| import random |
| import torch |
| import torch.multiprocessing as multiprocessing |
| from torch._C import _set_worker_signal_handlers, _update_worker_pids, \ |
| _remove_worker_pids, _error_if_any_worker_fails |
| from . import SequentialSampler, RandomSampler, BatchSampler |
| import signal |
| import functools |
| import collections |
| import re |
| import sys |
| import threading |
| import traceback |
| import os |
| import time |
| from torch._six import string_classes, int_classes, FileNotFoundError |
| |
| IS_WINDOWS = sys.platform == "win32" |
| if IS_WINDOWS: |
| import ctypes |
| from ctypes.wintypes import DWORD, BOOL, HANDLE |
| |
| if sys.version_info[0] == 2: |
| import Queue as queue |
| else: |
| import queue |
| |
| |
| class ExceptionWrapper(object): |
| r"""Wraps an exception plus traceback to communicate across threads""" |
| |
| def __init__(self, exc_info): |
| self.exc_type = exc_info[0] |
| self.exc_msg = "".join(traceback.format_exception(*exc_info)) |
| |
| |
| _use_shared_memory = False |
| r"""Whether to use shared memory in default_collate""" |
| |
| MANAGER_STATUS_CHECK_INTERVAL = 5.0 |
| |
| if IS_WINDOWS: |
| # On Windows, the parent ID of the worker process remains unchanged when the manager process |
| # is gone, and the only way to check it through OS is to let the worker have a process handle |
| # of the manager and ask if the process status has changed. |
| class ManagerWatchdog(object): |
| def __init__(self): |
| self.manager_pid = os.getppid() |
| |
| self.kernel32 = ctypes.WinDLL('kernel32', use_last_error=True) |
| self.kernel32.OpenProcess.argtypes = (DWORD, BOOL, DWORD) |
| self.kernel32.OpenProcess.restype = HANDLE |
| self.kernel32.WaitForSingleObject.argtypes = (HANDLE, DWORD) |
| self.kernel32.WaitForSingleObject.restype = DWORD |
| |
| # Value obtained from https://msdn.microsoft.com/en-us/library/ms684880.aspx |
| SYNCHRONIZE = 0x00100000 |
| self.manager_handle = self.kernel32.OpenProcess(SYNCHRONIZE, 0, self.manager_pid) |
| |
| if not self.manager_handle: |
| raise ctypes.WinError(ctypes.get_last_error()) |
| |
| def is_alive(self): |
| # Value obtained from https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx |
| return self.kernel32.WaitForSingleObject(self.manager_handle, 0) != 0 |
| else: |
| class ManagerWatchdog(object): |
| def __init__(self): |
| self.manager_pid = os.getppid() |
| |
| def is_alive(self): |
| return os.getppid() == self.manager_pid |
| |
| |
| def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id): |
| global _use_shared_memory |
| _use_shared_memory = True |
| |
| # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal |
| # module's handlers are executed after Python returns from C low-level |
| # handlers, likely when the same fatal signal happened again already. |
| # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1 |
| _set_worker_signal_handlers() |
| |
| torch.set_num_threads(1) |
| random.seed(seed) |
| torch.manual_seed(seed) |
| |
| if init_fn is not None: |
| init_fn(worker_id) |
| |
| watchdog = ManagerWatchdog() |
| |
| while True: |
| try: |
| r = index_queue.get(timeout=MANAGER_STATUS_CHECK_INTERVAL) |
| except queue.Empty: |
| if watchdog.is_alive(): |
| continue |
| else: |
| break |
| if r is None: |
| break |
| idx, batch_indices = r |
| try: |
| samples = collate_fn([dataset[i] for i in batch_indices]) |
| except Exception: |
| data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) |
| else: |
| data_queue.put((idx, samples)) |
| del samples |
| |
| |
| def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id): |
| if pin_memory: |
| torch.cuda.set_device(device_id) |
| |
| while True: |
| try: |
| r = in_queue.get() |
| except Exception: |
| if done_event.is_set(): |
| return |
| raise |
| if r is None: |
| break |
| if isinstance(r[1], ExceptionWrapper): |
| out_queue.put(r) |
| continue |
| idx, batch = r |
| try: |
| if pin_memory: |
| batch = pin_memory_batch(batch) |
| except Exception: |
| out_queue.put((idx, ExceptionWrapper(sys.exc_info()))) |
| else: |
| out_queue.put((idx, batch)) |
| |
| numpy_type_map = { |
| 'float64': torch.DoubleTensor, |
| 'float32': torch.FloatTensor, |
| 'float16': torch.HalfTensor, |
| 'int64': torch.LongTensor, |
| 'int32': torch.IntTensor, |
| 'int16': torch.ShortTensor, |
| 'int8': torch.CharTensor, |
