| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS |
| // ${generated_comment} |
| |
| #include <Python.h> |
| |
| // Undefine the copysign macro so that at::copysign works as intended with MSVC |
| // https://github.com/python/cpython/blob/c60394c7fc9cc09b16e9675a3eeb5844b6d8523f/PC/pyconfig.h#L196 |
| #ifdef _MSC_VER |
| #undef copysign |
| #endif // _MSC_VER |
| |
| #include "torch/csrc/DynamicTypes.h" |
| #include "torch/csrc/Exceptions.h" |
| #include "torch/csrc/Size.h" |
| #include "torch/csrc/autograd/generated/VariableType.h" |
| #include "torch/csrc/autograd/python_variable.h" |
| #include "torch/csrc/autograd/utils/python_arg_parsing.h" |
| #include "torch/csrc/autograd/utils/error_messages.h" |
| #include "torch/csrc/autograd/utils/wrap_outputs.h" |
| #include "torch/csrc/jit/frontend/tracer.h" |
| #ifdef USE_CUDA |
| #include "torch/csrc/cuda/Event.h" |
| #endif |
| #include "torch/csrc/utils/cuda_lazy_init.h" |
| #include "torch/csrc/utils/object_ptr.h" |
| #include "torch/csrc/utils/pycfunction_helpers.h" |
| #include "torch/csrc/utils/python_arg_parser.h" |
| #include "torch/csrc/utils/python_numbers.h" |
| #include "torch/csrc/utils/python_strings.h" |
| #include "torch/csrc/utils/python_tuples.h" |
| #include "torch/csrc/utils/tensor_apply.h" |
| #include "torch/csrc/utils/tensor_list.h" |
| #include "torch/csrc/utils/tensor_new.h" |
| #include "torch/csrc/utils/tensor_numpy.h" |
| #include "torch/csrc/utils/tensor_types.h" |
| #include "torch/csrc/utils/structseq.h" |
| #include "torch/csrc/autograd/python_return_types.h" |
| |
| #include <ATen/core/Tensor.h> |
| #include <ATen/FuncTorchTLS.h> |
| #include "c10/util/Optional.h" |
| #include "c10/core/Stream.h" |
| |
| #include <stdexcept> |
| |
| #ifndef AT_PER_OPERATOR_HEADERS |
| #include <ATen/Functions.h> |
| #else |
| $ops_headers |
| #endif |
| |
| using at::DeviceGuard; |
| using at::device_of; |
| using at::OptionalDeviceGuard; |
| using at::Backend; |
| using at::Scalar; |
| using at::ScalarType; |
| using at::Tensor; |
| using c10::Stream; |
| using namespace torch::autograd::utils; |
| |
| namespace torch { namespace autograd { |
| |
| static PyObject * THPVariable__is_view(PyObject *self, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "_is_view", args); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| if (self_.is_view()) { |
| Py_RETURN_TRUE; |
| } else { |
| Py_RETURN_FALSE; |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object bc no support for first-class functions in native_functions.yaml |
| // See: ATen/native/README.md for more context |
| static PyObject * THPVariable_apply_(PyObject* self, PyObject* arg) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| auto args = py::make_tuple(py::handle(arg)); |
| return handle_torch_function(self, "apply_", args.ptr()); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| if (self_.requires_grad()) { |
| throw std::runtime_error( |
| "Can't call apply_() on Variable that requires grad. Use " |
| "var.detach().apply_() instead."); |
| } |
| return THPVariable_Wrap(torch::utils::apply_(self_, arg)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_size(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "size(int64_t dim)", |
| "size()", |
| "size(Dimname dim)", |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<3> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| if (r.idx == 0) { |
| if (jit::tracer::isTracing()) { |
| // will error out if a tensor has symints |
| return wrap(jit::tracer::getSizeOf(self_, r.toInt64(0))); |
| } else { |
| return torch::toPyObject(self_.sym_size(r.toInt64(0))); |
| } |
| } else if (r.idx == 1) { |
| return THPSize_NewFromSymSizes(self_); |
| } |
| else if (r.idx == 2) { |
| if (jit::tracer::isTracing()) { |
| TORCH_INTERNAL_ASSERT(false, "NYI: Named tensors w/ JIT"); |
| } |
| return wrap(self_.size(r.dimname(0))); |
| } |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_stride(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "stride(int64_t dim)", |
| "stride()", |
| "stride(Dimname dim)", |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<3> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| if (r.idx == 0) { |
| return wrap(self_.stride(r.toInt64(0))); |
| } else if (r.idx == 1) { |
| // yes, this is called strides in ATen. |
| IntArrayRef strides = self_.strides(); |
| // we can't do the normal wrapping here because IntArrayRef maps to both |
| // torch.Size and tuple in python |
| return THPUtils_packInt64Array(strides.size(), strides.data()); |
| } |
| else if (r.idx == 2) { |
| return wrap(self_.stride(r.dimname(0))); |
| } |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object to avoid dispatch overhead |
| static PyObject * THPVariable_get_device(PyObject* self_, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self_)) { |
| return handle_torch_function(self_, "get_device", args, nullptr); |
| } |
| auto& self = THPVariable_Unpack(self_); |
| return wrap(self.get_device()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_has_names(PyObject* self_, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self_)) { |
| return handle_torch_function(self_, "has_names", args); |
| } |
| auto& self = THPVariable_Unpack(self_); |
| return wrap(self.has_names()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object to avoid dispatch overhead |
