|  | from numbers import Number | 
|  |  | 
|  | import torch | 
|  | from torch.distributions import constraints | 
|  | from torch.distributions.exp_family import ExponentialFamily | 
|  | from torch.distributions.utils import broadcast_all | 
|  |  | 
|  |  | 
|  | class Exponential(ExponentialFamily): | 
|  | r""" | 
|  | Creates a Exponential distribution parameterized by :attr:`rate`. | 
|  |  | 
|  | Example:: | 
|  |  | 
|  | >>> m = Exponential(torch.tensor([1.0])) | 
|  | >>> m.sample()  # Exponential distributed with rate=1 | 
|  | tensor([ 0.1046]) | 
|  |  | 
|  | Args: | 
|  | rate (float or Tensor): rate = 1 / scale of the distribution | 
|  | """ | 
|  | arg_constraints = {'rate': constraints.positive} | 
|  | support = constraints.positive | 
|  | has_rsample = True | 
|  | _mean_carrier_measure = 0 | 
|  |  | 
|  | @property | 
|  | def mean(self): | 
|  | return self.rate.reciprocal() | 
|  |  | 
|  | @property | 
|  | def stddev(self): | 
|  | return self.rate.reciprocal() | 
|  |  | 
|  | @property | 
|  | def variance(self): | 
|  | return self.rate.pow(-2) | 
|  |  | 
|  | def __init__(self, rate, validate_args=None): | 
|  | self.rate, = broadcast_all(rate) | 
|  | batch_shape = torch.Size() if isinstance(rate, Number) else self.rate.size() | 
|  | super(Exponential, self).__init__(batch_shape, validate_args=validate_args) | 
|  |  | 
|  | def expand(self, batch_shape, _instance=None): | 
|  | new = self._get_checked_instance(Exponential, _instance) | 
|  | batch_shape = torch.Size(batch_shape) | 
|  | new.rate = self.rate.expand(batch_shape) | 
|  | super(Exponential, new).__init__(batch_shape, validate_args=False) | 
|  | new._validate_args = self._validate_args | 
|  | return new | 
|  |  | 
|  | def rsample(self, sample_shape=torch.Size()): | 
|  | shape = self._extended_shape(sample_shape) | 
|  | if torch._C._get_tracing_state(): | 
|  | # [JIT WORKAROUND] lack of support for ._exponential() | 
|  | u = torch.rand(shape, dtype=self.rate.dtype, device=self.rate.device) | 
|  | return -(-u).log1p() / self.rate | 
|  | return self.rate.new(shape).exponential_() / self.rate | 
|  |  | 
|  | def log_prob(self, value): | 
|  | if self._validate_args: | 
|  | self._validate_sample(value) | 
|  | return self.rate.log() - self.rate * value | 
|  |  | 
|  | def cdf(self, value): | 
|  | if self._validate_args: | 
|  | self._validate_sample(value) | 
|  | return 1 - torch.exp(-self.rate * value) | 
|  |  | 
|  | def icdf(self, value): | 
|  | return -torch.log(1 - value) / self.rate | 
|  |  | 
|  | def entropy(self): | 
|  | return 1.0 - torch.log(self.rate) | 
|  |  | 
|  | @property | 
|  | def _natural_params(self): | 
|  | return (-self.rate, ) | 
|  |  | 
|  | def _log_normalizer(self, x): | 
|  | return -torch.log(-x) |