| .. currentmodule:: torch | 
 |  | 
 | .. _tensor-doc: | 
 |  | 
 | torch.Tensor | 
 | =================================== | 
 |  | 
 | A :class:`torch.Tensor` is a multi-dimensional matrix containing elements of | 
 | a single data type. | 
 |  | 
 |  | 
 | Data types | 
 | ---------- | 
 |  | 
 | Torch defines 10 tensor types with CPU and GPU variants which are as follows: | 
 |  | 
 | ======================================= =========================================== ============================= ================================ | 
 | Data type                               dtype                                       CPU tensor                    GPU tensor | 
 | ======================================= =========================================== ============================= ================================ | 
 | 32-bit floating point                   ``torch.float32`` or ``torch.float``        :class:`torch.FloatTensor`    :class:`torch.cuda.FloatTensor` | 
 | 64-bit floating point                   ``torch.float64`` or ``torch.double``       :class:`torch.DoubleTensor`   :class:`torch.cuda.DoubleTensor` | 
 | 16-bit floating point [1]_              ``torch.float16`` or ``torch.half``         :class:`torch.HalfTensor`     :class:`torch.cuda.HalfTensor` | 
 | 16-bit floating point [2]_              ``torch.bfloat16``                          :class:`torch.BFloat16Tensor` :class:`torch.cuda.BFloat16Tensor` | 
 | 32-bit complex                          ``torch.complex32`` | 
 | 64-bit complex                          ``torch.complex64`` | 
 | 128-bit complex                         ``torch.complex128`` or ``torch.cdouble`` | 
 | 8-bit integer (unsigned)                ``torch.uint8``                             :class:`torch.ByteTensor`     :class:`torch.cuda.ByteTensor` | 
 | 8-bit integer (signed)                  ``torch.int8``                              :class:`torch.CharTensor`     :class:`torch.cuda.CharTensor` | 
 | 16-bit integer (signed)                 ``torch.int16`` or ``torch.short``          :class:`torch.ShortTensor`    :class:`torch.cuda.ShortTensor` | 
 | 32-bit integer (signed)                 ``torch.int32`` or ``torch.int``            :class:`torch.IntTensor`      :class:`torch.cuda.IntTensor` | 
 | 64-bit integer (signed)                 ``torch.int64`` or ``torch.long``           :class:`torch.LongTensor`     :class:`torch.cuda.LongTensor` | 
 | Boolean                                 ``torch.bool``                              :class:`torch.BoolTensor`     :class:`torch.cuda.BoolTensor` | 
 | quantized 8-bit integer (unsigned)      ``torch.quint8``                            :class:`torch.ByteTensor`     / | 
 | quantized 8-bit integer (signed)        ``torch.qint8``                             :class:`torch.CharTensor`     / | 
 | quantized 32-bit integer (signed)       ``torch.qfint32``                           :class:`torch.IntTensor`      / | 
 | quantized 4-bit integer (unsigned) [3]_ ``torch.quint4x2``                          :class:`torch.ByteTensor`     / | 
