blob: 588979f652cac83b5f5aab8a4d051b5fbc5019d8 [file] [log] [blame]
import torch
import math
from pathlib import PurePosixPath
from torch.testing._internal.common_utils import \
(TestCase, make_tensor, run_tests, slowTest)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, onlyCUDA, onlyOnCPUAndCUDA, dtypes)
from torch.testing._internal import mypy_wrapper
from torch.testing._internal import print_test_stats
# For testing TestCase methods and torch.testing functions
class TestTesting(TestCase):
# Ensure that assertEqual handles numpy arrays properly
@dtypes(*(torch.testing.get_all_dtypes(include_half=True, include_bfloat16=False,
include_bool=True, include_complex=True)))
def test_assertEqual_numpy(self, device, dtype):
S = 10
test_sizes = [
(),
(0,),
(S,),
(S, S),
(0, S),
(S, 0)]
for test_size in test_sizes:
a = make_tensor(test_size, device, dtype, low=-5, high=5)
a_n = a.cpu().numpy()
msg = f'size: {test_size}'
self.assertEqual(a_n, a, rtol=0, atol=0, msg=msg)
self.assertEqual(a, a_n, rtol=0, atol=0, msg=msg)
self.assertEqual(a_n, a_n, rtol=0, atol=0, msg=msg)
# Tests that when rtol or atol (including self.precision) is set, then
# the other is zeroed.
# TODO: this is legacy behavior and should be updated after test
# precisions are reviewed to be consistent with torch.isclose.
@onlyOnCPUAndCUDA
def test__comparetensors_legacy(self, device):
a = torch.tensor((10000000.,))
b = torch.tensor((10000002.,))
x = torch.tensor((1.,))
y = torch.tensor((1. + 1e-5,))
# Helper for reusing the tensor values as scalars
def _scalar_helper(a, b, rtol=None, atol=None):
return self._compareScalars(a.item(), b.item(), rtol=rtol, atol=atol)
for op in (self._compareTensors, _scalar_helper):
# Tests default
result, debug_msg = op(a, b)
self.assertTrue(result)
# Tests setting atol
result, debug_msg = op(a, b, atol=2, rtol=0)
self.assertTrue(result)
# Tests setting atol too small
result, debug_msg = op(a, b, atol=1, rtol=0)
self.assertFalse(result)
# Tests setting rtol too small
result, debug_msg = op(x, y, atol=0, rtol=1.05e-5)
self.assertTrue(result)
# Tests setting rtol too small
result, debug_msg = op(x, y, atol=0, rtol=1e-5)
self.assertFalse(result)
@onlyOnCPUAndCUDA
def test__comparescalars_debug_msg(self, device):
# float x float
result, debug_msg = self._compareScalars(4., 7.)
expected_msg = ("Comparing 4.0 and 7.0 gives a difference of 3.0, "
"but the allowed difference with rtol=1.3e-06 and "
"atol=1e-05 is only 1.9100000000000003e-05!")
self.assertEqual(debug_msg, expected_msg)
# complex x complex, real difference
result, debug_msg = self._compareScalars(complex(1, 3), complex(3, 1))
expected_msg = ("Comparing the real part 1.0 and 3.0 gives a difference "
"of 2.0, but the allowed difference with rtol=1.3e-06 "
"and atol=1e-05 is only 1.39e-05!")
self.assertEqual(debug_msg, expected_msg)
# complex x complex, imaginary difference
result, debug_msg = self._compareScalars(complex(1, 3), complex(1, 5.5))
expected_msg = ("Comparing the imaginary part 3.0 and 5.5 gives a "
"difference of 2.5, but the allowed difference with "
"rtol=1.3e-06 and atol=1e-05 is only 1.715e-05!")
self.assertEqual(debug_msg, expected_msg)
# complex x int
result, debug_msg = self._compareScalars(complex(1, -2), 1)
expected_msg = ("Comparing the imaginary part -2.0 and 0.0 gives a "
"difference of 2.0, but the allowed difference with "
"rtol=1.3e-06 and atol=1e-05 is only 1e-05!")
