| for j in range(i): |
| self.assertEqual( |
| torch.tensor([float(i * (i + 1) / 2)]), |
| tensors_list[i - 2][j]) |
| |
| |
| class Net(nn.Module): |
| def __init__(self): |
| super(Net, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 50, bias=False) |
| self.fc3 = nn.Linear(50, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x): |
| x = self.relu(self.fc1(x)) |
| x = self.relu(self.fc2(x)) |
| x = self.fc3(x) |
| return F.softmax(x, dim=1) |
| |
| |
| class DoubleGpuNet(nn.Module): |
| def __init__(self, gpus): |
| super(DoubleGpuNet, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0]) |
| self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1]) |
| self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[1]) |
| self.relu = nn.ReLU() |
| self.no_grad_param = nn.Parameter(torch.tensor([2, 2]).long(), |
| requires_grad=False).to(gpus[0]) |
| |
| def forward(self, x): |
| dev0 = self.fc1.weight.device |
| dev1 = self.fc2.weight.device |
| x = self.relu(self.fc1(x.to(dev0))) |
| x = self.relu(self.fc2(x.to(dev1))) |
| x = self.fc3(x) |
| return F.softmax(x, dim=1).to(dev0) |
| |
| |
| class QuadraGpuNet(nn.Module): |
| def __init__(self, gpus): |
| super(QuadraGpuNet, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0]) |
| self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1]) |
| self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[2]) |
| self.fc4 = nn.Linear(4, 4, bias=False).to(gpus[3]) |
| self.relu = nn.ReLU() |
| self.no_grad_param = nn.Parameter(torch.tensor([2, 2]).long(), |
| requires_grad=False).to(gpus[0]) |
| |
| def forward(self, x): |
| dev0 = self.fc1.weight.device |
| dev1 = self.fc2.weight.device |
| dev2 = self.fc3.weight.device |
| dev3 = self.fc4.weight.device |
| x = self.relu(self.fc1(x.to(dev0))) |
| x = self.relu(self.fc2(x.to(dev1))) |
| x = self.relu(self.fc3(x.to(dev2))) |
| x = self.fc4(x.to(dev3)) |
| return F.softmax(x, dim=1).to(dev0) |
| |
| |
| @unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment") |
| class DistributedDataParallelTest(MultiProcessTestCase): |
| def setUp(self): |
| super(DistributedDataParallelTest, self).setUp() |
| self._fork_processes() |
| |
| def tearDown(self): |
| # DistributedDataParallel test doesn't seem to call FileStore destructor |
| # TODO: investigate this test and the test is known to have issues |
| # Use this hack to remove files for that test |
| try: |
| os.remove(self.file_name) |
| except OSError: |
| pass |
| |
| @property |
| def world_size(self): |
| return 2 |
| |
| def _prepare_single_device_module(self, process_group, devices, device_ids, global_batch_size): |
| model = Net() |
| ddp_model = DistributedDataParallel( |
| copy.deepcopy(model).to(devices[0]), |
| device_ids=device_ids, |
| process_group=process_group, |
| bucket_cap_mb=0.001) |
| |
| model.to(devices[0]) |
| |
| input = torch.randn(global_batch_size, 2).to(devices[0]) |
| target = torch.randn(global_batch_size, 4).to(devices[0]) |
| |
| return model, ddp_model, input, target |
| |
| def _prepare_multi_device_module(self, process_group, devices, device_ids, global_batch_size): |
| self.assertTrue( |
| len(devices) == 2 or len(devices) == 4, |
| "unexpected devices for ddp tests {}".format(devices)) |
| if len(devices) == 2: |
| model = DoubleGpuNet(devices) |
| elif len(devices) == 4: |
| model = QuadraGpuNet(devices) |
| |
| ddp_model = DistributedDataParallel( |
| copy.deepcopy(model), |
| device_ids=device_ids, |
| process_group=process_group, |
| bucket_cap_mb=0.001) |
| |
| input = torch.randn(global_batch_size, 2).cuda(devices[0]) |
| target = torch.randn(global_batch_size, 4) |
| |
| return model, ddp_model, input, target |
| |
| def _test_ddp_with_process_group(self, process_group, devices, device_ids, multi_device=False): |
| """ |
| Note: we pass down `device_ids` all the way to DistributedDataParallel |
| as part of the test. Below you find tests that either use a list of |
| integers, a list of `torch.Device` instances, or an empty list. |
| The `devices` argument is used to control placement of the model and |
| must always be specified as list of `torch.Device` instances. |
| """ |
| local_batch_size = len(devices) |
| global_batch_size = self.world_size * local_batch_size |
| |
| if multi_device: |
| model, ddp_model, input, target = \ |
| self._prepare_multi_device_module( |
| process_group, devices, device_ids, global_batch_size) |
| else: |
| model, ddp_model, input, target = \ |
| self._prepare_single_device_module( |
| process_group, devices, device_ids, global_batch_size) |
| |
| def step_model(model, input, target): |
| model.train() |
| output = model(input) |
| loss = F.mse_loss(output, target.to(output.device)) |
| loss.backward() |
| |
| def update_parameters(model): |
| for param in model.parameters(): |
| param.data -= param.grad |
| param.grad = None |
| |
| # check two model parameters over 2 iterations |
| for iteration in range(2): |
| # single cpu/gpu training |
| step_model(model, input, target) |
| |
| # DDP training, DDP scatters subsets of input_cpu to nodes/GPUs |
| step_model(ddp_model, |
| input[self.rank * local_batch_size: (self.rank + 1) * local_batch_size], |
| target[self.rank * local_batch_size: (self.rank + 1) * local_batch_size]) |
| |
| # Update weights and run a second iteration to shake out errors |
| update_parameters(model) |
| update_parameters(ddp_model) |
| self.assertEqual(len(list(model.parameters())), len(list(ddp_model.parameters()))) |
| for i, j in zip(model.parameters(), ddp_model.parameters()): |
| self.assertEqual(i, j) |
| |
| # Shuffle the input so that DDP input is different |
| torch.manual_seed(1337 + iteration) |
| input = input[torch.randperm(global_batch_size)] |
| |
| def _test_gloo_backend(self, devices, device_ids, multi_device=False): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| options = c10d.ProcessGroupGloo.Options() |
| options.devices = [c10d.ProcessGroupGloo.create_device(interface=LOOPBACK)] |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) |
| self._test_ddp_with_process_group(process_group, devices, device_ids, multi_device) |
| |
| @requires_gloo() |
| def test_gloo_backend_cpu_module(self): |
| self._test_gloo_backend([torch.device('cpu')], []) |
| |
| @requires_gloo() |
| @skip_if_not_multigpu |