 | ======================================= =========================================== ============================= ================================ | 
 |  | 
 | .. [1] | 
 |   Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 | 
 |   significand bits. Useful when precision is important at the expense of range. | 
 | .. [2] | 
 |   Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 | 
 |   significand bits. Useful when range is important, since it has the same | 
 |   number of exponent bits as ``float32`` | 
 | .. [3] | 
 |   quantized 4-bit integer is stored as a 8-bit signed integer. Currently it's only supported in EmbeddingBag operator. | 
 |  | 
 | :class:`torch.Tensor` is an alias for the default tensor type (:class:`torch.FloatTensor`). | 
 |  | 
 | Initializing and basic operations | 
 | --------------------------------- | 
 |  | 
 | A tensor can be constructed from a Python :class:`list` or sequence using the | 
 | :func:`torch.tensor` constructor: | 
 |  | 
 | :: | 
 |  | 
 |     >>> torch.tensor([[1., -1.], [1., -1.]]) | 
 |     tensor([[ 1.0000, -1.0000], | 
 |             [ 1.0000, -1.0000]]) | 
 |     >>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]])) | 
 |     tensor([[ 1,  2,  3], | 
 |             [ 4,  5,  6]]) | 
 |  | 
 | .. warning:: | 
 |  | 
 |     :func:`torch.tensor` always copies :attr:`data`. If you have a Tensor | 
 |     :attr:`data` and just want to change its ``requires_grad`` flag, use | 
 |     :meth:`~torch.Tensor.requires_grad_` or | 
 |     :meth:`~torch.Tensor.detach` to avoid a copy. | 
 |     If you have a numpy array and want to avoid a copy, use | 
 |     :func:`torch.as_tensor`. | 
 |  | 
 | A tensor of specific data type can be constructed by passing a | 
 | :class:`torch.dtype` and/or a :class:`torch.device` to a | 
 | constructor or tensor creation op: | 
 |  | 
 | :: | 
 |  | 
 |     >>> torch.zeros([2, 4], dtype=torch.int32) | 
 |     tensor([[ 0,  0,  0,  0], | 
 |             [ 0,  0,  0,  0]], dtype=torch.int32) | 
 |     >>> cuda0 = torch.device('cuda:0') | 
 |     >>> torch.ones([2, 4], dtype=torch.float64, device=cuda0) | 
 |     tensor([[ 1.0000,  1.0000,  1.0000,  1.0000], | 
 |             [ 1.0000,  1.0000,  1.0000,  1.0000]], dtype=torch.float64, device='cuda:0') | 
 |  | 
 | For more information about building Tensors, see :ref:`tensor-creation-ops` | 
 |  | 
 |  | 
 | The contents of a tensor can be accessed and modified using Python's indexing | 
 | and slicing notation: | 
 |  | 
 | :: | 
 |  | 
 |     >>> x = torch.tensor([[1, 2, 3], [4, 5, 6]]) | 
 |     >>> print(x[1][2]) | 
 |     tensor(6) | 
 |     >>> x[0][1] = 8 | 
 |     >>> print(x) | 
 |     tensor([[ 1,  8,  3], | 
 |             [ 4,  5,  6]]) | 
 |  | 
 | Use :meth:`torch.Tensor.item` to get a Python number from a tensor containing a | 
 | single value: | 
 |  | 
 | :: | 
 |  | 
 |     >>> x = torch.tensor([[1]]) | 
 |     >>> x | 
 |     tensor([[ 1]]) | 
 |     >>> x.item() | 
 |     1 | 
 |     >>> x = torch.tensor(2.5) | 
 |     >>> x | 
 |     tensor(2.5000) | 
