blob: 9a86176c9a4f52e09188afad125bccec7e6d3e49 [file] [log] [blame]
#pragma once
#include <cstdint>
#include <memory>
#include <mutex>
#include <type_traits>
#include <utility>
#include <ATen/Context.h>
#include <c10/core/DeviceType.h>
#include <c10/macros/Macros.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/variant.h>
#include <torch/csrc/profiler/containers.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/profiler/util.h>
namespace torch {
namespace profiler {
namespace impl {
enum class EventType : uint8_t {
TorchOp = 0,
Backend,
Allocation
};
template <EventType>
struct ExtraFields;
struct TorchOpBasicFields {
uint64_t correlation_id_;
int64_t sequence_number_;
uint64_t forward_tid_;
at::RecordScope scope_;
bool is_async_;
int64_t debug_handle_;
std::string name_;
// Set in the exit callback.
uint64_t end_tid_{0};
};
struct Inputs {
std::vector<std::vector<int64_t>> shapes_;
std::vector<std::string> dtypes_;
};
using jit_stack_t = std::vector<std::string>;
using jit_modules_t = std::vector<std::string>;
using extra_args_t = std::unordered_map<std::string, c10::IValue>;
struct FallbackPair {
CUDAEventStub cuda_event_start_ = nullptr;
CUDAEventStub cuda_event_end_ = nullptr;
};
template <>
struct ExtraFields<EventType::TorchOp> : TorchOpBasicFields {
ExtraFields(
TorchOpBasicFields&& f,
time_t end_time_ns,
Inputs&& inputs,
jit_stack_t&& jit_stack,
jit_modules_t&& jit_modules,
extra_args_t&& extra_args,
FallbackPair&& gpu_fallback)
: TorchOpBasicFields(std::move(f)),
end_time_ns_{end_time_ns},
inputs_{std::move(inputs)},
jit_stack_{std::move(jit_stack)},
jit_modules_{std::move(jit_modules)},
extra_args_{std::move(extra_args)},
gpu_fallback_{std::move(gpu_fallback)} {}
time_t end_time_ns_;
Inputs inputs_;
jit_stack_t jit_stack_;
jit_modules_t jit_modules_;
extra_args_t extra_args_;
FallbackPair gpu_fallback_;
};
template <>
struct ExtraFields<EventType::Backend> {
int64_t start_time_us_;
int64_t end_time_us_;
int64_t debug_handle_;
at::RecordScope scope_;
std::string name_;
std::string backend_;
jit_stack_t jit_stack_;
jit_modules_t jit_modules_;
};
template <>
struct ExtraFields<EventType::Allocation> {
torch::profiler::impl::approx_time_t start_time_;
void* ptr_;
int64_t alloc_size_;
int64_t total_allocated_;
int64_t total_reserved_;
c10::DeviceType device_type_;
c10::DeviceIndex device_index_;
};
// For performance.
static_assert(
std::is_pod<ExtraFields<EventType::Allocation>>::value,
"Non-POD member of ExtraFields<EventType::Allocation>.");
struct TORCH_API Result : public std::enable_shared_from_this<Result> {
template <typename... Args>
[[nodiscard]] static std::shared_ptr<Result> create(Args... args) {
return std::shared_ptr<Result>(new Result(std::forward<Args>(args)...));
}
std::string name() const;
torch::profiler::impl::kineto::KinetoActivityType kinetoType() const;
uint64_t correlationID() const;
int64_t endTimeNS() const;
uint64_t endTID() const;
c10::DeviceType deviceType() const;
int64_t start_time_ns_;
uint64_t start_tid_;
kineto::DeviceAndResource kineto_info_;
c10::variant<
ExtraFields<EventType::TorchOp>,
ExtraFields<EventType::Backend>,
ExtraFields<EventType::Allocation>>
extra_fields_;
private:
template <EventType E>
Result(
int64_t start_time_ns,
uint64_t start_tid,
kineto::DeviceAndResource kineto_info,
ExtraFields<E>&& extra_fields)
: start_time_ns_{start_time_ns},
start_tid_{start_tid},
kineto_info_{kineto_info},
extra_fields_{std::move(extra_fields)} {}
};
struct KinetoObserverContext : public at::ObserverContext {
struct Event {
TorchOpBasicFields basic_fields_;
approx_time_t start_time_;
// Set in the exit callback.