| def test_gloo_backend_1gpu_module_device_ids_integer_list(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:1] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_gloo_backend(devices, int_devices) |
| |
| @requires_gloo() |
| @skip_if_not_multigpu |
| def test_gloo_backend_1gpu_module_device_ids_torch_device_list(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:1] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_gloo_backend(devices, devices) |
| |
| @requires_gloo() |
| @skip_if_lt_x_gpu(4) |
| def test_gloo_backend_2gpu_module(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:2] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_gloo_backend(devices, [], multi_device=True) |
| |
| @requires_gloo() |
| @skip_if_lt_x_gpu(8) |
| def test_gloo_backend_4gpu_module(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:4] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_gloo_backend(devices, [], multi_device=True) |
| |
| def _test_nccl_backend(self, devices, device_ids, multi_device=False): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| self._test_ddp_with_process_group(process_group, devices, device_ids, multi_device) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| def test_nccl_backend_1gpu_module_device_ids_integer_list(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:1] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_nccl_backend(devices, int_devices) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| def test_nccl_backend_1gpu_module_device_ids_torch_device_list(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:1] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_nccl_backend(devices, devices) |
| |
| @requires_nccl() |
| @skip_if_lt_x_gpu(4) |
| @skip_if_rocm |
| def test_nccl_backend_2gpu_module(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:2] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_nccl_backend(devices, [], multi_device=True) |
| |
| @requires_nccl() |
| @skip_if_lt_x_gpu(8) |
| @skip_if_rocm |
| def test_nccl_backend_4gpu_module(self): |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:4] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| self._test_nccl_backend(devices, [], multi_device=True) |
| |
| @requires_nccl() |
| @skip_if_lt_x_gpu(4) |
| def test_ddp_multi_device_module_config(self): |
| gpus = gpus_for_rank(self.world_size)[self.rank] |
| |
| self.assertTrue(len(gpus) >= 2, "expecting at least 2 gpus per process") |
| |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| gpus = gpus[:2] |
| model = DoubleGpuNet(gpus) |
| |
| with self.assertRaisesRegex(AssertionError, "output_device .* single-device CUDA"): |
| ddp_model = DistributedDataParallel( |
| model, output_device=gpus[1], process_group=process_group) |
| |
| with self.assertRaisesRegex(AssertionError, "device_ids .* single-device CUDA"): |
| ddp_model = DistributedDataParallel( |
| model, device_ids=gpus, process_group=process_group) |
| |
| with self.assertRaisesRegex(AssertionError, "only works with CUDA devices"): |
| model.fc1 = model.fc1.cpu() |
| ddp_model = DistributedDataParallel(model, process_group=process_group) |
| |
| model = model.cpu() |
| with self.assertRaisesRegex(AssertionError, "device_ids .* single-device CUDA"): |
| ddp_model = DistributedDataParallel( |
| model, device_ids=gpus, process_group=process_group) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_for_known_issues |
| def test_dist_broadcast_coalesced_nccl(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| device = torch.device('cuda') |
| |
| for fine_grained in [False, True]: |
| target = torch.arange(60, dtype=torch.float16, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float64, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) |
| |
| if self.is_master: |
| # All processes should have these tensors in the end. |
| tensors = target |
| else: |
| # Non-master processes start with empty tensors and should be |
| # filled with the tensors from the master. |
| tensors = torch.zeros(60, dtype=torch.float16, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float64, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) |
| |
| c10d._dist_broadcast_coalesced( |
| process_group, |
| tensors, |
| buffer_size=256, |
| fine_grained=fine_grained) |
| |
| self.assertEqual(tensors, target) |
| |
| @requires_gloo() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_dist_broadcast_coalesced_gloo(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| options = c10d.ProcessGroupGloo.Options() |
| options.devices = [c10d.ProcessGroupGloo.create_device(interface=LOOPBACK)] |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) |
| |
| device = torch.device('cuda') |
| |
| for fine_grained in [False, True]: |
| target = torch.arange(60, dtype=torch.float16, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float64, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) |
| |
| if self.is_master: |
| # All processes should have these tensors in the end. |
| tensors = target |
| else: |
| # Non-master processes start with empty tensors and should be |
| # filled with the tensors from the master. |
| tensors = torch.zeros(60, dtype=torch.float16, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float64, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) |
| tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) |
| |
| c10d._dist_broadcast_coalesced( |
| process_group, |
| tensors, |
| buffer_size=128, |
| fine_grained=fine_grained) |
| |
| self.assertEqual(tensors, target) |
| |
| @requires_gloo() |
| @skip_if_not_multigpu |
| def test_sync_params_no_buffers(self, dtype=torch.double): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| options = c10d.ProcessGroupGloo.Options() |
| options.devices = [c10d.ProcessGroupGloo.create_device(interface=LOOPBACK)] |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) |
| |
| # Use all available devices on every process here (data is small, so should be fine). |
| devices = gpus_for_rank(self.world_size)[self.rank] |
| target = torch.arange(10, dtype=dtype, device='cuda:{}'.format(devices[0])).chunk(5) |
| parameter_data = [target] |
| parameter_data += [torch.zeros(10, dtype=dtype, device=torch.device('cuda', d)).chunk(5) for d in devices[1:]] |
| buffer_data = [[]] * len(parameter_data) |
| |
| c10d._sync_params( |
| process_group, |
| parameter_data=parameter_data, |