 |     >>> x.item() | 
 |     2.5 | 
 |  | 
 | For more information about indexing, see :ref:`indexing-slicing-joining` | 
 |  | 
 | A tensor can be created with :attr:`requires_grad=True` so that | 
 | :mod:`torch.autograd` records operations on them for automatic differentiation. | 
 |  | 
 | :: | 
 |  | 
 |     >>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True) | 
 |     >>> out = x.pow(2).sum() | 
 |     >>> out.backward() | 
 |     >>> x.grad | 
 |     tensor([[ 2.0000, -2.0000], | 
 |             [ 2.0000,  2.0000]]) | 
 |  | 
 | Each tensor has an associated :class:`torch.Storage`, which holds its data. | 
 | The tensor class also provides multi-dimensional, `strided <https://en.wikipedia.org/wiki/Stride_of_an_array>`_ | 
 | view of a storage and defines numeric operations on it. | 
 |  | 
 | .. note:: | 
 |    For more information on tensor views, see :ref:`tensor-view-doc`. | 
 |  | 
 | .. note:: | 
 |    For more information on the :class:`torch.dtype`, :class:`torch.device`, and | 
 |    :class:`torch.layout` attributes of a :class:`torch.Tensor`, see | 
 |    :ref:`tensor-attributes-doc`. | 
 |  | 
 | .. note:: | 
 |    Methods which mutate a tensor are marked with an underscore suffix. | 
 |    For example, :func:`torch.FloatTensor.abs_` computes the absolute value | 
 |    in-place and returns the modified tensor, while :func:`torch.FloatTensor.abs` | 
 |    computes the result in a new tensor. | 
 |  | 
 | .. note:: | 
 |     To change an existing tensor's :class:`torch.device` and/or :class:`torch.dtype`, consider using | 
 |     :meth:`~torch.Tensor.to` method on the tensor. | 
 |  | 
 | .. warning:: | 
 |    Current implementation of :class:`torch.Tensor` introduces memory overhead, | 
 |    thus it might lead to unexpectedly high memory usage in the applications with many tiny tensors. | 
 |    If this is your case, consider using one large structure. | 
 |  | 
 |  | 
 | Tensor class reference | 
 | ---------------------- | 
 |  | 
 | .. class:: Tensor() | 
 |  | 
 |    There are a few main ways to create a tensor, depending on your use case. | 
 |  | 
 |    - To create a tensor with pre-existing data, use :func:`torch.tensor`. | 
 |    - To create a tensor with specific size, use ``torch.*`` tensor creation | 
 |      ops (see :ref:`tensor-creation-ops`). | 
 |    - To create a tensor with the same size (and similar types) as another tensor, | 
 |      use ``torch.*_like`` tensor creation ops | 
 |      (see :ref:`tensor-creation-ops`). | 
 |    - To create a tensor with similar type but different size as another tensor, | 
 |      use ``tensor.new_*`` creation ops. | 
 |  | 
 | .. autoattribute:: Tensor.T | 
 |  | 
 | .. autosummary:: | 
 |     :toctree: generated | 
 |     :nosignatures: | 
 |  | 
 |     Tensor.new_tensor | 
 |     Tensor.new_full | 
 |     Tensor.new_empty | 
 |     Tensor.new_ones | 
 |     Tensor.new_zeros | 
 |  | 
 |     Tensor.is_cuda | 
 |     Tensor.is_quantized | 
 |     Tensor.is_meta | 
 |     Tensor.device | 
 |     Tensor.grad | 
 |     Tensor.ndim | 