| static PyObject * THPVariable_data_ptr(PyObject* self_, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self_)) { |
| return handle_torch_function(self_, "data_ptr", args); |
| } |
| auto& self = THPVariable_Unpack(self_); |
| return wrap(self.data_ptr()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object to avoid dispatch overhead |
| static PyObject * THPVariable_storage_offset(PyObject* self_, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self_)) { |
| return handle_torch_function(self_, "storage_offset"); |
| } |
| auto& self = THPVariable_Unpack(self_); |
| return wrap(self.storage_offset()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object to avoid dispatch overhead |
| static PyObject * THPVariable_dim(PyObject* self, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "dim", args); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| return THPUtils_packInt64(self_.dim()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object to avoid dispatch overhead |
| static PyObject * THPVariable_numel(PyObject* self, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "numel", args); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| if (jit::tracer::isTracing()) { |
| return wrap(jit::tracer::getNumelOf(self_)); |
| } else { |
| return THPUtils_packInt64(self_.numel()); |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static Tensor dispatch_contiguous(const Tensor & self, at::MemoryFormat memory_format) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| return self.contiguous(memory_format); |
| } |
| |
| static PyObject * THPVariable_contiguous(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "contiguous(*, MemoryFormat memory_format=contiguous_format)", |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto& self_ = THPVariable_Unpack(self); |
| auto memory_format = r.memoryformat(0); |
| // avoids touching the GIL or current device if self is already contiguous |
| if (self_.is_contiguous(memory_format)) { |
| // NOTE: this logic is duplicated from VariableType.cpp. Since we need to |
| // record this call to contiguous() in the trace regardless of whether |
| // we actually call contiguous here, we need to record this information |
| // manually. |
| if (jit::tracer::isTracing()) { |
| auto tracer_state = jit::tracer::getTracingState(); |
| auto op_name = c10::Symbol::fromQualString("aten::contiguous"); |
| auto node = tracer_state->createNode(op_name, /*num_outputs=*/0); |
| jit::tracer::recordSourceLocation(node); |
| jit::tracer::addInputs(node, "self", self_); |
| jit::tracer::addInputs(node, "memory_format", memory_format); |
| tracer_state->insertNode(node); |
| jit::tracer::addOutput(node, self_); |
| } |
| Py_INCREF(self); |
| return self; |
| } |
| return THPVariable_Wrap(dispatch_contiguous(self_, memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static Tensor dispatch_copy_(const Tensor & self, const Tensor & other, bool non_blocking) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| return self.copy_(other, non_blocking); |
| } |
| |
| static PyObject * THPVariable_copy_(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "copy_(Tensor other, bool non_blocking=False)", |
| "copy_(Tensor other, bool async=False)|deprecated" |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<2> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| return THPVariable_Wrap(dispatch_copy_(self_, r.tensor(0), r.toBool(1))); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static double dispatch_to_CDouble(const Tensor & self) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| if (self.numel() != 1) { |
| throw ValueError("only one element tensors can be converted to Python scalars"); |
| } |
| return self.item<double>(); |
| } |
| |
| static c10::complex<double> dispatch_to_CComplexDouble(const Tensor & self) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| if (self.numel() != 1) { |
| throw ValueError("only one element tensors can be converted to Python scalars"); |
| } |
| return self.item<c10::complex<double>>(); |
| } |
| |
| static int64_t dispatch_to_CLong(const Tensor & self) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| if (self.numel() != 1) { |
| throw ValueError("only one element tensors can be converted to Python scalars"); |
| } |
| return self.item<int64_t>(); |
| } |
| |
| static bool dispatch_to_Bool(const Tensor & self) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| if (self.numel() != 1) { |
| throw ValueError("only one element tensors can be converted to Python scalars"); |
| } |
| return self.item<bool>(); |
| } |
| |
| static PyObject * THPVariable_float_scalar(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "__float__", args); |
| } |
| jit::tracer::warn("Converting a tensor to a Python float", jit::tracer::WARN_PYTHON_DATAFLOW); |
| auto& self_ = THPVariable_Unpack(self); |
| return wrap(dispatch_to_CDouble(self_)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_complex_scalar(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "__complex__", args); |
| } |
| jit::tracer::warn("Converting a tensor to a Python complex", jit::tracer::WARN_PYTHON_DATAFLOW); |
| auto& self_ = THPVariable_Unpack(self); |
| return wrap(dispatch_to_CComplexDouble(self_)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_integral_scalar(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "__int__", args); |
| } |