self.assertEqual(debug_msg, expected_msg)
# NaN x NaN, equal_nan=False
result, debug_msg = self._compareScalars(float('nan'), float('nan'), equal_nan=False)
expected_msg = ("Found nan and nan while comparing and either one is "
"nan and the other isn't, or both are nan and equal_nan "
"is False")
self.assertEqual(debug_msg, expected_msg)
# Checks that compareTensors provides the correct debug info
@onlyOnCPUAndCUDA
def test__comparetensors_debug_msg(self, device):
# Acquires atol that will be used
atol = max(1e-05, self.precision)
# Checks float tensor comparisons (2D tensor)
a = torch.tensor(((0, 6), (7, 9)), device=device, dtype=torch.float32)
b = torch.tensor(((0, 7), (7, 22)), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 4) "
"whose difference(s) exceeded the margin of error (including 0 nan comparisons). "
"The greatest difference was 13.0 (9.0 vs. 22.0), "
"which occurred at index (1, 1).").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks float tensor comparisons (with extremal values)
a = torch.tensor((float('inf'), 5, float('inf')), device=device, dtype=torch.float32)
b = torch.tensor((float('inf'), float('nan'), float('-inf')), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 3) "
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
"The greatest difference was nan (5.0 vs. nan), "
"which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks float tensor comparisons (with finite vs nan differences)
a = torch.tensor((20, -6), device=device, dtype=torch.float32)
b = torch.tensor((-1, float('nan')), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 2) "
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
"The greatest difference was nan (-6.0 vs. nan), "
"which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks int tensor comparisons (1D tensor)
a = torch.tensor((1, 2, 3, 4), device=device)
b = torch.tensor((2, 5, 3, 4), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Found 2 different element(s) (out of 4), "
"with the greatest difference of 3 (2 vs. 5) "
"occuring at index 1.")
self.assertEqual(debug_msg, expected_msg)
# Checks bool tensor comparisons (0D tensor)
a = torch.tensor((True), device=device)
b = torch.tensor((False), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Found 1 different element(s) (out of 1), "
"with the greatest difference of 1 (1 vs. 0) "
"occuring at index 0.")
self.assertEqual(debug_msg, expected_msg)
# Checks complex tensor comparisons (real part)
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
b = torch.tensor((1 - 1j, 1 + 3j), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Real parts failed to compare as equal! "
"With rtol=1.3e-06 and atol={0}, "
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
"margin of error (including 0 nan comparisons). The greatest difference was "
"3.0 (4.0 vs. 1.0), which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks complex tensor comparisons (imaginary part)
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
b = torch.tensor((1 - 1j, 4 - 21j), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Imaginary parts failed to compare as equal! "
"With rtol=1.3e-06 and atol={0}, "
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
"margin of error (including 0 nan comparisons). The greatest difference was "
"24.0 (3.0 vs. -21.0), which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks size mismatch
a = torch.tensor((1, 2), device=device)
b = torch.tensor((3), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Attempted to compare equality of tensors "
"with different sizes. Got sizes torch.Size([2]) and torch.Size([]).")
self.assertEqual(debug_msg, expected_msg)
# Checks dtype mismatch
a = torch.tensor((1, 2), device=device, dtype=torch.long)
b = torch.tensor((1, 2), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b, exact_dtype=True)
expected_msg = ("Attempted to compare equality of tensors "
"with different dtypes. Got dtypes torch.int64 and torch.float32.")
self.assertEqual(debug_msg, expected_msg)
# Checks device mismatch
if self.device_type == 'cuda':
a = torch.tensor((5), device='cpu')
b = torch.tensor((5), device=device)
result, debug_msg = self._compareTensors(a, b, exact_device=True)
expected_msg = ("Attempted to compare equality of tensors "
"on different devices! Got devices cpu and cuda:0.")
