blob: f16f97f91c2c59ceb10d42f4ba2db3750aa54b4a [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from .qconfig import QConfig
from torch.jit._recursive import wrap_cpp_module
def _check_is_script_module(model):
if not isinstance(model, torch.jit.ScriptModule):
raise ValueError('input must be a script module, got: ' + str(type(model)))
def _check_forward_method(model):
if not model._c._has_method('forward'):
raise ValueError('input script module does not have forward method')
def script_qconfig(qconfig):
return QConfig(
activation=torch.jit.script(qconfig.activation())._c,
weight=torch.jit.script(qconfig.weight())._c)
def script_qconfig_dict(qconfig_dict):
return {k: script_qconfig(v) if v else None for k, v in qconfig_dict.items()}
def _prepare_script(model, qconfig_dict, inplace=False, is_dynamic=False):
assert not inplace, "The inplace support is still in development"
_check_is_script_module(model)
_check_forward_method(model)
if not all(isinstance(x, str) for x in qconfig_dict.keys()):
raise ValueError('qconfig_dict should only contain names(str) as keys.')
scripted_qconfig_dict = script_qconfig_dict(qconfig_dict)
torch._C._jit_pass_dedup_module_uses(model._c)
model = wrap_cpp_module(torch._C._jit_pass_fold_convbn(model._c))
return wrap_cpp_module(torch._C._jit_pass_insert_observers(model._c,
'forward',
scripted_qconfig_dict,
inplace,
is_dynamic))
def prepare_script(model, qconfig_dict, inplace=False):
return _prepare_script(model, qconfig_dict, inplace, is_dynamic=False)
def prepare_dynamic_script(model, qconfig_dict, inplace=False):
return _prepare_script(model, qconfig_dict, inplace, is_dynamic=True)
def _convert_script(model, inplace=False, debug=False, is_dynamic=False):
assert not inplace, "The inplace support is still in development"
_check_is_script_module(model)
model.eval()
model = wrap_cpp_module(torch._C._jit_pass_insert_quant_dequant(model._c, 'forward', inplace, is_dynamic))
if not debug:
model = wrap_cpp_module(torch._C._jit_pass_quant_finalize(model._c, is_dynamic))
return model
def convert_script(model, inplace=False, debug=False):
return _convert_script(model, inplace, debug, False)
def convert_dynamic_script(model, inplace=False, debug=False):
return _convert_script(model, inplace, debug, True)
def _quantize_script(model, qconfig_dict, run_fn=None, run_args=None, inplace=False, debug=False, is_dynamic=False):
assert not inplace, "We don't support inplace right now"
# Always do inplace convert because the Tensor is already
# copied in prepare_script when inplace is False
if is_dynamic:
model = prepare_dynamic_script(model, qconfig_dict, inplace)
model(*run_args)
# TODO: change inplace to True
model = convert_dynamic_script(model, False, debug)
else:
assert run_fn, "Must provide calibration function for post training static quantization"
assert run_args, "Must provide calibration dataset for post training static quantization"
model = prepare_script(model, qconfig_dict, inplace)
run_fn(model, *run_args)
# TODO: change inplace to True
model = convert_script(model, False, debug)
return model
def quantize_script(model, qconfig_dict, run_fn, run_args, inplace=False, debug=False):
return _quantize_script(model, qconfig_dict, run_fn, run_args, inplace, debug, False)
def quantize_dynamic_script(model, qconfig_dict, sample_model_inputs, inplace=False, debug=False):
return _quantize_script(model, qconfig_dict, run_args=sample_model_inputs, inplace=inplace, debug=debug, is_dynamic=True)