| jit::tracer::warn("Converting a tensor to a Python integer", jit::tracer::WARN_PYTHON_DATAFLOW); |
| auto& self_ = THPVariable_Unpack(self); |
| if (isFloatingType(self_.scalar_type())) { |
| // we can't dispatch to item<int64_t> here because we want to avoid ATen overflow checks; |
| // the python integral type (long in python2) can't overflow. |
| return THPUtils_packDoubleAsInt(dispatch_to_CDouble(self_)); |
| } else { |
| return wrap(dispatch_to_CLong(self_)); |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // This is the __index__ function in Python which is similar to __int__, but |
| // called when used as a slice. |
| static PyObject * THPVariable_index_scalar(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "__index__", args); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| // TODO: change the condition to `self_.dim() != 0` once we expose scalars |
| // in PyTorch. |
| if (!isIntegralType(self_.scalar_type(), /*includeBool=*/true) || self_.numel() != 1) { |
| throw TypeError("only integer tensors of a single element can be converted to an index"); |
| } |
| return wrap(dispatch_to_CLong(self_)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static Tensor dispatch_invert(const Tensor & self) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| return self.bitwise_not(); |
| } |
| |
| static PyObject * THPVariable_invert(PyObject* self, PyObject* args) { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "__invert__", args); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| if (!isIntegralType(self_.scalar_type(), /*includeBool=*/true)) { |
| throw TypeError("~ (operator.invert) is only implemented on integer and Boolean-type tensors"); |
| } |
| return THPVariable_Wrap(dispatch_invert(self_)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static Tensor dispatch_to(const Tensor & self, Device device, bool non_blocking, bool copy, c10::optional<c10::MemoryFormat> optional_memory_format) { |
| pybind11::gil_scoped_release no_gil; |
| // NOTE: this is where we record aten::to in the graph during tracing. However, the behavior of aten::to |
| // is different with respect to TensorOptions fields that are not present: aten::to inherits fields that |
| // are missing from the self argument while the tracer assumes that they should be populated with the |
| // default values (eg. float for scalar type). By explicitly copying over the tensor options here we fully |
| // specify all tensor options and thus record the proper trace |
| return self.to(self.options().device(device).memory_format(optional_memory_format), non_blocking, copy); |
| } |
| |
| static Tensor dispatch_to(const Tensor & self, bool non_blocking, bool copy, c10::optional<c10::MemoryFormat> optional_memory_format) { |
| AutoNoGIL no_gil; |
| return self.to(self.options().memory_format(optional_memory_format), non_blocking, copy); |
| } |
| |
| static Tensor dispatch_to(const Tensor & self, ScalarType dtype, bool non_blocking, bool copy, c10::optional<c10::MemoryFormat> optional_memory_format) { |
| pybind11::gil_scoped_release no_gil; |
| // TODO: Make this call the TensorOptions version, maybe? |
| return self.to(dtype, non_blocking, copy, optional_memory_format); |
| } |
| |
| static Tensor dispatch_to(const Tensor & self, Device device, ScalarType dtype, bool non_blocking, bool copy, c10::optional<c10::MemoryFormat> optional_memory_format) { |
| pybind11::gil_scoped_release no_gil; |
| // TODO: Make this call the TensorOptions version, maybe? |
| return self.to(device, dtype, non_blocking, copy, optional_memory_format); |
| } |
| |
| static PyObject * THPVariable_cpu(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "cpu(*, MemoryFormat? memory_format=None)" |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_Wrap(dispatch_to(self_, at::Device(at::DeviceType::CPU), false, false, opt_memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static Tensor dispatch_nonzero(const Tensor & self) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| return self.nonzero(); |
| } |
| |
| static std::vector<Tensor> dispatch_nonzero_numpy(const Tensor & self) { |
| pybind11::gil_scoped_release no_gil; |
| OptionalDeviceGuard device_guard(device_of(self)); |
| return self.nonzero_numpy(); |
| } |
| |
| static PyObject * THPVariable_nonzero(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "nonzero()", |
| "nonzero(*, bool as_tuple)", |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<2> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| if (r.idx == 0 || (r.idx == 1 && !r.toBool(0))) { |
| return wrap(dispatch_nonzero(self_)); |
| } else { |
| return wrap(dispatch_nonzero_numpy(self_)); |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_cuda(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "cuda(Device? device=None, bool non_blocking=False, *, MemoryFormat? memory_format=None)", |
| "cuda(Device? device=None, bool async=False, *, MemoryFormat? memory_format=None)|deprecated" |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<3> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto device = r.isNone(0) ? at::Device(at::DeviceType::CUDA) : r.device(0); |
| auto opt_memory_format = r.memoryformatOptional(2); |
| TORCH_CHECK(device.is_cuda(), "Invalid device, must be cuda device"); |
| torch::utils::cuda_lazy_init(); |