self.assertEqual(debug_msg, expected_msg)
# Helper for testing _compareTensors and _compareScalars
# Works on single element tensors
def _comparetensors_helper(self, tests, device, dtype, equal_nan, exact_dtype=True, atol=1e-08, rtol=1e-05):
for test in tests:
a = torch.tensor((test[0],), device=device, dtype=dtype)
b = torch.tensor((test[1],), device=device, dtype=dtype)
# Tensor x Tensor comparison
compare_result, debug_msg = self._compareTensors(a, b, rtol=rtol, atol=atol,
equal_nan=equal_nan,
exact_dtype=exact_dtype)
self.assertEqual(compare_result, test[2])
# Scalar x Scalar comparison
compare_result, debug_msg = self._compareScalars(a.item(), b.item(),
rtol=rtol, atol=atol,
equal_nan=equal_nan)
self.assertEqual(compare_result, test[2])
def _isclose_helper(self, tests, device, dtype, equal_nan, atol=1e-08, rtol=1e-05):
for test in tests:
a = torch.tensor((test[0],), device=device, dtype=dtype)
b = torch.tensor((test[1],), device=device, dtype=dtype)
actual = torch.isclose(a, b, equal_nan=equal_nan, atol=atol, rtol=rtol)
expected = test[2]
self.assertEqual(actual.item(), expected)
# torch.close is not implemented for bool tensors
# see https://github.com/pytorch/pytorch/issues/33048
def test_isclose_comparetensors_bool(self, device):
tests = (
(True, True, True),
(False, False, True),
(True, False, False),
(False, True, False),
)
with self.assertRaises(RuntimeError):
self._isclose_helper(tests, device, torch.bool, False)
self._comparetensors_helper(tests, device, torch.bool, False)
@dtypes(torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64)
def test_isclose_comparetensors_integer(self, device, dtype):
tests = (
(0, 0, True),
(0, 1, False),
(1, 0, False),
)
self._isclose_helper(tests, device, dtype, False)
# atol and rtol tests
tests = [
(0, 1, True),
(1, 0, False),
(1, 3, True),
]
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
if dtype is torch.uint8:
tests = [
(-1, 1, False),
(1, -1, False)
]
else:
tests = [
(-1, 1, True),
(1, -1, True)
]
self._isclose_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
@onlyOnCPUAndCUDA
@dtypes(torch.float16, torch.float32, torch.float64)
def test_isclose_comparetensors_float(self, device, dtype):
tests = (
(0, 0, True),
(0, -1, False),
(float('inf'), float('inf'), True),
(-float('inf'), float('inf'), False),
(float('inf'), float('nan'), False),
(float('nan'), float('nan'), False),
(0, float('nan'), False),
(1, 1, True),
)
self._isclose_helper(tests, device, dtype, False)
self._comparetensors_helper(tests, device, dtype, False)
# atol and rtol tests
eps = 1e-2 if dtype is torch.half else 1e-6
tests = (
(0, 1, True),
(0, 1 + eps, False),
(1, 0, False),
(1, 3, True),
(1 - eps, 3, False),
(-.25, .5, True),
(-.25 - eps, .5, False),
(.25, -.5, True),
(.25 + eps, -.5, False),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# equal_nan = True tests
tests = (
(0, float('nan'), False),
(float('inf'), float('nan'), False),
(float('nan'), float('nan'), True),
)
self._isclose_helper(tests, device, dtype, True)
self._comparetensors_helper(tests, device, dtype, True)