| buffer_data=buffer_data, |
| devices=devices, |
| broadcast_bucket_size=10, |
| broadcast_buffers=False) |
| |
| for device_data in parameter_data: |
| for i, parameter in enumerate(device_data): |
| self.assertEqual(parameter, target[i]) |
| |
| @requires_gloo() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_sync_params_with_buffers(self, dtype=torch.double): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| options = c10d.ProcessGroupGloo.Options() |
| options.devices = [c10d.ProcessGroupGloo.create_device(interface=LOOPBACK)] |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) |
| |
| devices = gpus_for_rank(self.world_size)[self.rank] |
| target = torch.arange(10, dtype=dtype, device='cuda:{}'.format(devices[0])).chunk(5) |
| parameter_data = [target] |
| parameter_data += [torch.zeros(10, dtype=dtype, device=torch.device('cuda', d)).chunk(5) for d in devices[1:]] |
| |
| # sync_params should do a dist_broadcast for buffers, so we only populate the master buffers and |
| # then check that other processes' tensors end up matching. |
| |
| if self.is_master: |
| buffer_data = [target] |
| buffer_data += [torch.zeros(10, dtype=dtype, device=torch.device('cuda', d)).chunk(5) for d in devices[1:]] |
| else: |
| buffer_data = [torch.zeros(10, dtype=dtype, device=torch.device('cuda', d)).chunk(5) for d in devices] |
| |
| c10d._sync_params( |
| process_group, |
| parameter_data=parameter_data, |
| buffer_data=buffer_data, |
| devices=devices, |
| broadcast_bucket_size=10, |
| broadcast_buffers=True) |
| |
| for device_data in parameter_data: |
| for i, parameter in enumerate(device_data): |
| self.assertEqual(parameter, target[i]) |
| |
| for device_data in buffer_data: |
| for i, buffer in enumerate(device_data): |
| self.assertEqual(buffer, target[i]) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_fp16(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| gpus = gpus_for_rank(self.world_size)[self.rank] |
| model = nn.Linear(1, 1, bias=False).cuda(gpus[0]).half() |
| nn.init.constant_(model.weight, 1) |
| ddp_model = DistributedDataParallel( |
| model, |
| device_ids=[gpus[0]], |
| process_group=process_group, |
| bucket_cap_mb=0.001, |
| ) |
| |
| # Input 2**15, so that the gradients will overflow with a |
| # world_size of 2, unless we normalize the gradient by the |
| # world_size before the reduction |
| input = torch.tensor([[2**15]]).cuda(gpus[0]).half() |
| |
| # Step model |
| ddp_model.train() |
| output = ddp_model(input) |
| loss = output.sum() |
| loss.backward() |
| |
| self.assertFalse( |
| any(torch.isinf(p.grad).any() for p in ddp_model.parameters()) |
| ) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_queue_reduction(self): |
| # Set up process group. |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| # Get this process' split of devices. |
| devices = gpus_for_rank(self.world_size)[self.rank] |
| grads_batch = [(torch.ones(10, device=torch.device('cuda', d)) * |
| (self.rank + 1)).chunk(5) |
| for d in devices] |
| |
| work, local_grad_sum = c10d._queue_reduction(process_group, |
| grads_batch, |
| devices) |
| # The first return value should be the allreduce work item. |
| self.assertTrue(isinstance(work, c10d.Work)) |
| # The second return value will be the finished allreduced gradients. |
| self.assertTrue(isinstance(local_grad_sum, torch.Tensor)) |
| |
| # Wait for the allreduce to finish. |
| work.wait() |
| |
| # The expected result of the allreduce should be the average |
| self.assertEqual(local_grad_sum, |
| torch.ones(10) * (self.world_size + 1) * len(devices) / 2.0) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_sync_reduction(self): |
| # Set up process group. |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| # Get this process' split of devices. |
| devices = gpus_for_rank(self.world_size)[self.rank] |
| grads_batch = [(torch.ones(10, device=torch.device('cuda', d)) * |
| (self.rank + 1)).chunk(5) |
| for d in devices] |
| work, local_grad_sum = c10d._queue_reduction(process_group, |
| grads_batch, |
| devices) |
| c10d._sync_reduction(work, grads_batch[0], local_grad_sum) |
| # The expected result of the allreduce should be the average |
| self.assertEqual(grads_batch[0], (torch.ones(10) * (self.world_size + 1) * len(devices) / 2.0).chunk(5)) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_arbitrary_forward_return_value(self): |
| """ |
| Note: this test can be sped up by only running it on a CPU module |
| once DistributedDataParallel supports them. |
| """ |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| class ForwardReturnValueModule(nn.Module): |
| def __init__(self): |
| super(ForwardReturnValueModule, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 4, bias=False) |
| self.fc3 = nn.Linear(4, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x, fn): |
| x = self.relu(self.fc1(x)) |
| x = self.relu(self.fc2(x)) |
| # The first softmax does NOT include fc3 in its autograd graph |
| # whereas the second softmax DOES. If we pass only the first |
| # tensor we see in the output to the reducer, it marks the |
| # gradient for fc3 as ready (because it doesn't show up). If |
| # downstream uses of this return value choose to differentiate |
| # against the second output tensor, it would still receive a |
| # gradient and a callback for this tensor, resulting in a crash. |
| return fn( |
| F.softmax(x, dim=1), |
| F.softmax(self.fc3(x), dim=1), |
| ) |
| |
| device_id = gpus_for_rank(self.world_size)[self.rank][0] |
| model = DistributedDataParallel( |
| ForwardReturnValueModule().float().to(device_id), |
| device_ids=[device_id], |
| process_group=process_group, |
| ) |
| |
| batch_size = 4 |
| criterion = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) |
| |
| # Always run "backward" to ensure the reducer is called by autograd. |
| # If we don't correctly capture the output tensors from the return value, |
| # the reducer won't see a hook for the unused parameter, and throw an error. |
| # The correct capture is what we're testing in this function. |
| def test(box, unbox): |
| output = model(input, fn=box) |
| loss = criterion(unbox(output), target) |
| loss.backward() |
| |
| # Test with identity return value |
| test( |
| box=lambda x, y: (x, y), |
| unbox=lambda obj: obj[1], |
| ) |
| |
| # Test with list return value |
