blob: 1705c75498f50a1d25e48a096ca30e0b923bb3de [file] [log] [blame]
#include <c10/util/irange.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/variable.h>
#include <sstream>
#include <vector>
namespace torch { namespace autograd {
variable_list wrap_outputs(const variable_list& inputs, tensor_list&& outputs,
const function_constructor& ctr) {
variable_list result;
result.reserve(outputs.size());
if (!any_variable_requires_grad(inputs)) {
for (auto& output : outputs) {
if (output.defined()) {
result.push_back(make_variable(output, /*requires_grad=*/false));
} else {
result.emplace_back();
}
}
} else {
auto grad_fn = ctr(GradMode::is_enabled() ? collect_next_edges(inputs) : edge_list());
for (auto& output : outputs) {
if (output.defined()) {
auto variable = autograd::make_variable(output, /*requires_grad=*/false);
autograd::create_gradient_edge(variable, grad_fn);
result.push_back(std::move(variable));
} else {
grad_fn->add_input_metadata(Node::undefined_input());
result.emplace_back();
}
}
}
return result;
}
void check_input_variables(const char* name, const variable_list& inputs, int args, int required_args, bool allow_undefined) {
if (required_args == -1) {
required_args = args;
}
if (inputs.size() != (size_t)args) {
std::stringstream ss;
ss << name << ": expected " << args << " arguments (got " << inputs.size();
ss << ")";
throw std::runtime_error(ss.str());
}
for (const auto i : c10::irange(required_args)) {
if (!inputs[i].defined() && !allow_undefined) {
std::stringstream ss;
ss << name << ": expected Tensor at argument " << i << " (got None)";
throw std::runtime_error(ss.str());
}
}
}
}} // namespace torch::autograd