# torch.close with equal_nan=True is not implemented for complex inputs
# see https://github.com/numpy/numpy/issues/15959
# Note: compareTensor will compare the real and imaginary parts of a
# complex tensors separately, unlike isclose.
@dtypes(torch.complex64, torch.complex128)
def test_isclose_comparetensors_complex(self, device, dtype):
tests = (
(complex(1, 1), complex(1, 1 + 1e-8), True),
(complex(0, 1), complex(1, 1), False),
(complex(1, 1), complex(1, 0), False),
(complex(1, 1), complex(1, float('nan')), False),
(complex(1, float('nan')), complex(1, float('nan')), False),
(complex(1, 1), complex(1, float('inf')), False),
(complex(float('inf'), 1), complex(1, float('inf')), False),
(complex(-float('inf'), 1), complex(1, float('inf')), False),
(complex(-float('inf'), 1), complex(float('inf'), 1), False),
(complex(float('inf'), 1), complex(float('inf'), 1), True),
(complex(float('inf'), 1), complex(float('inf'), 1 + 1e-4), False),
)
self._isclose_helper(tests, device, dtype, False)
self._comparetensors_helper(tests, device, dtype, False)
# atol and rtol tests
# atol and rtol tests
eps = 1e-6
tests = (
# Complex versions of float tests (real part)
(complex(0, 0), complex(1, 0), True),
(complex(0, 0), complex(1 + eps, 0), False),
(complex(1, 0), complex(0, 0), False),
(complex(1, 0), complex(3, 0), True),
(complex(1 - eps, 0), complex(3, 0), False),
(complex(-.25, 0), complex(.5, 0), True),
(complex(-.25 - eps, 0), complex(.5, 0), False),
(complex(.25, 0), complex(-.5, 0), True),
(complex(.25 + eps, 0), complex(-.5, 0), False),
# Complex versions of float tests (imaginary part)
(complex(0, 0), complex(0, 1), True),
(complex(0, 0), complex(0, 1 + eps), False),
(complex(0, 1), complex(0, 0), False),
(complex(0, 1), complex(0, 3), True),
(complex(0, 1 - eps), complex(0, 3), False),
(complex(0, -.25), complex(0, .5), True),
(complex(0, -.25 - eps), complex(0, .5), False),
(complex(0, .25), complex(0, -.5), True),
(complex(0, .25 + eps), complex(0, -.5), False),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# atol and rtol tests for isclose
tests = (
# Complex-specific tests
(complex(1, -1), complex(-1, 1), False),
(complex(1, -1), complex(2, -2), True),
(complex(-math.sqrt(2), math.sqrt(2)),
complex(-math.sqrt(.5), math.sqrt(.5)), True),
(complex(-math.sqrt(2), math.sqrt(2)),
complex(-math.sqrt(.501), math.sqrt(.499)), False),
(complex(2, 4), complex(1., 8.8523607), True),
(complex(2, 4), complex(1., 8.8523607 + eps), False),
(complex(1, 99), complex(4, 100), True),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# atol and rtol tests for compareTensors
tests = (
(complex(1, -1), complex(-1, 1), False),
(complex(1, -1), complex(2, -2), True),
(complex(1, 99), complex(4, 100), False),
)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# equal_nan = True tests
tests = (
(complex(1, 1), complex(1, float('nan')), False),
(complex(float('nan'), 1), complex(1, float('nan')), False),
(complex(float('nan'), 1), complex(float('nan'), 1), True),
)
with self.assertRaises(RuntimeError):
self._isclose_helper(tests, device, dtype, True)
self._comparetensors_helper(tests, device, dtype, True)
# Tests that isclose with rtol or atol values less than zero throws a
# RuntimeError
@dtypes(torch.bool, torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64,
torch.float16, torch.float32, torch.float64)
def test_isclose_atol_rtol_greater_than_zero(self, device, dtype):
t = torch.tensor((1,), device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=-1, rtol=1)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=1, rtol=-1)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=-1, rtol=-1)
@dtypes(torch.bool, torch.long, torch.float, torch.cfloat)
def test_make_tensor(self, device, dtype):
def check(size, low, high, requires_grad, discontiguous):
t = make_tensor(size, device, dtype, low=low, high=high,
requires_grad=requires_grad, discontiguous=discontiguous)
self.assertEqual(t.shape, size)
self.assertEqual(t.device, torch.device(device))
self.assertEqual(t.dtype, dtype)
low = -9 if low is None else low
high = 9 if high is None else high
if t.numel() > 0 and dtype in [torch.long, torch.float]:
self.assertTrue(t.le(high).logical_and(t.ge(low)).all().item())
if dtype in [torch.float, torch.cfloat]:
self.assertEqual(t.requires_grad, requires_grad)
else:
self.assertFalse(t.requires_grad)
if t.numel() > 1:
self.assertEqual(t.is_contiguous(), not discontiguous)
else:
self.assertTrue(t.is_contiguous())
for size in (tuple(), (0,), (1,), (1, 1), (2,), (2, 3), (8, 16, 32)):
check(size, None, None, False, False)
check(size, 2, 4, True, True)
def test_assert_messages(self, device):
self.assertIsNone(self._get_assert_msg(msg=None))
self.assertEqual("\nno_debug_msg", self._get_assert_msg("no_debug_msg"))
self.assertEqual("no_user_msg", self._get_assert_msg(msg=None, debug_msg="no_user_msg"))
self.assertEqual("debug_msg\nuser_msg", self._get_assert_msg(msg="user_msg", debug_msg="debug_msg"))