| test( |
| box=lambda x, y: ["foo", x, "bar", y], |
| unbox=lambda obj: obj[3], |
| ) |
| |
| # Test with tuple return value |
| test( |
| box=lambda x, y: ("foo", x, "bar", y), |
| unbox=lambda obj: obj[3], |
| ) |
| |
| # Test with dict return value |
| test( |
| box=lambda x, y: {"foo": "bar", "a": x, "b": y}, |
| unbox=lambda obj: obj["b"], |
| ) |
| |
| # Test with list with dict return value |
| test( |
| box=lambda x, y: ["foo", "bar", {"a": x, "b": y}], |
| unbox=lambda obj: obj[2]["b"], |
| ) |
| |
| # Test with dict with list return value |
| test( |
| box=lambda x, y: {"foo": "bar", "list": [0, x, 1, y]}, |
| unbox=lambda obj: obj["list"][3], |
| ) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_find_unused_parameters_kwarg(self): |
| """ |
| Note: this test can be sped up by only running it on a CPU module |
| once DistributedDataParallel supports them. |
| """ |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| class FindUnusedParametersModule(nn.Module): |
| def __init__(self): |
| super(FindUnusedParametersModule, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 4, bias=False) |
| self.fc3 = nn.Linear(4, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x): |
| x = self.relu(self.fc1(x)) |
| x = self.relu(self.fc2(x)) |
| # Return the fc3 module so that the caller can invoke it |
| # outside of the forward function. While this is bad practice, |
| # we can use it to trigger a reducer error. |
| return (F.softmax(x, dim=1), self.fc3) |
| |
| device_id = gpus_for_rank(self.world_size)[self.rank][0] |
| batch_size = 4 |
| criterion = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) |
| |
| def test_find_unused_parameters(find_unused_parameters, test_default=False): |
| if test_default: |
| model = DistributedDataParallel( |
| FindUnusedParametersModule().float().to(device_id), |
| device_ids=[device_id], |
| process_group=process_group, |
| ) |
| else: |
| model = DistributedDataParallel( |
| FindUnusedParametersModule().float().to(device_id), |
| device_ids=[device_id], |
| process_group=process_group, |
| find_unused_parameters=find_unused_parameters, |
| ) |
| |
| output, fc3 = model(input) |
| output = fc3(output) |
| loss = criterion(output, target) |
| loss.backward() |
| |
| # First test that finding unused params under these conditions is to |
| # trigger an error when `backward` is called (because fc3 is an unused |
| # parameter and will therefore be marked ready twice). |
| try: |
| test_find_unused_parameters(True) |
| except Exception as ex: |
| self.assertTrue( |
| str(ex).startswith("Expected to mark a variable ready only once.")) |
| else: |
| self.fail("Expected exception") |
| |
| # Then test that the default behavior can be overridden by setting |
| # `find_unused_parameters=False`. |
| try: |
| test_find_unused_parameters(False) |
| except Exception as ex: |
| self.fail("Unexpected exception: %s" % ex) |
| |
| # Test find_unused_parameters defaults to False |
| try: |
| test_find_unused_parameters(True, test_default=True) |
| except Exception as ex: |
| self.fail("Unexpected exception: %s" % ex) |
| |
| @requires_gloo() |
| @skip_if_lt_x_gpu(2) |
| def test_global_local_unused_params_grad(self): |
| """ |
| By simulating a multi-task training, this test is to make sure: |
| 1) DDP does not touch the grad of globally unused parameters. |
| 2) DDP does update the grad of locally unused parameters. |
| """ |
| class GlobalLocalUnusedParamModule(nn.Module): |
| class Task(nn.Module): |
| def __init__(self): |
| super(GlobalLocalUnusedParamModule.Task, self).__init__() |
| self.p = nn.Parameter(torch.ones(2, 2)) |
| |
| def forward(self, x): |
| return self.p + x |
| |
| def __init__(self): |
| super(GlobalLocalUnusedParamModule, self).__init__() |
| self.t0 = self.Task() |
| self.t1 = self.Task() |
| self.task_unused = self.Task() |
| |
| def task_parameters(self): |
| return (self.t0.p, self.t1.p, self.task_unused.p) |
| |
| def forward(self, x, rank): |
| return self.t0(x) if rank == 0 else self.t1(x) |
| |
| def run_and_verify_grad(model): |
| # Run forward |
| output = model(8, self.rank) |
| |
| # The grads of all parameters should be None at this point. |
| t0_p, t1_p, task_unused_p = model.module.task_parameters() |
| self.assertIsNone(t0_p.grad) |
| self.assertIsNone(t1_p.grad) |
| self.assertIsNone(task_unused_p.grad) |
| |
| # Run backward |
| output.mean().backward() |
| |
| # Now locally unused parameter should have grad updated on all ranks. |
| # However the globally unused parameter should still have None grad. |
| self.assertIsNotNone(t0_p.grad) |
| self.assertIsNotNone(t1_p.grad) |
| self.assertIsNone(task_unused_p.grad) |
| |
| |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size) |
| |
| # Test on CPU |
| cpu_model = DistributedDataParallel( |
| GlobalLocalUnusedParamModule().cpu(), |
| process_group=process_group, |
| find_unused_parameters=True, |
| ) |
| run_and_verify_grad(cpu_model) |
| |
| # Test on GPU |
| device_id = gpus_for_rank(self.world_size)[self.rank][0] |
| gpu_model = DistributedDataParallel( |
| GlobalLocalUnusedParamModule().to(device_id), |
| device_ids=[device_id], |
| process_group=process_group, |
| find_unused_parameters=True, |
| ) |
| run_and_verify_grad(gpu_model) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_multiple_outputs_multiple_backward(self): |
| """ |
| Note: this test can be sped up by only running it on a CPU module |
| once DistributedDataParallel supports them. |
| """ |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| class MultipleOutputModule(nn.Module): |
| def __init__(self): |
| super(MultipleOutputModule, self).__init__() |
| |
| def define_module(): |
| return nn.Sequential( |
| nn.Linear(2, 10, bias=False), |
| nn.ReLU(), |
| nn.Linear(10, 4, bias=False), |
| nn.ReLU(), |
| ) |
| |
| self.module0 = define_module() |
| self.module1 = define_module() |
| |
| def forward(self, x): |
| return ( |
| F.softmax(self.module0(x), dim=1), |
| F.softmax(self.module1(x), dim=1), |
| ) |
| |
| device_id = gpus_for_rank(self.world_size)[self.rank][0] |
| model = DistributedDataParallel( |
| MultipleOutputModule().float().to(device_id), |
| device_ids=[device_id], |
| process_group=process_group, |
| ) |
| |
| batch_size = 4 |
| criterion = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) |