approx_time_t end_time_{std::numeric_limits<approx_time_t>::min()};
};
explicit KinetoObserverContext(Event* event) : event_{event} {}
Event* event_;
FallbackPair* fallback_{nullptr};
};
constexpr int IO_ENCODER_DEFAULT_BLOCK_SIZE = 1024;
// InputOutputEncoder
// Stores each op_events' shapes and dtypes into a contiguous AppendOnlyList
// so that we no longer create vectors for shapes and dtypes on every op.
// Those vectors can be created during post-processing.
class InputOutputEncoder final {
public:
void push(c10::ArrayRef<const c10::IValue> values);
// Used during post-processing to create vectors for shapes and dtype.
auto getNextShapesAndDtypes();
void clear();
private:
enum class Tag {
Tensor = 0,
UndefinedTensor,
TensorListBegin, // TODO: generalize to other lists.
Scalar,
Other,
TERMINATOR
};
struct TensorMetadata {
void* ptr_;
c10::ScalarType dtype_;
uint32_t dim_;
};
void push(const at::Tensor& t);
AppendOnlyList<Tag, IO_ENCODER_DEFAULT_BLOCK_SIZE> tags_;
AppendOnlyList<TensorMetadata, IO_ENCODER_DEFAULT_BLOCK_SIZE> tensor_metadata_;
AppendOnlyList<int64_t, IO_ENCODER_DEFAULT_BLOCK_SIZE> tensor_sizes_;
};
class TORCH_API ThreadLocalSubqueue {
public:
ThreadLocalSubqueue(const uint64_t tid, const ProfilerConfig& config);
std::unique_ptr<KinetoObserverContext> begin_op(const at::RecordFunction& fn, uint64_t correlation_id);
template <class... Args>
void emplace_backend_event(Args&&... args) {
backend_events_.emplace_back(std::forward<Args>(args)...);
}
template <class... Args>
void emplace_allocation_event(Args&&... args) {
allocations_.emplace_back(std::forward<Args>(args)...);
}
uint64_t tid() const {
return tid_;
}
const kineto::DeviceAndResource& kineto_info() const {
return kineto_info_;
}
private:
uint64_t tid_;
ProfilerConfig config_;
kineto::DeviceAndResource kineto_info_;
friend class RecordQueue;
// See `containers.h` for block size benchmarks.
static constexpr size_t BlockSize = 512;
AppendOnlyList<KinetoObserverContext::Event, BlockSize> op_events_;
// report_input_shapes
InputOutputEncoder inputs_outputs_;
// with_stack
AppendOnlyList<jit_stack_t, BlockSize> jit_stack_;
// with_modules
AppendOnlyList<jit_modules_t, BlockSize> jit_modules_;
// with_flops
AppendOnlyList<extra_args_t, BlockSize> extra_args_;
// ProfilerState::KINETO_GPU_FALLBACK
AppendOnlyList<FallbackPair, BlockSize> gpu_fallback_;
// reportBackendEventToActiveKinetoProfiler
AppendOnlyList<ExtraFields<EventType::Backend>, BlockSize> backend_events_;
// reportMemoryUsage
AppendOnlyList<ExtraFields<EventType::Allocation>, BlockSize> allocations_;
};
class TORCH_API RecordQueue {
public:
explicit RecordQueue(const ProfilerConfig& config);
ThreadLocalSubqueue* getSubqueue();
// NB: This is a destructive operation.
std::vector<std::shared_ptr<Result>> getRecords(
std::function<time_t(approx_time_t)> time_converter);
private:
uint32_t id_;
ProfilerConfig config_;
ska::flat_hash_map<uint64_t, std::unique_ptr<ThreadLocalSubqueue>> sub_queues_;
std::mutex sub_queue_mutex_;
};
} // namespace impl
} // namespace profiler
} // namespace torch