# The following tests (test_cuda_assert_*) are added to ensure test suite terminates early
# when CUDA assert was thrown. Because all subsequent test will fail if that happens.
# These tests are slow because it spawn another process to run test suite.
# See: https://github.com/pytorch/pytorch/issues/49019
@onlyCUDA
@slowTest
def test_cuda_assert_should_stop_common_utils_test_suite(self, device):
# test to ensure common_utils.py override has early termination for CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
class TestThatContainsCUDAAssertFailure(TestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self):
x = torch.rand(10, device='cuda')
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self):
x1 = torch.tensor([0., 1.], device='cuda')
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
if __name__ == '__main__':
run_tests()
""")
# should capture CUDA error
self.assertIn('CUDA error: device-side assert triggered', stderr)
# should run only 1 test because it throws unrecoverable error.
self.assertIn('Ran 1 test', stderr)
@onlyCUDA
@slowTest
def test_cuda_assert_should_stop_common_device_type_test_suite(self, device):
# test to ensure common_device_type.py override has early termination for CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
class TestThatContainsCUDAAssertFailure(TestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self, device):
x = torch.rand(10, device=device)
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestThatContainsCUDAAssertFailure,
globals(),
only_for='cuda'
)
if __name__ == '__main__':
run_tests()
""")
# should capture CUDA error
self.assertIn('CUDA error: device-side assert triggered', stderr)
# should run only 1 test because it throws unrecoverable error.
self.assertIn('Ran 1 test', stderr)
@onlyCUDA
@slowTest
def test_cuda_assert_should_not_stop_common_distributed_test_suite(self, device):
# test to ensure common_distributed.py override should not early terminate CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python
import torch
from torch.testing._internal.common_utils import (run_tests, slowTest)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_distributed import MultiProcessTestCase
class TestThatContainsCUDAAssertFailure(MultiProcessTestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self, device):
x = torch.rand(10, device=device)
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestThatContainsCUDAAssertFailure,
globals(),
only_for='cuda'
)
if __name__ == '__main__':
run_tests()
""")