| |
| # Compute loss and gradients for both outputs |
| output1, output2 = model(input) |
| loss1 = criterion(output1, target) |
| loss1.backward() |
| loss2 = criterion(output2, target) |
| loss2.backward() |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_no_grad(self): |
| """ |
| Note: this test can be sped up by only running it on a CPU module |
| once DistributedDataParallel supports them. |
| """ |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| class NoGradModule(nn.Module): |
| def __init__(self): |
| super(NoGradModule, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x): |
| x = self.relu(self.fc1(x)) |
| x = self.relu(self.fc2(x)) |
| return F.softmax(x, dim=1) |
| |
| device_id = gpus_for_rank(self.world_size)[self.rank][0] |
| model = DistributedDataParallel( |
| NoGradModule().float().to(device_id), |
| device_ids=[device_id], |
| process_group=process_group, |
| ) |
| |
| batch_size = 4 |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| |
| def check_no_grads(): |
| for p in model.parameters(): |
| self.assertTrue(p.requires_grad) |
| self.assertIsNone(p.grad) |
| |
| # After initialization, no parameter has their gradient set. |
| check_no_grads() |
| |
| # Run `forward` function with torch.no_grad() |
| with torch.no_grad(): |
| output = model(input) |
| self.assertTrue(torch.is_tensor(output)) |
| |
| # No parameter should have their gradient set. |
| check_no_grads() |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| def test_accumulate_gradients_no_sync(self): |
| # This is the recommended way to implement accumulate grads |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:1] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| global_batch_size = self.world_size |
| local_batch_size = len(devices) |
| |
| model, ddp_model, input, target = \ |
| self._prepare_single_device_module( |
| process_group, devices, devices, global_batch_size) |
| |
| def step_model(model, input, target): |
| model.train() |
| output = model(input) |
| loss = F.mse_loss(output, target.to(output.device)) |
| loss.backward() |
| |
| # ensure accumulate grads works with no_grad |
| with torch.no_grad(): |
| with ddp_model.no_sync(): |
| ddp_model.train() |
| ddp_model(input) |
| |
| # check two model parameters over 2 iterations |
| for iteration in range(2): |
| # single cpu/gpu training |
| step_model(model, input, target) |
| |
| ddp_input = input[self.rank * local_batch_size: (self.rank + 1) * local_batch_size] |
| ddp_target = target[self.rank * local_batch_size: (self.rank + 1) * local_batch_size] |
| |
| if iteration % 2 == 0: |
| # accumulate grads locally when iteration == 0 |
| with ddp_model.no_sync(): |
| step_model(ddp_model, ddp_input, ddp_target) |
| else: |
| # sync grads when iteration == 1 |
| step_model(ddp_model, ddp_input, ddp_target) |
| |
| for i, j in zip(model.parameters(), ddp_model.parameters()): |
| if iteration % 2 == 0: |
| self.assertNotEqual(i.grad, j.grad) |
| else: |
| self.assertEqual(i.grad, j.grad) |
| |
| # Shuffle the input so that DDP input is different |
| torch.manual_seed(1337 + iteration) |
| input = input[torch.randperm(global_batch_size)] |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| def test_accumulate_gradients_module(self): |
| # This is NOT the recommended way to implement accumulating grads, but |
| # we would like to make sure DDP does not mess up with the underlying |
| # module. |
| int_devices = gpus_for_rank(self.world_size)[self.rank][:1] |
| devices = list([torch.device('cuda:' + str(i)) for i in int_devices]) |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| global_batch_size = self.world_size |
| |
| model, ddp_model, input, target = \ |
| self._prepare_single_device_module( |
| process_group, devices, devices, global_batch_size) |
| |
| def step_model(model, input, target): |
| model.train() |
| output = model(input) |
| loss = F.mse_loss(output, target.to(output.device)) |
| loss.backward() |
| |
| # ensure accumulate grads works with no_grad |
| with torch.no_grad(): |
| ddp_model.train() |
| ddp_model.module(input) |
| |
| # Check two model parameters over 4 iterations. |
| # Use 4 iterations because we alternate between reducing and |
| # not reducing and want to make sure we switch both ways. |
| for iteration in range(4): |
| step_model(model, input, target) |
| |
| if iteration % 2 == 0: |
| # Skip gradients sync without calling prepare_for_backward |
| step_model( |
| ddp_model.module, |
| input[self.rank : (self.rank + 1)], |
| target[self.rank : (self.rank + 1)]) |
| for i, j in zip(model.parameters(), ddp_model.parameters()): |
| self.assertNotEqual(i.grad, j.grad) |
| else: |
| step_model( |
| ddp_model, |
| input[self.rank : (self.rank + 1)], |
| target[self.rank : (self.rank + 1)]) |
| for i, j in zip(model.parameters(), ddp_model.parameters()): |
| self.assertEqual(i.grad, j.grad) |
| |
| # Shuffle the input so that DDP input is different |
| torch.manual_seed(1337 + iteration) |
| input = input[torch.randperm(global_batch_size)] |
| |
| def test_ignored_output(self): |
| """ |
| Test that the output of a model can be ignored and that there is no |
| implicit requirement that `backward` gets called. |
| """ |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size) |
| |
| class IgnoredOutput(nn.Module): |
| def __init__(self): |
| super(IgnoredOutput, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x): |
| x = self.relu(self.fc1(x)) |
| x = self.relu(self.fc2(x)) |
| return F.softmax(x, dim=1) |
| |
| model = DistributedDataParallel( |
| IgnoredOutput().float(), |
| process_group=process_group, |
| ) |
| |
| batch_size = 4 |
| criterion = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) |
| |
| # Run a few iterations where we ignore the output. |
| for _ in range(4): |
| output = model(input) |
| del output |
| |
| # Run a few iterations where we use the output. |
| for _ in range(4): |
| output = model(input) |
| loss = criterion(output, target) |
| loss.backward() |
| |
| def test_ignored_output_with_unused_parameters(self): |
| """ |
| Test that the output of a model can be ignored and that there is no |
| implicit requirement that `backward` gets called, if not all model |
| parameters participated in computing the model output. |
| """ |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size) |
