blob: 909fb15da43768234afa677f93ab469455ca2788 [file] [log] [blame]
"""Functional interface"""
import torch
from . import _functions
from .modules import utils
from torch.nn._functions.conv import ConvNd
from .modules.utils import _single, _pair, _triple
# Convolutions
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 2D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv2d` for details and output shape.
Args:
input: input tensor (minibatch x in_channels x iH x iW)
weight: filters tensor (out_channels, in_channels/groups, kH, kW)
bias: optional bias tensor (out_channels)
stride: the stride of the convolving kernel. Can be a single number or
a tuple (sh x sw). Default: 1
padding: implicit zero padding on the input. Can be a single number or
a tuple. Default: 0
groups: split input into groups, in_channels should be divisible by
the number of groups
Examples:
>>> # With square kernels and equal stride
>>> filters = autograd.Variable(torch.randn(8,4,3,3))
>>> inputs = autograd.Variable(torch.randn(1,4,5,5))
>>> F.conv2d(inputs, filters, padding=1)
"""
f = ConvNd(_pair(stride), _pair(padding), _pair(dilation), False,
_pair(0), groups)
return f(input, weight, bias) if bias is not None else f(input, weight)
def conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 1D convolution over an input signal composed of several input
planes.
See :class:`~torch.nn.Conv1d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iW)
weight: filters of shape (out_channels, in_channels, kW)
bias: optional bias of shape (out_channels)
stride: the stride of the convolving kernel, default 1
Examples:
>>> filters = autograd.Variable(torch.randn(33, 16, 3))
>>> inputs = autograd.Variable(torch.randn(20, 16, 50))
>>> F.conv1d(inputs, filters)
"""
f = ConvNd(_single(stride), _single(padding), _single(dilation), False,
_single(0), groups)
return f(input, weight, bias) if bias is not None else f(input, weight)
def conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1):
"""Applies a 3D convolution over an input image composed of several input
planes.
See :class:`~torch.nn.Conv3d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
weight: filters tensor of shape (out_channels, in_channels, kT, kH, kW)
bias: optional bias tensor of shape (out_channels)
stride: the stride of the convolving kernel. Can be a single number or
a tuple (st x sh x sw). Default: 1
padding: implicit zero padding on the input. Can be a single number or
a tuple. Default: 0
Examples:
>>> filters = autograd.Variable(torch.randn(33, 16, 3, 3, 3))
>>> inputs = autograd.Variable(torch.randn(20, 16, 50, 10, 20))
>>> F.conv3d(inputs)
"""
f = ConvNd(_triple(stride), _triple(padding), _triple(dilation), False,
_triple(0), groups)
return f(input, weight, bias) if bias is not None else f(input, weight)
def conv_transpose1d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1):
f = ConvNd(_single(stride), _single(padding), _single(1), True,
_single(output_padding), groups)
return f(input, weight, bias) if bias is not None else f(input, weight)
def conv_transpose2d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1):
"""Applies a 2D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution".
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iH x iW)
weight: filters of shape (in_channels x out_channels x kH x kW)
bias: optional bias of shape (out_channels)
stride: the stride of the convolving kernel, a single number or a
tuple (sh x sw). Default: 1
padding: implicit zero padding on the input, a single number or a
tuple (padh x padw). Default: 0
groups: split input into groups, in_channels should be divisible by
the number of groups
output_padding: A zero-padding of 0 <= padding < stride that should be
added to the output. Can be a single number or a tuple. Default: 0
"""
f = ConvNd(_pair(stride), _pair(padding), _pair(1), True,
_pair(output_padding), groups)
return f(input, weight, bias) if bias is not None else f(input, weight)
def conv_transpose3d(input, weight, bias=None, stride=1, padding=0,
output_padding=0, groups=1):
"""Applies a 3D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution"
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
Args:
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
weight: filters of shape (in_channels x out_channels x kH x kW)
bias: optional bias of shape (out_channels)
stride: the stride of the convolving kernel, a single number or a
tuple (sh x sw). Default: 1
padding: implicit zero padding on the input, a single number or a
tuple (padh x padw). Default: 0
"""
f = ConvNd(_triple(stride), _triple(padding), _triple(1), True,
_triple(output_padding), groups)
return f(input, weight, bias) if bias is not None else f(input, weight)
# Pooling
def avg_pool1d(input, kernel_size, stride=None, padding=0,
ceil_mode=False, count_include_pad=True):
r"""Applies a 1D average pooling over an input signal composed of several
input planes.
See :class:`~torch.nn.AvgPool1d` for details and output shape.