# we are currently disabling CUDA early termination for distributed tests.
self.assertIn('Ran 2 test', stderr)
instantiate_device_type_tests(TestTesting, globals())
class TestMypyWrapper(TestCase):
def test_glob(self):
# can match individual files
self.assertTrue(mypy_wrapper.glob(
pattern='test/test_torch.py',
filename=PurePosixPath('test/test_torch.py'),
))
self.assertFalse(mypy_wrapper.glob(
pattern='test/test_torch.py',
filename=PurePosixPath('test/test_testing.py'),
))
# dir matters
self.assertFalse(mypy_wrapper.glob(
pattern='tools/codegen/utils.py',
filename=PurePosixPath('torch/nn/modules.py'),
))
self.assertTrue(mypy_wrapper.glob(
pattern='setup.py',
filename=PurePosixPath('setup.py'),
))
self.assertFalse(mypy_wrapper.glob(
pattern='setup.py',
filename=PurePosixPath('foo/setup.py'),
))
self.assertTrue(mypy_wrapper.glob(
pattern='foo/setup.py',
filename=PurePosixPath('foo/setup.py'),
))
# can match dirs
self.assertTrue(mypy_wrapper.glob(
pattern='torch',
filename=PurePosixPath('torch/random.py'),
))
self.assertTrue(mypy_wrapper.glob(
pattern='torch',
filename=PurePosixPath('torch/nn/cpp.py'),
))
self.assertFalse(mypy_wrapper.glob(
pattern='torch',
filename=PurePosixPath('tools/fast_nvcc/fast_nvcc.py'),
))
# can match wildcards
self.assertTrue(mypy_wrapper.glob(
pattern='tools/autograd/*.py',
filename=PurePosixPath('tools/autograd/gen_autograd.py'),
))
self.assertFalse(mypy_wrapper.glob(
pattern='tools/autograd/*.py',
filename=PurePosixPath('tools/autograd/deprecated.yaml'),
))
def fakehash(char):
return char * 40
def makecase(name, seconds, *, errored=False, failed=False, skipped=False):
return {
'name': name,
'seconds': seconds,
'errored': errored,
'failed': failed,
'skipped': skipped,
}
def makereport(tests):
suites = {
suite_name: {
'total_seconds': sum(case['seconds'] for case in cases),
'cases': cases,
}
for suite_name, cases in tests.items()
}
return {
'total_seconds': sum(s['total_seconds'] for s in suites.values()),
'suites': suites,
}
class TestPrintTestStats(TestCase):
maxDiff = None
def test_analysis(self):
head_report = makereport({
# input ordering of the suites is ignored
'Grault': [
# not printed: status same and time similar
makecase('test_grault0', 4.78, failed=True),
# status same, but time increased a lot
makecase('test_grault2', 1.473, errored=True),
],
# individual tests times changed, not overall suite
'Qux': [
# input ordering of the test cases is ignored
makecase('test_qux1', 0.001, skipped=True),
makecase('test_qux6', 0.002, skipped=True),
# time in bounds, but status changed
makecase('test_qux4', 7.158, failed=True),
# not printed because it's the same as before
makecase('test_qux7', 0.003, skipped=True),
makecase('test_qux5', 11.968),
makecase('test_qux3', 23.496),
],
# new test suite
'Bar': [
makecase('test_bar2', 3.742, failed=True),
makecase('test_bar1', 50.447),
],
# overall suite time changed but no individual tests
'Norf': [
makecase('test_norf1', 3),
makecase('test_norf2', 3),
makecase('test_norf3', 3),
makecase('test_norf4', 3),
],
# suite doesn't show up if it doesn't change enough
'Foo': [
makecase('test_foo1', 42),
makecase('test_foo2', 56),
],
})
base_reports = {
# bbbb has no reports, so base is cccc instead
fakehash('b'): [],
fakehash('c'): [
makereport({
'Baz': [
makecase('test_baz2', 13.605),
# no recent suites have & skip this test
makecase('test_baz1', 0.004, skipped=True),
],
'Foo': [
makecase('test_foo1', 43),
# test added since dddd
makecase('test_foo2', 57),
],
'Grault': [
makecase('test_grault0', 4.88, failed=True),