| |
| class IgnoredOutputWithUnusedParameters(nn.Module): |
| def __init__(self): |
| super(IgnoredOutputWithUnusedParameters, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 4, bias=False) |
| self.fc3 = nn.Linear(4, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x): |
| x = self.relu(self.fc1(x)) |
| x = self.relu(self.fc2(x)) |
| return F.softmax(x, dim=1) |
| |
| model = DistributedDataParallel( |
| IgnoredOutputWithUnusedParameters().float(), |
| process_group=process_group, |
| find_unused_parameters=True, |
| ) |
| |
| batch_size = 4 |
| criterion = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) |
| |
| # Run a few iterations where we ignore the output. |
| for _ in range(4): |
| output = model(input) |
| del output |
| |
| # Run a few iterations where we use the output. |
| for _ in range(4): |
| output = model(input) |
| loss = criterion(output, target) |
| loss.backward() |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_failure_recovery(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| # need to create a separate file for the recovered FileStore, because |
| # the original one will be deleted when destructing the first FileStore. |
| recovery_filename = self.file_name + "_recovery" |
| |
| if self.rank == 0: |
| # the file will be deleted by the recovered FileStore |
| open(recovery_filename, "w").close() |
| |
| # not necessary to run barrier here, as DDP will synchronize |
| |
| class TestModel(nn.Module): |
| def __init__(self): |
| super(TestModel, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x): |
| x = self.relu(self.fc1(x)) |
| x = self.relu(self.fc2(x)) |
| return F.softmax(x, dim=1) |
| |
| device_id = gpus_for_rank(self.world_size)[self.rank][0] |
| model = TestModel().float().to(device_id) |
| ddp = DistributedDataParallel( |
| model, |
| device_ids=[device_id], |
| process_group=process_group, |
| ) |
| |
| batch_size = 4 |
| criterion = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) |
| |
| for _ in range(6): |
| output = ddp(input) |
| loss = criterion(output, target) |
| loss.backward() |
| |
| del ddp |
| del process_group |
| del store # this will delete self.file_name |
| |
| store = c10d.FileStore(recovery_filename, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| ddp = DistributedDataParallel( |
| model, |
| device_ids=[device_id], |
| process_group=process_group, |
| ) |
| |
| input = torch.rand([batch_size, 2], dtype=torch.float) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) |
| for _ in range(6): |
| output = ddp(input) |
| loss = criterion(output, target) |
| loss.backward() |
| |
| @requires_gloo() |
| def test_sparse_gradients(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size) |
| |
| class SparseGradientModule(nn.Module): |
| def __init__(self): |
| super(SparseGradientModule, self).__init__() |
| self.embedding = nn.EmbeddingBag(10, 10, sparse=True) |
| |
| def forward(self, x): |
| return F.softmax(self.embedding(x), dim=1) |
| |
| # Ensure initialized weights and inputs are identical across processes |
| torch.manual_seed(1337) |
| |
| vanilla_model = SparseGradientModule() |
| ddp_model = DistributedDataParallel( |
| copy.deepcopy(vanilla_model), |
| process_group=process_group, |
| ) |
| |
| mult = 2 |
| batch_size = mult * self.world_size |
| criterion = nn.CrossEntropyLoss() |
| input = torch.randint(0, 10, [batch_size, 2]) |
| target = torch.randint(0, 10, [batch_size]) |
| |
| # Run with entire batch against single process version |
| criterion(vanilla_model(input), target).backward() |
| |
| # Run with partial batch against multi process version |
| partial_input = input.split(mult)[self.rank] |
| partial_target = target.split(mult)[self.rank] |
| criterion(ddp_model(partial_input), partial_target).backward() |
| |
| # Check that the gradients are sparse and identical |
| vanilla_parameter = next(vanilla_model.parameters()) |
| ddp_parameter = next(ddp_model.parameters()) |
| self.assertEqual(vanilla_parameter.grad, ddp_parameter.grad) |
| |
| |
| class ReducerModule(nn.Module): |
| def __init__(self): |
| super(ReducerModule, self).__init__() |
| self.fc1 = nn.Linear(2, 10, bias=False) |
| self.fc2 = nn.Linear(10, 4, bias=False) |
| self.fc3 = nn.Linear(4, 4, bias=False) |
| self.relu = nn.ReLU() |
| |
| def forward(self, x, use_fc3=True): |
| x = self.relu(self.fc1(x)).float() |
| x = self.relu(self.fc2(x)).float() |
| if use_fc3: |
| x = self.fc3(x).float() |
| return F.softmax(x, dim=1) |
| |
| |
| @requires_gloo() |
| class ReducerTest(TestCase): |
| def setUp(self): |
| self.store = c10d.FileStore("/dev/null", 1) |
| self.process_group = c10d.ProcessGroupGloo(self.store, 0, 1) |
| |
| def test_single_dtype_single_bucket(self): |
| model = ReducerModule() |
| parameters = list(model.parameters()) |
| buckets = [list(range(len(parameters)))] |
| dist.Reducer([parameters], buckets, self.process_group) |
| |
| def _create_mixed_precision_model(self): |
| model = ReducerModule() |
| model.float() |
| model.fc1.double() |
| return model |
| |
| def test_multi_dtype_single_bucket(self): |
| model = self._create_mixed_precision_model() |
| |
| # Raise if there are multiple types per bucket. |
| # In this case we create one bucket for all parameters. |
| with self.assertRaises(RuntimeError): |
| parameters = [list(model.parameters())] |
| buckets = [list(range(len(parameters[0])))] |
| dist.Reducer(parameters, buckets, self.process_group) |
| |
| def test_multi_dtype_multi_bucket(self): |
| model = self._create_mixed_precision_model() |
| parameters = [list(model.parameters())] |
| group_by_type = groupby( |
| range(len(parameters[0])), |
| key=lambda i: parameters[0][i].type()) |
| buckets = [list(indices) for _, indices in group_by_type] |
| dist.Reducer(parameters, buckets, self.process_group) |
| |
| def _create_reducer_for_models(self, models): |
| parameters = [list(model.parameters()) for model in models] |
| group_by_type = groupby( |
| range(len(parameters[0])), |
| key=lambda i: parameters[0][i].type()) |
| buckets = [list(indices) for _, indices in group_by_type] |
| return dist.Reducer(parameters, buckets, self.process_group) |
| |
| def test_forward_backward_single_replica(self): |
| batch_size = 10 |
| model = self._create_mixed_precision_model() |
| reducer = self._create_reducer_for_models([model]) |