| return THPVariable_Wrap(dispatch_to(self_, device, r.toBool(1), false, opt_memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_xpu(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "xpu(Device? device=None, bool non_blocking=False, *, MemoryFormat? memory_format=None)", |
| "xpu(Device? device=None, bool async=False, *, MemoryFormat? memory_format=None)|deprecated" |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<3> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if (r.has_torch_function()) { |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto device = r.isNone(0) ? at::Device(at::DeviceType::XPU) : r.device(0); |
| auto opt_memory_format = r.memoryformatOptional(2); |
| TORCH_CHECK(device.is_xpu(), "Invalid device, must be xpu device"); |
| return THPVariable_Wrap(dispatch_to(self_, device, r.toBool(1), false, opt_memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_ipu(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "ipu(Device? device=None, bool non_blocking=False, *, MemoryFormat? memory_format=None)", |
| "ipu(Device? device=None, bool async=False, *, MemoryFormat? memory_format=None)|deprecated" |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<3> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if (r.has_torch_function()) { |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto device = r.isNone(0) ? at::Device(at::DeviceType::IPU) : r.device(0); |
| auto opt_memory_format = r.memoryformatOptional(2); |
| TORCH_CHECK(device.is_ipu(), "Invalid device, must be ipu device"); |
| return THPVariable_Wrap(dispatch_to(self_, device, r.toBool(1), false, opt_memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_to_type(PyObject* self, ScalarType scalarType, c10::optional<c10::MemoryFormat> optional_memory_format) { |
| HANDLE_TH_ERRORS |
| auto& self_ = THPVariable_Unpack(self); |
| return THPVariable_Wrap(dispatch_to(self_, scalarType, false, false, optional_memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_byte(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "byte(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Byte, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_char(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "char(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Char, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_double(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "double(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Double, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_float(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "float(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Float, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_cdouble(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "cdouble(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::ComplexDouble, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_cfloat(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "cfloat(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::ComplexFloat, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_half(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "half(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Half, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_int(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "int(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Int, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_long(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "long(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Long, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_short(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "short(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Short, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_bool(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "bool(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::Bool, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_bfloat16(PyObject* self, PyObject* args, PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "bfloat16(*, MemoryFormat? memory_format=None)" |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| auto opt_memory_format = r.memoryformatOptional(0); |
| return THPVariable_to_type(self, ScalarType::BFloat16, opt_memory_format); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_element_size(PyObject* self, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "element_size", args); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| return THPUtils_packInt64(self_.element_size()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object bc PyObjects not declarable in native_functions.yaml |
| // See: ATen/native/README.md for more context |
| static PyObject * THPVariable_numpy(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "numpy(*, bool force=False)" |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if (r.has_torch_function()) { |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| jit::tracer::warn("Converting a tensor to a NumPy array", jit::tracer::WARN_PYTHON_DATAFLOW); |
| return torch::utils::tensor_to_numpy(self_, r.toBool(0)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_requires_grad_(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "requires_grad_(bool requires_grad=True)", |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| // temporary hack to improve functorch UX. |
| const auto& functorch_tls = at::functorch::functorchTLSAccessor(); |
| if (functorch_tls) { |
| functorch_tls->checkSupportsInplaceRequiresGrad(); |