makecase('test_grault1', 11.967, failed=True),
makecase('test_grault2', 0.395, errored=True),
makecase('test_grault3', 30.460),
],
'Norf': [
makecase('test_norf1', 2),
makecase('test_norf2', 2),
makecase('test_norf3', 2),
makecase('test_norf4', 2),
],
'Qux': [
makecase('test_qux3', 4.978, errored=True),
makecase('test_qux7', 0.002, skipped=True),
makecase('test_qux2', 5.618),
makecase('test_qux4', 7.766, errored=True),
makecase('test_qux6', 23.589, failed=True),
],
}),
],
fakehash('d'): [
makereport({
'Foo': [
makecase('test_foo1', 40),
# removed in cccc
makecase('test_foo3', 17),
],
'Baz': [
# not skipped, so not included in stdev
makecase('test_baz1', 3.14),
],
'Qux': [
makecase('test_qux7', 0.004, skipped=True),
makecase('test_qux2', 6.02),
makecase('test_qux4', 20.932),
],
'Norf': [
makecase('test_norf1', 3),
makecase('test_norf2', 3),
makecase('test_norf3', 3),
makecase('test_norf4', 3),
],
'Grault': [
makecase('test_grault0', 5, failed=True),
makecase('test_grault1', 14.325, failed=True),
makecase('test_grault2', 0.31, errored=True),
],
}),
],
fakehash('e'): [],
fakehash('f'): [
makereport({
'Foo': [
makecase('test_foo3', 24),
makecase('test_foo1', 43),
],
'Baz': [
makecase('test_baz2', 16.857),
],
'Qux': [
makecase('test_qux2', 6.422),
makecase('test_qux4', 6.382, errored=True),
],
'Norf': [
makecase('test_norf1', 0.9),
makecase('test_norf3', 0.9),
makecase('test_norf2', 0.9),
makecase('test_norf4', 0.9),
],
'Grault': [
makecase('test_grault0', 4.7, failed=True),
makecase('test_grault1', 13.146, failed=True),
makecase('test_grault2', 0.48, errored=True),
],
}),
],
}
simpler_head = print_test_stats.simplify(head_report)
simpler_base = {}
for commit, reports in base_reports.items():
simpler_base[commit] = [print_test_stats.simplify(r) for r in reports]
analysis = print_test_stats.analyze(
head_report=simpler_head,
base_reports=simpler_base,
)
self.assertEqual(
'''\
- class Baz:
- # was 15.23s ± 2.30s
-
- def test_baz1: ...
- # was 0.004s (skipped)
-
- def test_baz2: ...
- # was 15.231s ± 2.300s
class Grault:
# was 48.86s ± 1.19s
# now 6.25s
- def test_grault1: ...
- # was 13.146s ± 1.179s (failed)
- def test_grault3: ...
- # was 30.460s
class Qux:
# was 41.66s ± 1.06s
# now 42.63s
- def test_qux2: ...
- # was 6.020s ± 0.402s
! def test_qux3: ...
! # was 4.978s (errored)
! # now 23.496s
! def test_qux4: ...
! # was 7.074s ± 0.979s (errored)
! # now 7.158s (failed)
! def test_qux6: ...
! # was 23.589s (failed)
! # now 0.002s (skipped)
+ def test_qux1: ...
+ # now 0.001s (skipped)
+ def test_qux5: ...
+ # now 11.968s
+ class Bar:
+ # now 54.19s
+
+ def test_bar1: ...
+ # now 50.447s
+
+ def test_bar2: ...
+ # now 3.742s (failed)
''',
print_test_stats.anomalies(analysis),
)
def test_graph(self):
# HEAD is on master
self.assertEqual(
'''\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
* aaaaaaaaaa (HEAD) total time 502.99s
* bbbbbbbbbb (base) 1 report, total time 47.84s
* cccccccccc 1 report, total time 332.50s
* dddddddddd 0 reports
|
:
''',
print_test_stats.graph(
head_sha=fakehash('a'),
head_seconds=502.99,
base_seconds={
fakehash('b'): [47.84],
fakehash('c'): [332.50],
fakehash('d'): [],
},
on_master=True,
)
)
self.assertEqual(
'''\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 9988.77s
|/
* bbbbbbbbbb (base) 121 reports, total time 7654.32s ± 55.55s
* cccccccccc 20 reports, total time 5555.55s ± 253.19s
* dddddddddd 1 report, total time 1234.56s
|
:
''',
print_test_stats.graph(
head_sha=fakehash('a'),
head_seconds=9988.77,
base_seconds={