| 'uint8': torch.ByteTensor, |
| } |
| |
| |
| def default_collate(batch): |
| r"""Puts each data field into a tensor with outer dimension batch size""" |
| |
| error_msg = "batch must contain tensors, numbers, dicts or lists; found {}" |
| elem_type = type(batch[0]) |
| if isinstance(batch[0], torch.Tensor): |
| out = None |
| if _use_shared_memory: |
| # If we're in a background process, concatenate directly into a |
| # shared memory tensor to avoid an extra copy |
| numel = sum([x.numel() for x in batch]) |
| storage = batch[0].storage()._new_shared(numel) |
| out = batch[0].new(storage) |
| return torch.stack(batch, 0, out=out) |
| elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ |
| and elem_type.__name__ != 'string_': |
| elem = batch[0] |
| if elem_type.__name__ == 'ndarray': |
| # array of string classes and object |
| if re.search('[SaUO]', elem.dtype.str) is not None: |
| raise TypeError(error_msg.format(elem.dtype)) |
| |
| return torch.stack([torch.from_numpy(b) for b in batch], 0) |
| if elem.shape == (): # scalars |
| py_type = float if elem.dtype.name.startswith('float') else int |
| return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) |
| elif isinstance(batch[0], int_classes): |
| return torch.LongTensor(batch) |
| elif isinstance(batch[0], float): |
| return torch.DoubleTensor(batch) |
| elif isinstance(batch[0], string_classes): |
| return batch |
| elif isinstance(batch[0], collections.Mapping): |
| return {key: default_collate([d[key] for d in batch]) for key in batch[0]} |
| elif isinstance(batch[0], collections.Sequence): |
| transposed = zip(*batch) |
| return [default_collate(samples) for samples in transposed] |
| |
| raise TypeError((error_msg.format(type(batch[0])))) |
| |
| |
| def pin_memory_batch(batch): |
| if isinstance(batch, torch.Tensor): |
| return batch.pin_memory() |
| elif isinstance(batch, string_classes): |
| return batch |
| elif isinstance(batch, collections.Mapping): |
| return {k: pin_memory_batch(sample) for k, sample in batch.items()} |
| elif isinstance(batch, collections.Sequence): |
| return [pin_memory_batch(sample) for sample in batch] |
| else: |
| return batch |
| |
| |
| _SIGCHLD_handler_set = False |
| r"""Whether SIGCHLD handler is set for DataLoader worker failures. Only one |
| handler needs to be set for all DataLoaders in a process.""" |
| |
| |
| def _set_SIGCHLD_handler(): |
| # Windows doesn't support SIGCHLD handler |
| if sys.platform == 'win32': |
| return |
| # can't set signal in child threads |
| if not isinstance(threading.current_thread(), threading._MainThread): |
| return |
| global _SIGCHLD_handler_set |
| if _SIGCHLD_handler_set: |
| return |
| previous_handler = signal.getsignal(signal.SIGCHLD) |
| if not callable(previous_handler): |
| previous_handler = None |
| |
| def handler(signum, frame): |
| # This following call uses `waitid` with WNOHANG from C side. Therefore, |
| # Python can still get and update the process status successfully. |
| _error_if_any_worker_fails() |
| if previous_handler is not None: |
| previous_handler(signum, frame) |
| |
| signal.signal(signal.SIGCHLD, handler) |
| _SIGCHLD_handler_set = True |
| |
| |
| class _DataLoaderIter(object): |
| r"""Iterates once over the DataLoader's dataset, as specified by the sampler""" |
| |
| def __init__(self, loader): |
| self.dataset = loader.dataset |
| self.collate_fn = loader.collate_fn |
| self.batch_sampler = loader.batch_sampler |
| self.num_workers = loader.num_workers |
| self.pin_memory = loader.pin_memory and torch.cuda.is_available() |
| self.timeout = loader.timeout |
| self.done_event = threading.Event() |
| |
| self.sample_iter = iter(self.batch_sampler) |
| |
| base_seed = torch.LongTensor(1).random_().item() |
| |
| if self.num_workers > 0: |
| self.worker_init_fn = loader.worker_init_fn |
| self.index_queues = [multiprocessing.Queue() for _ in range(self.num_workers)] |
| self.worker_queue_idx = 0 |
| self.worker_result_queue = multiprocessing.SimpleQueue() |
| self.batches_outstanding = 0 |
| self.worker_pids_set = False |
| self.shutdown = False |
| self.send_idx = 0 |
| self.rcvd_idx = 0 |
| self.reorder_dict = {} |
| |
| self.workers = [ |
| multiprocessing.Process( |
| target=_worker_loop, |
| args=(self.dataset, self.index_queues[i], |
| self.worker_result_queue, self.collate_fn, base_seed + i, |