 |     Tensor.real | 
 |     Tensor.imag | 
 |  | 
 |     Tensor.abs | 
 |     Tensor.abs_ | 
 |     Tensor.absolute | 
 |     Tensor.absolute_ | 
 |     Tensor.acos | 
 |     Tensor.acos_ | 
 |     Tensor.arccos | 
 |     Tensor.arccos_ | 
 |     Tensor.add | 
 |     Tensor.add_ | 
 |     Tensor.addbmm | 
 |     Tensor.addbmm_ | 
 |     Tensor.addcdiv | 
 |     Tensor.addcdiv_ | 
 |     Tensor.addcmul | 
 |     Tensor.addcmul_ | 
 |     Tensor.addmm | 
 |     Tensor.addmm_ | 
 |     Tensor.sspaddmm | 
 |     Tensor.addmv | 
 |     Tensor.addmv_ | 
 |     Tensor.addr | 
 |     Tensor.addr_ | 
 |     Tensor.allclose | 
 |     Tensor.amax | 
 |     Tensor.amin | 
 |     Tensor.angle | 
 |     Tensor.apply_ | 
 |     Tensor.argmax | 
 |     Tensor.argmin | 
 |     Tensor.argsort | 
 |     Tensor.asin | 
 |     Tensor.asin_ | 
 |     Tensor.arcsin | 
 |     Tensor.arcsin_ | 
 |     Tensor.as_strided | 
 |     Tensor.atan | 
 |     Tensor.atan_ | 
 |     Tensor.arctan | 
 |     Tensor.arctan_ | 
 |     Tensor.atan2 | 
 |     Tensor.atan2_ | 
 |     Tensor.all | 
 |     Tensor.any | 
 |     Tensor.backward | 
 |     Tensor.baddbmm | 
 |     Tensor.baddbmm_ | 
 |     Tensor.bernoulli | 
 |     Tensor.bernoulli_ | 
 |     Tensor.bfloat16 | 
 |     Tensor.bincount | 
 |     Tensor.bitwise_not | 
 |     Tensor.bitwise_not_ | 
 |     Tensor.bitwise_and | 
 |     Tensor.bitwise_and_ | 
 |     Tensor.bitwise_or | 
 |     Tensor.bitwise_or_ | 
 |     Tensor.bitwise_xor | 
 |     Tensor.bitwise_xor_ | 
 |     Tensor.bitwise_left_shift | 
 |     Tensor.bitwise_left_shift_ | 
 |     Tensor.bitwise_right_shift | 
 |     Tensor.bitwise_right_shift_ | 
 |     Tensor.bmm | 
 |     Tensor.bool | 
 |     Tensor.byte | 
 |     Tensor.broadcast_to | 
 |     Tensor.cauchy_ | 
 |     Tensor.ceil | 
 |     Tensor.ceil_ | 
 |     Tensor.char | 
 |     Tensor.cholesky | 
 |     Tensor.cholesky_inverse | 
 |     Tensor.cholesky_solve | 
 |     Tensor.chunk | 
 |     Tensor.clamp | 
 |     Tensor.clamp_ | 
 |     Tensor.clip | 
 |     Tensor.clip_ | 
 |     Tensor.clone | 
 |     Tensor.contiguous | 
 |     Tensor.copy_ | 
 |     Tensor.conj | 
 |     Tensor.conj_physical | 
 |     Tensor.conj_physical_ | 
 |     Tensor.resolve_conj | 
 |     Tensor.resolve_neg | 
 |     Tensor.copysign | 
 |     Tensor.copysign_ | 
 |     Tensor.cos | 
 |     Tensor.cos_ | 
 |     Tensor.cosh | 
 |     Tensor.cosh_ | 
 |     Tensor.corrcoef | 
 |     Tensor.count_nonzero | 
 |     Tensor.cov | 
 |     Tensor.acosh | 
 |     Tensor.acosh_ | 
 |     Tensor.arccosh | 
 |     Tensor.arccosh_ | 
 |     Tensor.cpu | 
 |     Tensor.cross | 
 |     Tensor.cuda | 
 |     Tensor.logcumsumexp | 
 |     Tensor.cummax | 
 |     Tensor.cummin | 
 |     Tensor.cumprod | 
 |     Tensor.cumprod_ | 
 |     Tensor.cumsum | 
 |     Tensor.cumsum_ | 
 |     Tensor.data_ptr | 
 |     Tensor.deg2rad | 
 |     Tensor.dequantize | 
 |     Tensor.det | 
 |     Tensor.dense_dim | 
 |     Tensor.detach | 
 |     Tensor.detach_ | 
 |     Tensor.diag | 
 |     Tensor.diag_embed | 