| loss = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.double) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) |
| output = loss(model(input), target) |
| reducer.prepare_for_backward(output) |
| output.backward() |
| |
| def test_forward_backward_multi_replica(self): |
| batch_size = 10 |
| num_replicas = 2 |
| models = [self._create_mixed_precision_model() for _ in range(num_replicas)] |
| reducer = self._create_reducer_for_models(models) |
| loss = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.double).chunk(num_replicas) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) |
| outputs = [models[i](input[i]) for i in range(num_replicas)] |
| output = loss(torch.cat(outputs), target) |
| reducer.prepare_for_backward(output) |
| output.backward() |
| |
| # The reducer will have reduced the gradients for all model replicas. |
| # Verify that they are equal across model replicas. |
| for parameters in zip(*[model.parameters() for model in models]): |
| for parameter in parameters: |
| self.assertEqual(parameters[0].grad, parameter.grad) |
| |
| def test_forward_backward_unused_parameters(self): |
| batch_size = 10 |
| model = self._create_mixed_precision_model() |
| reducer = self._create_reducer_for_models([model]) |
| loss = nn.CrossEntropyLoss() |
| input = torch.rand([batch_size, 2], dtype=torch.double) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) |
| output = loss(model(input, use_fc3=False), target) |
| |
| # Check that the grad of fc3 is not set. |
| self.assertEqual(None, model.fc3.weight.grad) |
| |
| # Compute and accumulate gradients. |
| reducer.prepare_for_backward(output) |
| output.backward() |
| |
| # The reducer will have marked the grad of fc3 as ready, because |
| # it doesn't show up in the autograd graph of `output`. Since fc3.weight |
| # is considered being globally unused, it will be kept untouched as None. |
| self.assertEqual(None, model.fc3.weight.grad) |
| |
| def test_forward_backward_optimizer(self): |
| batch_size = 10 |
| model = self._create_mixed_precision_model() |
| reducer = self._create_reducer_for_models([model]) |
| loss = nn.CrossEntropyLoss() |
| optimizer = torch.optim.Adam(model.parameters()) |
| for i in range(3): |
| input = torch.rand([batch_size, 2], dtype=torch.double) |
| target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) |
| |
| # The `zero_grad` function calls `detach_` and `zero_` on the grad |
| # tensors of model parameters. If we tried to set the grad tensors |
| # to a view of the reducer's bucket tensors, this would blow up. |
| optimizer.zero_grad() |
| |
| # Unused parameter only in the first iteration. |
| output = loss(model(input, use_fc3=(i > 0)), target) |
| reducer.prepare_for_backward(output) |
| output.backward() |
| optimizer.step() |
| |
| |
| class ComputeBucketAssignmentTest(TestCase): |
| def test_single_limit_single_dtype(self): |
| tensors = [ |
| torch.empty([100], dtype=torch.float), |
| torch.empty([200], dtype=torch.float), |
| torch.empty([100], dtype=torch.float), |
| torch.empty([50], dtype=torch.float), |
| ] |
| result = dist._compute_bucket_assignment_by_size(tensors, [400]) |
| self.assertEqual([[0], [1], [2], [3]], result) |
| |
| def test_single_limit_multi_dtype(self): |
| tensors = [ |
| torch.empty([50], dtype=torch.float), |
| torch.empty([25], dtype=torch.double), |
| torch.empty([50], dtype=torch.float), |
| torch.empty([25], dtype=torch.double), |
| torch.empty([50], dtype=torch.float), |
| torch.empty([25], dtype=torch.double), |
| ] |
| result = dist._compute_bucket_assignment_by_size(tensors, [400]) |
| self.assertEqual([[0, 2], [1, 3], [4], [5]], result) |
| |
| def test_multi_limit_single_dtype(self): |
| tensors = [ |
| torch.empty([10], dtype=torch.float), |
| torch.empty([10], dtype=torch.float), |
| torch.empty([10], dtype=torch.float), |
| torch.empty([10], dtype=torch.float), |
| ] |
| result = dist._compute_bucket_assignment_by_size(tensors, [40, 80]) |
| self.assertEqual([[0], [1, 2], [3]], result) |
| |
| def test_multi_limit_multi_dtype(self): |
| tensors = [ |
| torch.empty([50], dtype=torch.float), |
| torch.empty([25], dtype=torch.double), |
| torch.empty([50], dtype=torch.float), |
| torch.empty([25], dtype=torch.double), |
| torch.empty([50], dtype=torch.float), |
| torch.empty([25], dtype=torch.double), |
| ] |
| result = dist._compute_bucket_assignment_by_size(tensors, [200, 400]) |
| self.assertEqual([[0], [1], [2, 4], [3, 5]], result) |
| |
| @unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment") |
| class NcclErrorHandlingTest(MultiProcessTestCase): |
| def setUp(self): |
| super(NcclErrorHandlingTest, self).setUp() |
| # Need to skip return code checking for these tests since the child |
| # processes don't exit cleanly. |
| self.skip_return_code_checks = [ |
| self._get_wrapped_func(self.test_nccl_errors_blocking_abort), |
| self._get_wrapped_func(self.test_nccl_errors_blocking_sigkill), |
| self._get_wrapped_func(self.test_nccl_errors_blocking_sigterm), |
| self._get_wrapped_func(self.test_nccl_errors_blocking_nonzero_exit), |
| ] |
| self._fork_processes() |
| |
| def tearDown(self): |
| super(NcclErrorHandlingTest, self).tearDown() |
| try: |
| os.remove(self.file_name) |
| except OSError: |
| pass |
| |
| @property |
| def op_timeout_sec(self): |
| return 1 |
| |
| @property |
| def world_size(self): |
| return 2 |
| |
| def _get_wrapped_func(self, func): |
| # Get the original function which was wrapped in the decorator. |
| if hasattr(func, '__wrapped__'): |
| # py3 way. |
| return func.__wrapped__ |
| else: |
| # py2 way. |
| return func.func_closure[0].cell_contents |
| |
| def _run_all_reduce(self, pg): |
| pg.allreduce(torch.rand(10).cuda(self.rank)) |
| |
| @requires_nccl() |
| @requires_nccl_version(2400, "Need NCCL 2.4+ for error checking") |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_nccl_errors_nonblocking(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| process_group.allreduce(torch.rand(10).cuda(self.rank)) |
| if self.rank == 0: |
| # This allreduce does not block Python thread as allreduce enqueues |
| # the cuda operation, and then wait only blocks the current cuda |
| # stream. |
| work = process_group.allreduce(torch.rand(10).cuda(self.rank)) |
| work.wait() |
| |