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on both sides
ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
count_include_pad: when True, will include the zero-padding in the averaging calculation
Example:
>>> # pool of square window of size=3, stride=2
>>> input = Variable(torch.Tensor([[[1,2,3,4,5,6,7]]]))
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
Variable containing:
(0 ,.,.) =
2 4 6
[torch.FloatTensor of size 1x1x3]
"""
if input.dim() != 3:
raise ValueError('expected 3D input (got {} dimensions)'
.format(input.dim()))
kernel_size = _single(kernel_size) + (1,)
stride = _single(stride) + (1,) if stride is not None else kernel_size
padding = _single(padding) + (0,)
f = _functions.thnn.AvgPool2d(kernel_size, stride, padding,
ceil_mode, count_include_pad)
return f(input.unsqueeze(3)).squeeze(3)
def avg_pool2d(input, kernel_size, stride=None, padding=0,
ceil_mode=False, count_include_pad=True):
"""Applies 2D average-pooling operation in kh x kw regions by step size
dh x dw steps. The number of output features is equal to the number of
input planes.
See :class:`~torch.nn.AvgPool2d` for details and output shape.
Args:
input: input tensor (minibatch x in_channels x iH x iW)
kernel_size: size of the pooling region, a single number or a
tuple (kh x kw)
stride: stride of the pooling operation, a single number or a
tuple (sh x sw). Default is equal to kernel size
padding: implicit zero padding on the input, a single number or
a tuple (padh x padw), Default: 0
ceil_mode: operation that defines spatial output shape
count_include_pad: divide by the number of elements inside the
original non-padded image or kh * kw
"""
return _functions.thnn.AvgPool2d(kernel_size, stride, padding,
ceil_mode, count_include_pad)(input)
def avg_pool3d(input, kernel_size, stride=None):
"""Applies 3D average-pooling operation in kt x kh x kw regions by step
size kt x dh x dw steps. The number of output features is equal to the
number of input planes / dt.
"""
return _functions.thnn.AvgPool3d(kernel_size, stride)(input)
# share the same interface
def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
return _functions.thnn.MaxPool1d(kernel_size, stride, padding, dilation,
return_indices, ceil_mode)(input)
def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
return _functions.thnn.MaxPool2d(kernel_size, stride, padding, dilation,
return_indices, ceil_mode)(input)
def max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1,
ceil_mode=False, return_indices=False):
return _functions.thnn.MaxPool3d(kernel_size, stride, padding, dilation,
return_indices, ceil_mode)(input)
def _unpool_output_size(input, kernel_size, stride, padding, output_size):
input_size = input.size()
default_size = []
for d in range(len(kernel_size)):
default_size.append((input_size[d + 2] - 1) * stride[d] +
kernel_size[d] - 2 * padding[d])
if output_size is None:
return default_size
output_size = list(output_size)
if len(output_size) == len(kernel_size) + 2:
output_size = output_size[2:]
if len(output_size) != len(kernel_size):
raise ValueError("output_size should be a sequence containing "
"{} or {} elements, but it has a length of '{}'"
.format(len(kernel_size), len(kernel_size) + 2,
len(output_size)))
for d in range(len(kernel_size)):
min_size = default_size[d] - stride[d]
max_size = default_size[d] + stride[d]
if not (min_size < output_size[d] < max_size):
raise ValueError(
'invalid output_size "{}" (dim {} must be between {} and {})'
.format(output_size, d, min_size, max_size))
return output_size
def max_unpool1d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _single(kernel_size)
stride = _single(stride)
padding = _single(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
f = _functions.thnn.MaxUnpool2d(output_size + [1])
return f(input.unsqueeze(3), indices.unsqueeze(3)).squeeze(3)
def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
f = _functions.thnn.MaxUnpool2d(output_size)
return f(input, indices)
def max_unpool3d(input, indices, kernel_size, stride=None, padding=0,
output_size=None):
kernel_size = _triple(kernel_size)
stride = _triple(stride)
padding = _triple(padding)
output_size = _unpool_output_size(input, kernel_size, stride, padding,
output_size)
f = _functions.thnn.MaxUnpool3d(output_size, stride, padding)
return f(input, indices)
def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
kw, kh = utils._pair(kernel_size)
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
return out.mul(kw * kh).pow(1. / norm_type)
# Activation functions
def dropout(input, p=0.5, training=False, inplace=False):
return _functions.dropout.Dropout(p, training, inplace)(input)
def threshold(input, threshold, value, inplace=False):
return _functions.thnn.auto.Threshold(threshold, value, inplace)(input)
def relu(input, inplace=False):
return _functions.thnn.auto.Threshold(0, 0, inplace)(input)
def hardtanh(input, min_val=-1., max_val=1., inplace=False):
return _functions.thnn.auto.Hardtanh(min_val, max_val, inplace)(input)
def relu6(input, inplace=False):
return _functions.thnn.auto.Hardtanh(0, 6, inplace)(input)
def elu(input, alpha=1., inplace=False):
return _functions.thnn.auto.ELU(alpha, inplace)(input)
def leaky_relu(input, negative_slope=1e-2, inplace=False):
return _functions.thnn.auto.LeakyReLU(negative_slope, inplace)(input)
def prelu(input, weight):
return _functions.thnn.PReLU()(input, weight)
def rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False):
return _functions.thnn.RReLU(lower, upper, training, inplace)(input)
def logsigmoid(input):
return _functions.thnn.LogSigmoid()(input)
def hardshrink(input, lambd=0.5):
return _functions.thnn.auto.Hardshrink(lambd)(input)
def tanhshrink(input):
return input - torch.tanh(input)
def softsign(input):
return _functions.activation.Softsign()(input)
def softplus(input, beta=1, threshold=20):
return _functions.thnn.auto.Softplus(beta, threshold)(input)
def softmin(input):
return _functions.thnn.Softmin()(input)
def softmax(input):
return _functions.thnn.auto.Softmax()(input)
def softshrink(input, lambd=0.5):
return _functions.thnn.auto.Softshrink(lambd)(input)
def log_softmax(input):
return _functions.thnn.LogSoftmax()(input)
def tanh(input):
return torch.tanh(input)
def sigmoid(input):
return torch.sigmoid(input)