 |     Tensor.diagflat | 
 |     Tensor.diagonal | 
 |     Tensor.fill_diagonal_ | 
 |     Tensor.fmax | 
 |     Tensor.fmin | 
 |     Tensor.diff | 
 |     Tensor.digamma | 
 |     Tensor.digamma_ | 
 |     Tensor.dim | 
 |     Tensor.dist | 
 |     Tensor.div | 
 |     Tensor.div_ | 
 |     Tensor.divide | 
 |     Tensor.divide_ | 
 |     Tensor.dot | 
 |     Tensor.double | 
 |     Tensor.dsplit | 
 |     Tensor.eig | 
 |     Tensor.element_size | 
 |     Tensor.eq | 
 |     Tensor.eq_ | 
 |     Tensor.equal | 
 |     Tensor.erf | 
 |     Tensor.erf_ | 
 |     Tensor.erfc | 
 |     Tensor.erfc_ | 
 |     Tensor.erfinv | 
 |     Tensor.erfinv_ | 
 |     Tensor.exp | 
 |     Tensor.exp_ | 
 |     Tensor.expm1 | 
 |     Tensor.expm1_ | 
 |     Tensor.expand | 
 |     Tensor.expand_as | 
 |     Tensor.exponential_ | 
 |     Tensor.fix | 
 |     Tensor.fix_ | 
 |     Tensor.fill_ | 
 |     Tensor.flatten | 
 |     Tensor.flip | 
 |     Tensor.fliplr | 
 |     Tensor.flipud | 
 |     Tensor.float | 
 |     Tensor.float_power | 
 |     Tensor.float_power_ | 
 |     Tensor.floor | 
 |     Tensor.floor_ | 
 |     Tensor.floor_divide | 
 |     Tensor.floor_divide_ | 
 |     Tensor.fmod | 
 |     Tensor.fmod_ | 
 |     Tensor.frac | 
 |     Tensor.frac_ | 
 |     Tensor.frexp | 
 |     Tensor.gather | 
 |     Tensor.gcd | 
 |     Tensor.gcd_ | 
 |     Tensor.ge | 
 |     Tensor.ge_ | 
 |     Tensor.greater_equal | 
 |     Tensor.greater_equal_ | 
 |     Tensor.geometric_ | 
 |     Tensor.geqrf | 
 |     Tensor.ger | 
 |     Tensor.get_device | 
 |     Tensor.gt | 
 |     Tensor.gt_ | 
 |     Tensor.greater | 
 |     Tensor.greater_ | 
 |     Tensor.half | 
 |     Tensor.hardshrink | 
 |     Tensor.heaviside | 
 |     Tensor.histc | 
 |     Tensor.histogram | 
 |     Tensor.hsplit | 
 |     Tensor.hypot | 
 |     Tensor.hypot_ | 
 |     Tensor.i0 | 
 |     Tensor.i0_ | 
 |     Tensor.igamma | 
 |     Tensor.igamma_ | 
 |     Tensor.igammac | 
 |     Tensor.igammac_ | 
 |     Tensor.index_add_ | 
 |     Tensor.index_add | 
 |     Tensor.index_copy_ | 
 |     Tensor.index_copy | 
 |     Tensor.index_fill_ | 
 |     Tensor.index_fill | 
 |     Tensor.index_put_ | 
 |     Tensor.index_put | 
 |     Tensor.index_select | 
 |     Tensor.indices | 
 |     Tensor.inner | 
 |     Tensor.int | 
 |     Tensor.int_repr | 
 |     Tensor.inverse | 
 |     Tensor.isclose | 
 |     Tensor.isfinite | 
 |     Tensor.isinf | 
 |     Tensor.isposinf | 
 |     Tensor.isneginf | 
 |     Tensor.isnan | 
 |     Tensor.is_contiguous | 
 |     Tensor.is_complex | 
 |     Tensor.is_conj | 
 |     Tensor.is_floating_point | 
 |     Tensor.is_inference | 
 |     Tensor.is_leaf | 
 |     Tensor.is_pinned | 
 |     Tensor.is_set_to | 
 |     Tensor.is_shared | 
 |     Tensor.is_signed | 
 |     Tensor.is_sparse | 
 |     Tensor.istft | 
 |     Tensor.isreal | 
 |     Tensor.item | 
 |     Tensor.kthvalue | 
 |     Tensor.lcm | 
 |     Tensor.lcm_ | 
 |     Tensor.ldexp | 
 |     Tensor.ldexp_ | 
 |     Tensor.le | 
 |     Tensor.le_ | 