| # Now the work scheduled next should hang forever since the previous |
| # allreduce will never complete. |
| t = threading.Thread(target=self._run_all_reduce, args=(process_group,)) |
| t.daemon = True |
| t.start() |
| t.join(int(get_timeout(self.id()) / 5)) |
| self.assertTrue(t.is_alive()) |
| |
| def _test_nccl_errors_blocking(self, func): |
| os.environ["NCCL_BLOCKING_WAIT"] = "1" |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL( |
| store, |
| self.rank, |
| self.world_size, |
| timeout=timedelta(seconds=self.op_timeout_sec)) |
| process_group.allreduce(torch.rand(10).cuda(self.rank)) |
| if self.rank == 0: |
| work = process_group.allreduce(torch.rand(10).cuda(self.rank)) |
| with self.assertRaisesRegex(RuntimeError, "Operation timed out!"): |
| # Operation would time out in blocking mode. |
| work.wait() |
| # Run some GPU operations to make sure cuda does not stuck to |
| # run new events. It was observed cuda could stuck if not |
| # aborting nccl communicators before throwing Operation timed out |
| a = torch.rand(10).cuda(self.rank) |
| else: |
| func() |
| |
| @requires_nccl() |
| @requires_nccl_version(2400, "Need NCCL 2.4+ for error checking") |
| @skip_if_not_multigpu |
| def test_nccl_errors_blocking_clean_exit(self): |
| self._test_nccl_errors_blocking(lambda : sys.exit(0)) |
| |
| @requires_nccl() |
| @requires_nccl_version(2400, "Need NCCL 2.4+ for error checking") |
| @skip_if_not_multigpu |
| def test_nccl_errors_blocking_nonzero_exit(self): |
| self._test_nccl_errors_blocking(lambda : sys.exit(1)) |
| |
| @requires_nccl() |
| @requires_nccl_version(2400, "Need NCCL 2.4+ for error checking") |
| @skip_if_not_multigpu |
| def test_nccl_errors_blocking_abort(self): |
| self._test_nccl_errors_blocking(lambda : os.abort()) |
| |
| @requires_nccl() |
| @requires_nccl_version(2400, "Need NCCL 2.4+ for error checking") |
| @skip_if_not_multigpu |
| def test_nccl_errors_blocking_sigkill(self): |
| self._test_nccl_errors_blocking(lambda : os.kill(os.getpid(), signal.SIGKILL)) |
| |
| @requires_nccl() |
| @requires_nccl_version(2400, "Need NCCL 2.4+ for error checking") |
| @skip_if_not_multigpu |
| def test_nccl_errors_blocking_sigterm(self): |
| self._test_nccl_errors_blocking(lambda : os.kill(os.getpid(), signal.SIGTERM)) |
| |
| def _run_invalid_nccl_blocking_wait_env(self, val): |
| os.environ["NCCL_BLOCKING_WAIT"] = val |
| store = c10d.FileStore(self.file_name, self.world_size) |
| with self.assertRaises(RuntimeError): |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| def test_invalid_nccl_blocking_wait_env(self): |
| self._run_invalid_nccl_blocking_wait_env('abc') |
| self._run_invalid_nccl_blocking_wait_env('-1') |
| self._run_invalid_nccl_blocking_wait_env('2147483647') |
| self._run_invalid_nccl_blocking_wait_env('4294967295') |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| @skip_if_rocm |
| def test_nccl_timeout(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| os.environ["NCCL_BLOCKING_WAIT"] = "1" |
| |
| # Initialize process_group. |
| timeout = 1 |
| c10d.distributed_c10d.init_process_group( |
| backend=dist.Backend.NCCL, store=store, world_size=2, rank=self.rank, |
| timeout=timedelta(seconds=timeout)) |
| c10d.distributed_c10d.all_reduce(torch.rand(10).cuda(self.rank)) |
| |
| if self.rank == 0: |
| # This should timeout in about 1 second. |
| start = time.time() |
| with self.assertRaisesRegex(RuntimeError, "Operation timed out!"): |
| c10d.distributed_c10d.all_reduce(torch.rand(10).cuda(self.rank)) |
| else: |
| # Ensure the other rank sleeps to trigger timeout. |
| time.sleep(2 * timeout) |
| |
| |
| @unittest.skipIf(TEST_WITH_TSAN, "TSAN is not fork-safe since we're forking in a multi-threaded environment") |
| class CommTest(MultiProcessTestCase): |
| def setUp(self): |
| super(CommTest, self).setUp() |
| self._fork_processes() |
| |
| def tearDown(self): |
| super(CommTest, self).tearDown() |
| try: |
| os.remove(self.file_name) |
| except OSError: |
| pass |
| |
| @property |
| def op_timeout_sec(self): |
| return 1 |
| |
| @property |
| def world_size(self): |
| return 2 |
| |
| def _test_broadcast_coalesced(self, process_group, device): |
| half = torch.float16 |
| |
| # No support for float16 for CPU tensors |
| if device == torch.device('cpu'): |
| half = torch.float32 |
| |
| target = torch.arange(60, dtype=half, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) |
| target += torch.arange(60, dtype=half, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float64, device=device).chunk(5) |
| target += torch.arange(60, dtype=half, device=device).chunk(5) |
| target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) |
| |
| # The tensors to pass to broadcast are idential to the target |
| # only on the process that is the root of the broadcast. |
| if self.rank == 0: |
| tensors = list(tensor.clone() for tensor in target) |
| else: |
| tensors = list(torch.empty_like(tensor) for tensor in target) |
| |
| c10d._broadcast_coalesced( |
| process_group, |
| tensors, |
| buffer_size=256) |
| |
| self.assertEqual(tensors, target) |
| |
| @requires_nccl() |
| @skip_if_not_multigpu |
| def test_broadcast_coalesced_nccl(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) |
| device = torch.device('cuda:%d' % self.rank) |
| self._test_broadcast_coalesced(process_group, device) |
| |
| @requires_gloo() |
| @skip_if_not_multigpu |
| def test_broadcast_coalesced_gloo_cuda(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| options = c10d.ProcessGroupGloo.Options() |
| options.devices = [c10d.ProcessGroupGloo.create_device(interface=LOOPBACK)] |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) |
| device = torch.device('cuda:%d' % self.rank) |
| self._test_broadcast_coalesced(process_group, device) |
| |
| @requires_gloo() |
| def test_broadcast_coalesced_gloo_cpu(self): |
| store = c10d.FileStore(self.file_name, self.world_size) |
| options = c10d.ProcessGroupGloo.Options() |
| options.devices = [c10d.ProcessGroupGloo.create_device(interface=LOOPBACK)] |
| process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) |
| device = torch.device('cpu') |
| self._test_broadcast_coalesced(process_group, device) |
| |
| |
| if __name__ == '__main__': |
| assert not torch.cuda._initialized, "test_distributed must not have initialized CUDA context on main process" |
| |
| run_tests() |