fakehash('b'): [7598.77] * 60 + [7654.32] + [7709.87] * 60,
fakehash('c'): [5308.77] * 10 + [5802.33] * 10,
fakehash('d'): [1234.56],
},
on_master=False,
)
)
self.assertEqual(
'''\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 25.52s
| |
| : (5 commits)
|/
* bbbbbbbbbb 0 reports
* cccccccccc 0 reports
* dddddddddd (base) 15 reports, total time 58.92s ± 25.82s
|
:
''',
print_test_stats.graph(
head_sha=fakehash('a'),
head_seconds=25.52,
base_seconds={
fakehash('b'): [],
fakehash('c'): [],
fakehash('d'): [52.25] * 14 + [152.26],
},
on_master=False,
ancestry_path=5,
)
)
self.assertEqual(
'''\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 0.08s
|/|
| : (1 commit)
|
* bbbbbbbbbb 0 reports
* cccccccccc (base) 1 report, total time 0.09s
* dddddddddd 3 reports, total time 0.10s ± 0.05s
|
:
''',
print_test_stats.graph(
head_sha=fakehash('a'),
head_seconds=0.08,
base_seconds={
fakehash('b'): [],
fakehash('c'): [0.09],
fakehash('d'): [0.05, 0.10, 0.15],
},
on_master=False,
other_ancestors=1,
)
)
self.assertEqual(
'''\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 5.98s
| |
| : (1 commit)
|/|
| : (7 commits)
|
* bbbbbbbbbb (base) 2 reports, total time 6.02s ± 1.71s
* cccccccccc 0 reports
* dddddddddd 10 reports, total time 5.84s ± 0.92s
|
:
''',
print_test_stats.graph(
head_sha=fakehash('a'),
head_seconds=5.98,
base_seconds={
fakehash('b'): [4.81, 7.23],
fakehash('c'): [],
fakehash('d'): [4.97] * 5 + [6.71] * 5,
},
on_master=False,
ancestry_path=1,
other_ancestors=7,
)
)
def test_regression_info(self):
self.assertEqual(
'''\
----- Historic stats comparison result ------
job: foo_job
commit: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
class Foo:
# was 42.50s ± 2.12s
# now 3.02s
- def test_bar: ...
- # was 1.000s
! def test_foo: ...
! # was 41.500s ± 2.121s
! # now 0.020s (skipped)
+ def test_baz: ...
+ # now 3.000s
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 3.02s
|/
* bbbbbbbbbb (base) 1 report, total time 41.00s
* cccccccccc 1 report, total time 43.00s
|
:
Removed (across 1 suite) 1 test, totaling - 1.00s
Modified (across 1 suite) 1 test, totaling - 41.48s ± 2.12s
Added (across 1 suite) 1 test, totaling + 3.00s
''',
print_test_stats.regression_info(
head_sha=fakehash('a'),
head_report=makereport({
'Foo': [
makecase('test_foo', 0.02, skipped=True),
makecase('test_baz', 3),
]}),
base_reports={
fakehash('b'): [
makereport({
'Foo': [
makecase('test_foo', 40),
makecase('test_bar', 1),
],
}),
],
fakehash('c'): [
makereport({
'Foo': [
makecase('test_foo', 43),
],
}),
],
},
job_name='foo_job',
on_master=False,
ancestry_path=0,
other_ancestors=0,
)
)
def test_regression_info_new_job(self):
self.assertEqual(
'''\
----- Historic stats comparison result ------
job: foo_job
commit: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+ class Foo:
+ # now 3.02s
+
+ def test_baz: ...
+ # now 3.000s
+
+ def test_foo: ...
+ # now 0.020s (skipped)
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 3.02s
| |
| : (3 commits)
|/|
| : (2 commits)
|
* bbbbbbbbbb 0 reports
* cccccccccc 0 reports
|
:
Removed (across 0 suites) 0 tests, totaling 0.00s
Modified (across 0 suites) 0 tests, totaling 0.00s
Added (across 1 suite) 2 tests, totaling + 3.02s
''',
print_test_stats.regression_info(
head_sha=fakehash('a'),
head_report=makereport({
'Foo': [
makecase('test_foo', 0.02, skipped=True),
makecase('test_baz', 3),
]}),
base_reports={
fakehash('b'): [],
fakehash('c'): [],
},
job_name='foo_job',
on_master=False,
ancestry_path=3,
other_ancestors=2,
)
)
if __name__ == '__main__':
run_tests()