 |     Tensor.less_equal | 
 |     Tensor.less_equal_ | 
 |     Tensor.lerp | 
 |     Tensor.lerp_ | 
 |     Tensor.lgamma | 
 |     Tensor.lgamma_ | 
 |     Tensor.log | 
 |     Tensor.log_ | 
 |     Tensor.logdet | 
 |     Tensor.log10 | 
 |     Tensor.log10_ | 
 |     Tensor.log1p | 
 |     Tensor.log1p_ | 
 |     Tensor.log2 | 
 |     Tensor.log2_ | 
 |     Tensor.log_normal_ | 
 |     Tensor.logaddexp | 
 |     Tensor.logaddexp2 | 
 |     Tensor.logsumexp | 
 |     Tensor.logical_and | 
 |     Tensor.logical_and_ | 
 |     Tensor.logical_not | 
 |     Tensor.logical_not_ | 
 |     Tensor.logical_or | 
 |     Tensor.logical_or_ | 
 |     Tensor.logical_xor | 
 |     Tensor.logical_xor_ | 
 |     Tensor.logit | 
 |     Tensor.logit_ | 
 |     Tensor.long | 
 |     Tensor.lstsq | 
 |     Tensor.lt | 
 |     Tensor.lt_ | 
 |     Tensor.less | 
 |     Tensor.less_ | 
 |     Tensor.lu | 
 |     Tensor.lu_solve | 
 |     Tensor.as_subclass | 
 |     Tensor.map_ | 
 |     Tensor.masked_scatter_ | 
 |     Tensor.masked_scatter | 
 |     Tensor.masked_fill_ | 
 |     Tensor.masked_fill | 
 |     Tensor.masked_select | 
 |     Tensor.matmul | 
 |     Tensor.matrix_power | 
 |     Tensor.matrix_exp | 
 |     Tensor.max | 
 |     Tensor.maximum | 
 |     Tensor.mean | 
 |     Tensor.median | 
 |     Tensor.nanmedian | 
 |     Tensor.min | 
 |     Tensor.minimum | 
 |     Tensor.mm | 
 |     Tensor.smm | 
 |     Tensor.mode | 
 |     Tensor.movedim | 
 |     Tensor.moveaxis | 
 |     Tensor.msort | 
 |     Tensor.mul | 
 |     Tensor.mul_ | 
 |     Tensor.multiply | 
 |     Tensor.multiply_ | 
 |     Tensor.multinomial | 
 |     Tensor.mv | 
 |     Tensor.mvlgamma | 
 |     Tensor.mvlgamma_ | 
 |     Tensor.nansum | 
 |     Tensor.narrow | 
 |     Tensor.narrow_copy | 
 |     Tensor.ndimension | 
 |     Tensor.nan_to_num | 
 |     Tensor.nan_to_num_ | 
 |     Tensor.ne | 
 |     Tensor.ne_ | 
 |     Tensor.not_equal | 
 |     Tensor.not_equal_ | 
 |     Tensor.neg | 
 |     Tensor.neg_ | 
 |     Tensor.negative | 
 |     Tensor.negative_ | 
 |     Tensor.nelement | 
 |     Tensor.nextafter | 
 |     Tensor.nextafter_ | 
 |     Tensor.nonzero | 
 |     Tensor.norm | 
 |     Tensor.normal_ | 
 |     Tensor.numel | 
 |     Tensor.numpy | 
 |     Tensor.orgqr | 
 |     Tensor.ormqr | 
 |     Tensor.outer | 
 |     Tensor.permute | 
 |     Tensor.pin_memory | 
 |     Tensor.pinverse | 
 |     Tensor.polygamma | 
 |     Tensor.polygamma_ | 
 |     Tensor.positive | 
 |     Tensor.pow | 
 |     Tensor.pow_ | 
 |     Tensor.prod | 
 |     Tensor.put_ | 
 |     Tensor.qr | 
 |     Tensor.qscheme | 
 |     Tensor.quantile | 
 |     Tensor.nanquantile | 
 |     Tensor.q_scale | 
 |     Tensor.q_zero_point | 
 |     Tensor.q_per_channel_scales | 
 |     Tensor.q_per_channel_zero_points | 
 |     Tensor.q_per_channel_axis | 
 |     Tensor.rad2deg | 
 |     Tensor.random_ | 
 |     Tensor.ravel | 
 |     Tensor.reciprocal | 
 |     Tensor.reciprocal_ | 
 |     Tensor.record_stream | 
 |     Tensor.register_hook | 
 |     Tensor.remainder | 