| } |
| |
| auto requires_grad = r.toBool(0); |
| // should we throw if requires_grad is true? var.requires_grad = True throws here |
| // but it's nice to let this be a no-op. |
| if (!self_.is_leaf() && !requires_grad) { |
| throw std::runtime_error(autograd::utils::requires_grad_leaf_error(requires_grad)); |
| } |
| if (requires_grad && ! isDifferentiableType(at::typeMetaToScalarType(self_.dtype()))) { |
| throw std::runtime_error("only Tensors of floating point dtype can require gradients"); |
| } |
| self_.set_requires_grad(requires_grad); |
| return THPVariable_Wrap(self_); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| inline bool dispatch_is_contiguous(const Tensor & self, MemoryFormat memory_format) { |
| return self.is_contiguous(memory_format); |
| } |
| |
| // implemented on the python object to avoid dispatch overhead |
| static PyObject * THPVariable_is_contiguous(PyObject* self_, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "is_contiguous(*, MemoryFormat memory_format=contiguous_format)", |
| }); |
| ParsedArgs<1> parsed_args; |
| auto r = parser.parse(self_, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self_, args, kwargs, PyObject_Type(self_), "torch.Tensor"); |
| } |
| |
| auto memory_format = r.memoryformat(0); |
| auto& self = THPVariable_Unpack(self_); |
| return wrap(dispatch_is_contiguous(self, memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object to avoid dispatch overhead |
| static PyObject * THPVariable_item(PyObject* self, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "item", args); |
| } |
| jit::tracer::warn("Converting a tensor to a Python number", jit::tracer::WARN_PYTHON_DATAFLOW); |
| auto& self_ = THPVariable_Unpack(self); |
| if (self_.is_floating_point()) { |
| return wrap(dispatch_to_CDouble(self_)); |
| } else if (self_.is_complex()) { |
| return wrap(dispatch_to_CComplexDouble(self_)); |
| } else if (self_.scalar_type() == ScalarType::Bool) { |
| return wrap(dispatch_to_Bool(self_)); |
| } else { |
| return wrap(dispatch_to_CLong(self_)); |
| } |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object bc no support for first class functions in native_functions.yaml |
| // See: ATen/native/README.md for more context |
| static PyObject * THPVariable_map_(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ "map_(Tensor other, PyObject* callable)" }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<2> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| Variable other = r.tensor(0); |
| if (self_.requires_grad() || other.requires_grad()) { |
| throw std::runtime_error( |
| "Can't call map_() on Variable that requires grad. Use " |
| "var.detach().map_() instead."); |
| } |
| return THPVariable_Wrap(torch::utils::map_(self_, other, r.pyobject(1))); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object bc no support for first class functions in native_functions.yaml |
| // See: ATen/native/README.md for more context |
| static PyObject * THPVariable_map2_(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ "map2_(Tensor x, Tensor y, PyObject* callable)" }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<3> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| Variable x = r.tensor(0); |
| Variable y = r.tensor(1); |
| if (self_.requires_grad() || x.requires_grad() || y.requires_grad()) { |
| throw std::runtime_error( |
| "Can't call map2_() on Variable that requires grad. Use " |
| "var.detach().map2_() instead."); |
| } |
| return THPVariable_Wrap(torch::utils::map2_(self_, x, y, r.pyobject(2))); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_new(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "new", args, kwargs); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| OptionalDeviceGuard device_guard(device_of(self_)); |
| return THPVariable_Wrap(torch::utils::legacy_tensor_new(legacyExtractDispatchKey(self_), self_.scalar_type(), args, kwargs)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_new_tensor(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "new_tensor", args, kwargs); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| OptionalDeviceGuard device_guard(device_of(self_)); |
| return THPVariable_Wrap(torch::utils::new_tensor(legacyExtractDispatchKey(self_), self_.scalar_type(), args, kwargs)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_storage(PyObject* self, PyObject* arg) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "storage"); |
| } |
| auto& self_ = THPVariable_Unpack(self); |
| return createPyObject(self_.storage()); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_to(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "to(Device device=None, ScalarType dtype=None, bool non_blocking=False, bool copy=False, *, MemoryFormat? memory_format=None)", |
| "to(ScalarType dtype, bool non_blocking=False, bool copy=False, *, MemoryFormat? memory_format=None)", |
| "to(Tensor tensor, bool non_blocking=False, bool copy=False, *, MemoryFormat? memory_format=None)", |
| }); |
| ParsedArgs<5> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| if (r.has_torch_function()) { |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| auto parsed = parse_to_conversion(r, /*allow_copy*/ true); |
| auto& device = std::get<0>(parsed); |
| auto& scalarType = std::get<1>(parsed); |
| auto non_blocking = std::get<2>(parsed); |
| auto copy = std::get<3>(parsed); |