| self.worker_init_fn, i)) |
| for i in range(self.num_workers)] |
| |
| if self.pin_memory or self.timeout > 0: |
| self.data_queue = queue.Queue() |
| if self.pin_memory: |
| maybe_device_id = torch.cuda.current_device() |
| else: |
| # do not initialize cuda context if not necessary |
| maybe_device_id = None |
| self.worker_manager_thread = threading.Thread( |
| target=_worker_manager_loop, |
| args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory, |
| maybe_device_id)) |
| self.worker_manager_thread.daemon = True |
| self.worker_manager_thread.start() |
| else: |
| self.data_queue = self.worker_result_queue |
| |
| for w in self.workers: |
| w.daemon = True # ensure that the worker exits on process exit |
| w.start() |
| |
| _update_worker_pids(id(self), tuple(w.pid for w in self.workers)) |
| _set_SIGCHLD_handler() |
| self.worker_pids_set = True |
| |
| # prime the prefetch loop |
| for _ in range(2 * self.num_workers): |
| self._put_indices() |
| |
| def __len__(self): |
| return len(self.batch_sampler) |
| |
| def _get_batch(self): |
| if self.timeout > 0: |
| try: |
| return self.data_queue.get(timeout=self.timeout) |
| except queue.Empty: |
| raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout)) |
| else: |
| return self.data_queue.get() |
| |
| def __next__(self): |
| if self.num_workers == 0: # same-process loading |
| indices = next(self.sample_iter) # may raise StopIteration |
| batch = self.collate_fn([self.dataset[i] for i in indices]) |
| if self.pin_memory: |
| batch = pin_memory_batch(batch) |
| return batch |
| |
| # check if the next sample has already been generated |
| if self.rcvd_idx in self.reorder_dict: |
| batch = self.reorder_dict.pop(self.rcvd_idx) |
| return self._process_next_batch(batch) |
| |
| if self.batches_outstanding == 0: |
| self._shutdown_workers() |
| raise StopIteration |
| |
| while True: |
| assert (not self.shutdown and self.batches_outstanding > 0) |
| idx, batch = self._get_batch() |
| self.batches_outstanding -= 1 |
| if idx != self.rcvd_idx: |
| # store out-of-order samples |
| self.reorder_dict[idx] = batch |
| continue |
| return self._process_next_batch(batch) |
| |
| next = __next__ # Python 2 compatibility |
| |
| def __iter__(self): |
| return self |
| |
| def _put_indices(self): |
| assert self.batches_outstanding < 2 * self.num_workers |
| indices = next(self.sample_iter, None) |
| if indices is None: |
| return |
| self.index_queues[self.worker_queue_idx].put((self.send_idx, indices)) |
| self.worker_queue_idx = (self.worker_queue_idx + 1) % self.num_workers |
| self.batches_outstanding += 1 |
| self.send_idx += 1 |
| |
| def _process_next_batch(self, batch): |
| self.rcvd_idx += 1 |
| self._put_indices() |
| if isinstance(batch, ExceptionWrapper): |
| raise batch.exc_type(batch.exc_msg) |
| return batch |
| |
| def __getstate__(self): |
| # TODO: add limited pickling support for sharing an iterator |
| # across multiple threads for HOGWILD. |
| # Probably the best way to do this is by moving the sample pushing |
| # to a separate thread and then just sharing the data queue |
| # but signalling the end is tricky without a non-blocking API |
| raise NotImplementedError("_DataLoaderIter cannot be pickled") |
| |
| def _shutdown_workers(self): |
| try: |
| if not self.shutdown: |
| self.shutdown = True |
| self.done_event.set() |
| for q in self.index_queues: |
| q.put(None) |
| # if some workers are waiting to put, make place for them |
| try: |
| while not self.worker_result_queue.empty(): |
| self.worker_result_queue.get() |
| except (FileNotFoundError, ImportError): |
| # Many weird errors can happen here due to Python |
| # shutting down. These are more like obscure Python bugs. |
| # FileNotFoundError can happen when we rebuild the fd |
| # fetched from the queue but the socket is already closed |
| # from the worker side. |
| # ImportError can happen when the unpickler loads the |
| # resource from `get`. |
| pass |
| # done_event should be sufficient to exit worker_manager_thread, |
| # but be safe here and put another None |
| self.worker_result_queue.put(None) |
| finally: |
| # removes pids no matter what |
| if self.worker_pids_set: |
| _remove_worker_pids(id(self)) |
| self.worker_pids_set = False |
| |
| def __del__(self): |
| if self.num_workers > 0: |