 |     Tensor.remainder_ | 
 |     Tensor.renorm | 
 |     Tensor.renorm_ | 
 |     Tensor.repeat | 
 |     Tensor.repeat_interleave | 
 |     Tensor.requires_grad | 
 |     Tensor.requires_grad_ | 
 |     Tensor.reshape | 
 |     Tensor.reshape_as | 
 |     Tensor.resize_ | 
 |     Tensor.resize_as_ | 
 |     Tensor.retain_grad | 
 |     Tensor.retains_grad | 
 |     Tensor.roll | 
 |     Tensor.rot90 | 
 |     Tensor.round | 
 |     Tensor.round_ | 
 |     Tensor.rsqrt | 
 |     Tensor.rsqrt_ | 
 |     Tensor.scatter | 
 |     Tensor.scatter_ | 
 |     Tensor.scatter_add_ | 
 |     Tensor.scatter_add | 
 |     Tensor.select | 
 |     Tensor.set_ | 
 |     Tensor.share_memory_ | 
 |     Tensor.short | 
 |     Tensor.sigmoid | 
 |     Tensor.sigmoid_ | 
 |     Tensor.sign | 
 |     Tensor.sign_ | 
 |     Tensor.signbit | 
 |     Tensor.sgn | 
 |     Tensor.sgn_ | 
 |     Tensor.sin | 
 |     Tensor.sin_ | 
 |     Tensor.sinc | 
 |     Tensor.sinc_ | 
 |     Tensor.sinh | 
 |     Tensor.sinh_ | 
 |     Tensor.asinh | 
 |     Tensor.asinh_ | 
 |     Tensor.arcsinh | 
 |     Tensor.arcsinh_ | 
 |     Tensor.size | 
 |     Tensor.slogdet | 
 |     Tensor.solve | 
 |     Tensor.sort | 
 |     Tensor.split | 
 |     Tensor.sparse_mask | 
 |     Tensor.sparse_dim | 
 |     Tensor.sqrt | 
 |     Tensor.sqrt_ | 
 |     Tensor.square | 
 |     Tensor.square_ | 
 |     Tensor.squeeze | 
 |     Tensor.squeeze_ | 
 |     Tensor.std | 
 |     Tensor.stft | 
 |     Tensor.storage | 
 |     Tensor.storage_offset | 
 |     Tensor.storage_type | 
 |     Tensor.stride | 
 |     Tensor.sub | 
 |     Tensor.sub_ | 
 |     Tensor.subtract | 
 |     Tensor.subtract_ | 
 |     Tensor.sum | 
 |     Tensor.sum_to_size | 
 |     Tensor.svd | 
 |     Tensor.swapaxes | 
 |     Tensor.swapdims | 
 |     Tensor.symeig | 
 |     Tensor.t | 
 |     Tensor.t_ | 
 |     Tensor.tensor_split | 
 |     Tensor.tile | 
 |     Tensor.to | 
 |     Tensor.to_mkldnn | 
 |     Tensor.take | 
 |     Tensor.take_along_dim | 
 |     Tensor.tan | 
 |     Tensor.tan_ | 
 |     Tensor.tanh | 
 |     Tensor.tanh_ | 
 |     Tensor.atanh | 
 |     Tensor.atanh_ | 
 |     Tensor.arctanh | 
 |     Tensor.arctanh_ | 
 |     Tensor.tolist | 
 |     Tensor.topk | 
 |     Tensor.to_sparse | 
 |     Tensor.trace | 
 |     Tensor.transpose | 
 |     Tensor.transpose_ | 
 |     Tensor.triangular_solve | 
 |     Tensor.tril | 
 |     Tensor.tril_ | 
 |     Tensor.triu | 
 |     Tensor.triu_ | 
 |     Tensor.true_divide | 
 |     Tensor.true_divide_ | 
 |     Tensor.trunc | 
 |     Tensor.trunc_ | 
 |     Tensor.type | 
 |     Tensor.type_as | 
 |     Tensor.unbind | 
 |     Tensor.unfold | 
 |     Tensor.uniform_ | 
 |     Tensor.unique | 
 |     Tensor.unique_consecutive | 
 |     Tensor.unsqueeze | 
 |     Tensor.unsqueeze_ | 
 |     Tensor.values | 
 |     Tensor.var | 
 |     Tensor.vdot | 
 |     Tensor.view | 
 |     Tensor.view_as | 
 |     Tensor.vsplit | 
 |     Tensor.where | 
 |     Tensor.xlogy | 
 |     Tensor.xlogy_ | 
 |     Tensor.zero_ |