| auto opt_memory_format = std::get<4>(parsed); |
| auto& self_ = THPVariable_Unpack(self); |
| if (device && device->is_cuda()) { |
| torch::utils::cuda_lazy_init(); |
| } |
| if (!device && !scalarType && !copy && !opt_memory_format.has_value()) { |
| Py_INCREF(self); |
| return self; |
| } else if (!device && !scalarType) { |
| return THPVariable_Wrap( |
| dispatch_to(self_, non_blocking, copy, opt_memory_format)); |
| } else if (!device) { |
| return THPVariable_Wrap(dispatch_to(self_, *scalarType, non_blocking, copy, opt_memory_format)); |
| } else if (!scalarType) { |
| return THPVariable_Wrap(dispatch_to(self_, *device, non_blocking, copy, opt_memory_format)); |
| } else { |
| return THPVariable_Wrap(dispatch_to(self_, *device, *scalarType, non_blocking, copy, opt_memory_format)); |
| } |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // implemented on the python object b/c arbitrarily nested list not declarable in native_functions.yaml |
| // See: ATen/native/README.md for more context |
| static PyObject * THPVariable_tolist(PyObject* self, PyObject* args) |
| { |
| HANDLE_TH_ERRORS |
| if (check_has_torch_function(self)) { |
| return handle_torch_function(self, "tolist", args); |
| } |
| jit::tracer::warn("Converting a tensor to a Python list", jit::tracer::WARN_PYTHON_DATAFLOW); |
| auto self_ = THPVariable_Unpack(self); |
| return torch::utils::tensor_to_list(self_); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| static PyObject * THPVariable_type(PyObject* self, PyObject* args, PyObject* kwargs) |
| { |
| HANDLE_TH_ERRORS |
| static PythonArgParser parser({ |
| "type(PyObject* dtype=None, bool non_blocking=False, *, MemoryFormat? memory_format=None)", |
| "type(PyObject* dtype=None, bool async=False, *, MemoryFormat? memory_format=None)|deprecated" |
| }); |
| auto& self_ = THPVariable_Unpack(self); |
| ParsedArgs<3> parsed_args; |
| auto r = parser.parse(self, args, kwargs, parsed_args); |
| |
| if(r.has_torch_function()){ |
| return handle_torch_function(r, self, args, kwargs, THPVariableClass, "torch.Tensor"); |
| } |
| |
| if (r.isNone(0)) { |
| return THPUtils_packString(torch::utils::options_to_string(self_.options())); |
| } |
| auto obj = r.pyobject(0); |
| auto opt_memory_format = r.memoryformatOptional(2); |
| std::string type_name; |
| bool is_dtype = false; |
| if (PyType_Check(obj)) { |
| if (obj == THPVariableClass) { |
| type_name = "torch.Tensor"; |
| } else { |
| type_name = ((PyTypeObject*)obj)->tp_name; |
| } |
| } else if (THPUtils_checkString(obj)) { |
| type_name = THPUtils_unpackString(obj); |
| } else if (THPDtype_Check(obj)) { |
| is_dtype = true; |
| } else { |
| throw TypeError("dtype must be a type, str, or dtype object"); |
| } |
| ScalarType scalar_type; |
| Device device = self_.device(); |
| if (is_dtype) { |
| scalar_type = r.scalartype(0); |
| } else { |
| at::TensorOptions options = torch::utils::options_from_string(type_name); |
| scalar_type = at::typeMetaToScalarType(options.dtype()); |
| auto device_type = options.device().type(); |
| if (device_type != device.type()) { |
| device = at::Device(device_type); |
| } |
| } |
| if (device.is_cuda()) { |
| torch::utils::cuda_lazy_init(); |
| } |
| return THPVariable_Wrap(dispatch_to(self_, device, scalar_type, /*non_blocking=*/ r.toBool(1), /*copy=*/ false, opt_memory_format)); |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // generated methods start here |
| |
| ${py_methods} |
| |
| static PyObject * THPVariable_bool_scalar(PyObject* self, PyObject* args) { |
| if (check_has_torch_function(self)) { |
| HANDLE_TH_ERRORS |
| return handle_torch_function(self, "__bool__", args); |
| END_HANDLE_TH_ERRORS |
| } |
| jit::tracer::warn("Converting a tensor to a Python boolean", jit::tracer::WARN_PYTHON_DATAFLOW); |
| return THPVariable_is_nonzero(self, args); |
| } |
| |
| // Wrapper converts a raised TypeError into returning NotImplemented |
| // Used to implement binary arithmetic operators |
| template <PyObject* (*Func)(PyObject*, PyObject*, PyObject*)> |
| static PyObject * TypeError_to_NotImplemented_(PyObject* self, PyObject* args, PyObject* kwargs) { |
| |
| PyObject* ret = Func(self, args, kwargs); |
| if (!ret && PyErr_ExceptionMatches(PyExc_TypeError)) { |
| PyErr_Clear(); |
| Py_INCREF(Py_NotImplemented); |
| ret = Py_NotImplemented; |
| } |
| return ret; |
| } |
| |
| // set_ has to be defined in the template because the c10::Storage object |
| // does not have a type, and we need to make sure the Python storage object's |
| // type matches the tensor's type |
| static PyObject* THPVariable_set_( |
| PyObject* self_, |
| PyObject* args, |
| PyObject* kwargs) { |
| HANDLE_TH_ERRORS |
| const Tensor& self = THPVariable_Unpack(self_); |
| static PythonArgParser parser( |
| { |
| "set_()", |
| "set_(Storage source)", |
| "set_(Storage source, int64_t storage_offset, IntArrayRef size, IntArrayRef stride=None)", |
| "set_(Tensor source)", |
| "set_(Tensor source, int64_t storage_offset, IntArrayRef size, IntArrayRef stride=None)", |
| }, |
| /*traceable=*/false); |
| |
| ParsedArgs<4> parsed_args; |
| auto _r = parser.parse(args, kwargs, parsed_args); |
| |
| switch (_r.idx) { |
| case 0: { |
| // aten::set_(Tensor(a!) self) -> Tensor(a!) |
| auto dispatch_set_ = [](const Tensor& self) -> Tensor { |
| pybind11::gil_scoped_release no_gil; |
| return self.set_(); |
| }; |
| return wrap(dispatch_set_(self)); |
