| # Some standard imports |
| import numpy as np |
| from torch import nn |
| from torch.autograd import Variable |
| import torch.onnx |
| import torch.nn.init as init |
| from caffe2.python.model_helper import ModelHelper |
| from pytorch_helper import PyTorchModule |
| import unittest |
| from caffe2.python.core import workspace |
| |
| from test_pytorch_common import skipIfNoLapack |
| |
| |
| class TestCaffe2Backend(unittest.TestCase): |
| |
| @skipIfNoLapack |
| def test_helper(self): |
| |
| class SuperResolutionNet(nn.Module): |
| def __init__(self, upscale_factor, inplace=False): |
| super(SuperResolutionNet, self).__init__() |
| |
| self.relu = nn.ReLU(inplace=inplace) |
| self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) |
| self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) |
| self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) |
| self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) |
| self.pixel_shuffle = nn.PixelShuffle(upscale_factor) |
| |
| self._initialize_weights() |
| |
| def forward(self, x): |
| x = self.relu(self.conv1(x)) |
| x = self.relu(self.conv2(x)) |
| x = self.relu(self.conv3(x)) |
| x = self.pixel_shuffle(self.conv4(x)) |
| return x |
| |
| def _initialize_weights(self): |
| init.orthogonal(self.conv1.weight, init.calculate_gain('relu')) |
| init.orthogonal(self.conv2.weight, init.calculate_gain('relu')) |
| init.orthogonal(self.conv3.weight, init.calculate_gain('relu')) |
| init.orthogonal(self.conv4.weight) |
| |
| torch_model = SuperResolutionNet(upscale_factor=3) |
| |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| |
| # use ModelHelper to create a C2 net |
| helper = ModelHelper(name="test_model") |
| start = helper.Sigmoid(['the_input']) |
| # Embed the ONNX-converted pytorch net inside it |
| toutput, = PyTorchModule(helper, torch_model, (fake_input,), [start]) |
| output = helper.Sigmoid(toutput) |
| |
| workspace.RunNetOnce(helper.InitProto()) |
| workspace.FeedBlob('the_input', fake_input.data.numpy()) |
| # print([ k for k in workspace.blobs ]) |
| workspace.RunNetOnce(helper.Proto()) |
| c2_out = workspace.FetchBlob(str(output)) |
| |
| torch_out = torch.sigmoid(torch_model(torch.sigmoid(fake_input))) |
| |
| np.testing.assert_almost_equal(torch_out.data.cpu().numpy(), c2_out, decimal=3) |
| |
| if __name__ == '__main__': |
| unittest.main() |