| self._shutdown_workers() |
| |
| |
| class DataLoader(object): |
| r""" |
| Data loader. Combines a dataset and a sampler, and provides |
| single- or multi-process iterators over the dataset. |
| |
| Arguments: |
| dataset (Dataset): dataset from which to load the data. |
| batch_size (int, optional): how many samples per batch to load |
| (default: 1). |
| shuffle (bool, optional): set to ``True`` to have the data reshuffled |
| at every epoch (default: False). |
| sampler (Sampler, optional): defines the strategy to draw samples from |
| the dataset. If specified, ``shuffle`` must be False. |
| batch_sampler (Sampler, optional): like sampler, but returns a batch of |
| indices at a time. Mutually exclusive with batch_size, shuffle, |
| sampler, and drop_last. |
| num_workers (int, optional): how many subprocesses to use for data |
| loading. 0 means that the data will be loaded in the main process. |
| (default: 0) |
| collate_fn (callable, optional): merges a list of samples to form a mini-batch. |
| pin_memory (bool, optional): If ``True``, the data loader will copy tensors |
| into CUDA pinned memory before returning them. |
| drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, |
| if the dataset size is not divisible by the batch size. If ``False`` and |
| the size of dataset is not divisible by the batch size, then the last batch |
| will be smaller. (default: False) |
| timeout (numeric, optional): if positive, the timeout value for collecting a batch |
| from workers. Should always be non-negative. (default: 0) |
| worker_init_fn (callable, optional): If not None, this will be called on each |
| worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as |
| input, after seeding and before data loading. (default: None) |
| |
| .. note:: By default, each worker will have its PyTorch seed set to |
| ``base_seed + worker_id``, where ``base_seed`` is a long generated |
| by main process using its RNG. However, seeds for other libraies |
| may be duplicated upon initializing workers (w.g., NumPy), causing |
| each worker to return identical random numbers. (See |
| :ref:`dataloader-workers-random-seed` section in FAQ.) You may |
| use ``torch.initial_seed()`` to access the PyTorch seed for each |
| worker in :attr:`worker_init_fn`, and use it to set other seeds |
| before data loading. |
| |
| .. warning:: If ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an |
| unpicklable object, e.g., a lambda function. |
| """ |
| |
| __initialized = False |
| |
| def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, |
| num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, |
| timeout=0, worker_init_fn=None): |
| self.dataset = dataset |
| self.batch_size = batch_size |
| self.num_workers = num_workers |
| self.collate_fn = collate_fn |
| self.pin_memory = pin_memory |
| self.drop_last = drop_last |
| self.timeout = timeout |
| self.worker_init_fn = worker_init_fn |
| |
| if timeout < 0: |
| raise ValueError('timeout option should be non-negative') |
| |
| if batch_sampler is not None: |
| if batch_size > 1 or shuffle or sampler is not None or drop_last: |
| raise ValueError('batch_sampler option is mutually exclusive ' |
| 'with batch_size, shuffle, sampler, and ' |
| 'drop_last') |
| self.batch_size = None |
| self.drop_last = None |
| |
| if sampler is not None and shuffle: |
| raise ValueError('sampler option is mutually exclusive with ' |
| 'shuffle') |
| |
| if self.num_workers < 0: |
| raise ValueError('num_workers option cannot be negative; ' |
| 'use num_workers=0 to disable multiprocessing.') |
| |
| if batch_sampler is None: |
| if sampler is None: |
| if shuffle: |
| sampler = RandomSampler(dataset) |
| else: |
| sampler = SequentialSampler(dataset) |
| batch_sampler = BatchSampler(sampler, batch_size, drop_last) |
| |
| self.sampler = sampler |
| self.batch_sampler = batch_sampler |
| self.__initialized = True |
| |
| def __setattr__(self, attr, val): |
| if self.__initialized and attr in ('batch_size', 'sampler', 'drop_last'): |
| raise ValueError('{} attribute should not be set after {} is ' |
| 'initialized'.format(attr, self.__class__.__name__)) |
| |
| super(DataLoader, self).__setattr__(attr, val) |
| |
| def __iter__(self): |
| return _DataLoaderIter(self) |
| |
| def __len__(self): |
| return len(self.batch_sampler) |