blob: 009010adfb0ef3de8d17eef56686fdfece1cd891 [file] [log] [blame]
import torch
from torch.autograd import Variable, Function
from torch.nn import Module, Parameter
import caffe2.python.onnx.backend as backend
from verify import verify
from test_pytorch_common import TestCase, run_tests
import unittest
class TestVerify(TestCase):
maxDiff = None
def assertVerifyExpectFail(self, *args, **kwargs):
try:
verify(*args, **kwargs)
except AssertionError as e:
if str(e):
# substring a small piece of string because the exact message
# depends on system's formatting settings
self.assertExpected(str(e)[:60])
return
else:
raise
# Don't put this in the try block; the AssertionError will catch it
self.assertTrue(False, msg="verify() did not fail when expected to")
def test_result_different(self):
class BrokenAdd(Function):
@staticmethod
def symbolic(g, a, b):
return g.op("Add", a, b)
@staticmethod
def forward(ctx, a, b):
return a.sub(b) # yahaha! you found me!
class MyModel(Module):
def forward(self, x, y):
return BrokenAdd().apply(x, y)
x = Variable(torch.Tensor([1, 2]))
y = Variable(torch.Tensor([3, 4]))
self.assertVerifyExpectFail(MyModel(), (x, y), backend)
def test_jumbled_params(self):
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
y = x * x
self.param = Parameter(torch.Tensor([2]))
return y
x = Variable(torch.Tensor([1, 2]))
with self.assertRaisesRegex(RuntimeError, "state_dict changed"):
verify(MyModel(), x, backend)
def test_modifying_params(self):
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
self.param = Parameter(torch.Tensor([2]))
def forward(self, x):
y = x * x
self.param.data.add_(1.0)
return y
x = Variable(torch.Tensor([1, 2]))
self.assertVerifyExpectFail(MyModel(), x, backend)
def test_dynamic_model_structure(self):
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
self.iters = 0
def forward(self, x):
if self.iters % 2 == 0:
r = x * x
else:
r = x + x
self.iters += 1
return r
x = Variable(torch.Tensor([1, 2]))
self.assertVerifyExpectFail(MyModel(), x, backend)
@unittest.skip("Indexing is broken by #3725")
def test_embedded_constant_difference(self):
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
self.iters = 0
def forward(self, x):
r = x[self.iters % 2]
self.iters += 1
return r
x = Variable(torch.Tensor([[1, 2], [3, 4]]))
self.assertVerifyExpectFail(MyModel(), x, backend)
def test_explicit_test_args(self):
class MyModel(Module):
def forward(self, x):
if x.data.sum() == 1.0:
return x + x
else:
return x * x
x = Variable(torch.Tensor([[6, 2]]))
y = Variable(torch.Tensor([[2, -1]]))
self.assertVerifyExpectFail(MyModel(), x, backend, test_args=[(y,)])
if __name__ == '__main__':
run_tests()