# etc.
def linear(input, weight, bias=None):
state = _functions.linear.Linear()
return bias and state(input, weight, bias) or state(input, weight)
def batch_norm(input, running_mean, running_var, weight=None, bias=None,
training=False, momentum=0.1, eps=1e-5):
state = _functions.batchnorm.BatchNorm(
running_mean, running_var, training, momentum, eps)
return weight and state(input, weight, bias) or state(input)
# loss
def nll_loss(input, target, weight=None, size_average=True):
r"""The negative log likelihood loss.
See :class:`~torch.nn.NLLLoss` for details.
Args:
input: :math:`(N, C)` where `C = number of classes`
target: :math:`(N)` where each value is `0 <= targets[i] <= C-1`
weight (Variable, optional): a manual rescaling weight given to each
class. If given, has to be a Variable of size "nclasses"
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch.
Attributes:
weight: the class-weights given as input to the constructor
Example:
>>> # input is of size nBatch x nClasses = 3 x 5
>>> input = autograd.Variable(torch.randn(3, 5))
>>> # each element in target has to have 0 <= value < nclasses
>>> target = autograd.Variable(torch.LongTensor([1, 0, 4]))
>>> output = F.nll_loss(F.log_softmax(input), target)
>>> output.backward()
"""
return _functions.thnn.NLLLoss(size_average, weight=weight)(input, target)
def kl_div(input, target, size_average=True):
r"""The `Kullback-Leibler divergence`_ Loss.
See :class:`~torch.nn.KLDivLoss` for details.
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
size_average: if True the output is divided by the number of elements
in input tensor
"""
return _functions.thnn.KLDivLoss(size_average)(input, target)
def cross_entropy(input, target, weight=None, size_average=True):
r"""This criterion combines `log_softmax` and `nll_loss` in one single class.
See :class:`torch.nn.CrossEntropyLoss` for details.
Args:
input: Variable :math:`(N, C)` where `C = number of classes`
target: Variable :math:`(N)` where each value is `0 <= targets[i] <= C-1`
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size "nclasses"
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch.
"""
return nll_loss(log_softmax(input), target, weight, size_average)
def binary_cross_entropy(input, target, weight=None, size_average=True):
r"""Function that measures the Binary Cross Entropy
between the target and the output:
See :class:`~torch.nn.BCELoss` for details.
Args:
input: Variable of arbitrary shape
target: Variable of the same shape as input
weight (Variable, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): By default, the losses are averaged
over observations for each minibatch. However, if the field
sizeAverage is set to False, the losses are instead summed
for each minibatch.
"""
return _functions.thnn.BCELoss(size_average, weight=weight)(input, target)
def smooth_l1_loss(input, target, size_average=True):
return _functions.thnn.SmoothL1Loss(size_average)(input, target)
def pixel_shuffle(input, upscale_factor):
r"""Rearranges elements in a tensor of shape ``[*, C*r^2, H, W]`` to a
tensor of shape ``[C, H*r, W*r]``.
See :class:`~torch.nn.PixelShuffle` for details.
Args:
input (Variable): Input
upscale_factor (int): factor to increase spatial resolution by
Examples:
>>> ps = nn.PixelShuffle(3)
>>> input = autograd.Variable(torch.Tensor(1, 9, 4, 4))
>>> output = ps(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
"""
batch_size, channels, in_height, in_width = input.size()
channels //= upscale_factor ** 2
out_height = in_height * upscale_factor
out_width = in_width * upscale_factor
input_view = input.contiguous().view(
batch_size, channels, upscale_factor, upscale_factor,
in_height, in_width)
shuffle_out = input_view.permute(0, 1, 4, 2, 5, 3).contiguous()
return shuffle_out.view(batch_size, channels, out_height, out_width)
def upsample_nearest(input, size=None, scale_factor=None):
"""Upsamples the input, using nearest neighbours' pixel values.
Currently only spatial upsampling is supported (i.e. expected inputs
are 4 dimensional).
Args:
input (Variable): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
"""
return _functions.thnn.UpsamplingNearest2d(size, scale_factor)(input)
def upsample_bilinear(input, size=None, scale_factor=None):
"""Upscales the input, using the bilinear upsampling.
Currently only spatial upsampling is supported (i.e. expected inputs
are 4 dimensional).
Args:
input (Variable): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
"""
return _functions.thnn.UpsamplingBilinear2d(size, scale_factor)(input)