| } |
| case 1: { |
| // aten::set_.source_Storage(Tensor(a!) self, Storage source) -> |
| // Tensor(a!) |
| at::ScalarType storage_scalar_type; |
| bool is_typed_storage = true; |
| at::Storage storage = _r.storage(0, storage_scalar_type, is_typed_storage); |
| TORCH_CHECK(storage_scalar_type == self.dtype() || !is_typed_storage, |
| "Expected a Storage of type ", self.dtype(), |
| " or an _UntypedStorage, but got type ", storage_scalar_type, |
| " for argument 1 'storage'"); |
| auto dispatch_set_ = [](const Tensor& self, Storage source) -> Tensor { |
| pybind11::gil_scoped_release no_gil; |
| return self.set_(source); |
| }; |
| return wrap(dispatch_set_(self, storage)); |
| } |
| case 2: { |
| // aten::set_.source_Storage_storage_offset(Tensor(a!) self, Storage |
| // source, int storage_offset, int[] size, int[] stride=[]) -> Tensor(a!) |
| at::ScalarType storage_scalar_type; |
| bool is_typed_storage = true; |
| at::Storage storage = _r.storage(0, storage_scalar_type, is_typed_storage); |
| TORCH_CHECK(storage_scalar_type == self.dtype() || !is_typed_storage, |
| "Expected a Storage of type ", self.dtype(), |
| " or an _UntypedStorage, but got type ", storage_scalar_type, |
| " for argument 1 'storage'"); |
| auto dispatch_set_ = [](const Tensor& self, |
| Storage source, |
| int64_t storage_offset, |
| IntArrayRef size, |
| IntArrayRef stride) -> Tensor { |
| pybind11::gil_scoped_release no_gil; |
| return self.set_(source, storage_offset, size, stride); |
| }; |
| return wrap(dispatch_set_( |
| self, storage, _r.toInt64(1), _r.intlist(2), _r.intlist(3))); |
| } |
| case 3: { |
| // aten::set_.source_Tensor(Tensor(a!) self, Tensor source) -> Tensor(a!) |
| auto dispatch_set_ = [](const Tensor& self, const Tensor& source) -> Tensor { |
| TORCH_INTERNAL_ASSERT(source.dtype() == self.dtype()); |
| pybind11::gil_scoped_release no_gil; |
| return self.set_(source); |
| }; |
| return wrap(dispatch_set_(self, _r.tensor(0))); |
| } |
| case 4: { |
| // aten::set_.source_Tensor_storage_offset(Tensor(a!) self, Tensor |
| // source, int storage_offset, int[] size, int[] stride=[]) -> Tensor(a!) |
| at::Tensor storage = _r.tensor(0); |
| auto dispatch_set_ = [](const Tensor& self, |
| const Tensor& source, |
| int64_t storage_offset, |
| IntArrayRef size, |
| IntArrayRef stride) -> Tensor { |
| pybind11::gil_scoped_release no_gil; |
| return self.set_(source, storage_offset, size, stride); |
| }; |
| return wrap(dispatch_set_( |
| self, storage, _r.toInt64(1), _r.intlist(2), _r.intlist(3))); |
| } |
| } |
| Py_RETURN_NONE; |
| END_HANDLE_TH_ERRORS |
| } |
| |
| // XXX: ops that are bound here are not exposed to the C++ api nor the JIT. |
| // Any new ops added here should be accompanied with a comment why they are not |
| // being registered through native_functions.yaml, and be tagged cpp / JIT |
| PyMethodDef variable_methods[] = { |
| // These magic methods are all implemented on python object to wrap NotImplementedError |
| {"__add__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_add>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__radd__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_add>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__iadd__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_add_>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__rmul__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_mul>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__mul__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_mul>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__imul__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_mul_>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__sub__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_sub>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__isub__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_sub_>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__div__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_div>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__truediv__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_div>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__floordiv__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_floor_divide>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__idiv__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_div_>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__ifloordiv__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_floor_divide_>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__mod__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_remainder>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__imod__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_remainder_>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__eq__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_eq>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__ne__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_ne>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__lt__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_lt>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__le__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_le>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__gt__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_gt>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__ge__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_ge>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__rand__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_bitwise_and>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__ror__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_bitwise_or>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__rxor__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_bitwise_xor>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"__bool__", THPVariable_bool_scalar, METH_NOARGS, NULL}, |
