blob: e9768ee6ff504a8060b7e068fcdc3a4251c37e7d [file] [log] [blame]
import math
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_NUMPY
import unittest
if TEST_NUMPY:
import numpy as np
devices = (torch.device('cpu'), torch.device('cuda:0'))
class TestComplexTensor(TestCase):
def test_to_list_with_complex_64(self):
# test that the complex float tensor has expected values and
# there's no garbage value in the resultant list
self.assertEqual(torch.zeros((2, 2), dtype=torch.complex64).tolist(), [[0j, 0j], [0j, 0j]])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_exp(self):
def exp_fn(dtype):
a = torch.tensor(1j, dtype=dtype) * torch.arange(18) / 3 * math.pi
expected = np.exp(a.numpy())
actual = torch.exp(a)
self.assertEqual(actual, torch.from_numpy(expected))
exp_fn(torch.complex64)
exp_fn(torch.complex128)
def test_copy_real_imag_methods(self):
real = torch.randn(4)
imag = torch.randn(4)
complex_tensor = real + 1j * imag
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(complex_tensor.copy_real(), real)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(complex_tensor.copy_imag(), imag)
def test_dtype_inference(self):
# issue: https://github.com/pytorch/pytorch/issues/36834
torch.set_default_dtype(torch.double)
x = torch.tensor([3., 3. + 5.j])
self.assertEqual(x.dtype, torch.cdouble)
if __name__ == '__main__':
run_tests()