| {"__float__", THPVariable_float_scalar, METH_NOARGS, NULL}, |
| {"__complex__", THPVariable_complex_scalar, METH_NOARGS, NULL}, |
| {"__int__", THPVariable_integral_scalar, METH_NOARGS, NULL}, |
| {"__long__", THPVariable_integral_scalar, METH_NOARGS, NULL}, |
| {"__index__", THPVariable_index_scalar, METH_NOARGS, NULL}, |
| {"__nonzero__", THPVariable_bool_scalar, METH_NOARGS, NULL}, |
| {"__invert__", THPVariable_invert, METH_NOARGS, NULL}, |
| {"__matmul__", castPyCFunctionWithKeywords(TypeError_to_NotImplemented_<THPVariable_matmul>), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"_is_view", THPVariable__is_view, METH_NOARGS, NULL}, |
| {"apply_", THPVariable_apply_, METH_O, NULL}, |
| {"bfloat16", castPyCFunctionWithKeywords(THPVariable_bfloat16), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"byte", castPyCFunctionWithKeywords(THPVariable_byte), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"char", castPyCFunctionWithKeywords(THPVariable_char), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"contiguous", castPyCFunctionWithKeywords(THPVariable_contiguous), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"copy_", castPyCFunctionWithKeywords(THPVariable_copy_), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"cpu", castPyCFunctionWithKeywords(THPVariable_cpu), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"cuda", castPyCFunctionWithKeywords(THPVariable_cuda), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"xpu", castPyCFunctionWithKeywords(THPVariable_xpu), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"ipu", castPyCFunctionWithKeywords(THPVariable_ipu), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"data_ptr", THPVariable_data_ptr, METH_NOARGS, NULL}, |
| {"dim", THPVariable_dim, METH_NOARGS, NULL}, |
| {"has_names", THPVariable_has_names, METH_NOARGS, NULL}, |
| {"double", castPyCFunctionWithKeywords(THPVariable_double), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"cdouble", castPyCFunctionWithKeywords(THPVariable_cdouble), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"element_size", THPVariable_element_size, METH_NOARGS, NULL}, |
| {"float", castPyCFunctionWithKeywords(THPVariable_float), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"cfloat", castPyCFunctionWithKeywords(THPVariable_cfloat), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"get_device", THPVariable_get_device, METH_NOARGS, NULL}, |
| {"bool", castPyCFunctionWithKeywords(THPVariable_bool), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"half", castPyCFunctionWithKeywords(THPVariable_half), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"int", castPyCFunctionWithKeywords(THPVariable_int), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"is_contiguous", castPyCFunctionWithKeywords(THPVariable_is_contiguous), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"item", THPVariable_item, METH_NOARGS, NULL}, |
| {"long", castPyCFunctionWithKeywords(THPVariable_long), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"map_", castPyCFunctionWithKeywords(THPVariable_map_), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"map2_", castPyCFunctionWithKeywords(THPVariable_map2_), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"ndimension", THPVariable_dim, METH_NOARGS, NULL}, |
| {"nelement", THPVariable_numel, METH_NOARGS, NULL}, |
| {"new", castPyCFunctionWithKeywords(THPVariable_new), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"new_tensor", castPyCFunctionWithKeywords(THPVariable_new_tensor), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"nonzero", castPyCFunctionWithKeywords(THPVariable_nonzero), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"numel", THPVariable_numel, METH_NOARGS, NULL}, |
| {"numpy", castPyCFunctionWithKeywords(THPVariable_numpy), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"requires_grad_", castPyCFunctionWithKeywords(THPVariable_requires_grad_), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"set_", castPyCFunctionWithKeywords(THPVariable_set_), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"short", castPyCFunctionWithKeywords(THPVariable_short), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"size", castPyCFunctionWithKeywords(THPVariable_size), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"_storage", THPVariable_storage, METH_NOARGS, NULL}, |
| {"storage_offset", THPVariable_storage_offset, METH_NOARGS, NULL}, |
| {"stride", castPyCFunctionWithKeywords(THPVariable_stride), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"to", castPyCFunctionWithKeywords(THPVariable_to), METH_VARARGS | METH_KEYWORDS, NULL}, |
| {"tolist", THPVariable_tolist, METH_NOARGS, NULL}, |
| {"type", castPyCFunctionWithKeywords(THPVariable_type), METH_VARARGS | METH_KEYWORDS, NULL}, |
| ${py_method_defs} |
| {NULL} |
| }; |
| |
| }} // namespace torch::autograd |