| from __future__ import absolute_import, division, print_function, unicode_literals |
| |
| import numpy as np |
| import unittest |
| |
| import torch |
| import torch.jit |
| import torch.nn.functional as F |
| from torch.nn.modules.utils import _pair |
| |
| from hypothesis import assume, given |
| from hypothesis import strategies as st |
| import hypothesis_utils as hu |
| |
| from common_utils import TEST_WITH_UBSAN, TestCase, run_tests, IS_WINDOWS, IS_PPC |
| from common_quantized import _quantize, _dequantize, _calculate_dynamic_qparams |
| |
| |
| # Make sure we won't have overflows from vpmaddubsw instruction used in FBGEMM. |
| # On the current Intel x86 architecture, we need to utilize vpmaddubsw instruction |
| # for the 8-bit int multiplication. This instruction vertically multiplies each |
| # unsigned 8-bit integer from a with the corresponding signed 8-bit integer from |
| # b, producing intermediate signed 16-bit integers. This function modifies the |
| # weights to eliminate the overflow on the signed 16-bit integers. |
| def avoid_vpmaddubsw_overflow_linear( |
| batch_size, input_channels, output_channels, X, X_min, X_max, W, W_min, W_max |
| ): |
| for i, j in np.ndindex((batch_size, output_channels)): |
| for k in range(0, input_channels // 2 * 2, 2): |
| x0 = X[i, k] - X_min |
| x1 = X[i, k + 1] - X_min |
| w0 = W[j, k] - 128 - W_min |
| w1 = W[j, k + 1] - 128 - W_min |
| if x0 * w0 + x1 * w1 < -(1 << 15): |
| w1_adjusted = (-(1 << 15) - float(x0) * w0) / x1 |
| W[j, k + 1] = int(w1_adjusted) + 128 + W_min |
| elif x0 * w0 + x1 * w1 > (1 << 15) - 1: |
| w1_adjusted = ((1 << 15) - 1 - float(x0) * w0) / x1 |
| W[j, k + 1] = int(w1_adjusted) + 128 + W_min |
| |
| # Go through the same loop again to double check we don't have any overflow |
| for i, j in np.ndindex((batch_size, output_channels)): |
| for k in range(0, input_channels // 2 * 2, 2): |
| x0 = X[i, k] - X_min |
| x1 = X[i, k + 1] - X_min |
| w0 = W[j, k] - 128 - W_min |
| w1 = W[j, k + 1] - 128 - W_min |
| assert -(1 << 15) <= x0 * w0 + x1 * w1 < (1 << 15) |
| |
| |
| # Reference quantized Linear operator |
| def qlinear_ref(X_q, X_scale, X_zp, W_q, W_scale, W_zp, b_q, Y_scale, Y_zp): |
| X_q = np.reshape(X_q, (-1, X_q.shape[X_q.ndim - 1])) |
| row_offsets_ref = X_q.sum(axis=1).astype(np.int32).reshape((-1, 1)) |
| col_offsets_ref = W_q.sum(axis=1).astype(np.int32).reshape((1, -1)) |
| assert X_q.ndim == 2 |
| batch_size, input_channels = X_q.shape |
| Prod_XqWq_ref = ( |
| np.matmul(X_q.astype(np.int32), W_q.astype(np.int32).T) |
| - W_zp * row_offsets_ref |
| - X_zp * col_offsets_ref |
| + input_channels * X_zp * W_zp |
| ) |
| if b_q is not None: |
| Prod_XqWq_ref += b_q |
| Y_q_ref = _quantize(Prod_XqWq_ref, Y_scale / (X_scale * W_scale), Y_zp) |
| return Y_q_ref |
| |
| class TestQuantizedOps(TestCase): |
| """Computes the output shape given pooling parameters.""" |
| def _pool_output_shape(self, input_size, kernel_size, padding, stride, |
| dilation, ceiling_mode=False): |
| if stride is None: |
| stride = kernel_size |
| output_size = ( |
| (input_size + 2 * padding - dilation * (kernel_size - 1) - 1 |
| + (stride - 1 if ceiling_mode else 0)) // stride + 1) |
| if (padding > 0 and |
| ((output_size - 1) * stride >= input_size + padding)): |
| output_size += 1 |
| return output_size |
| |
| """Tests the correctness of the quantized::relu op.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams())) |
| def test_qrelu(self, X): |
| X, (scale, zero_point, torch_type) = X |
| |
| Y = X.copy() |
| Y[Y < 0] = 0 |
| qY = torch.quantize_linear(torch.from_numpy(Y), scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| X = torch.from_numpy(X) |
| qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| ops_under_test = { |
| 'ops.quantized': torch.ops.quantized.relu, |
| 'native': torch.relu, |
| 'nn.functional': torch.nn.functional.relu |
| } |
| |
| for name, op in ops_under_test.items(): |
| qY_hat = op(qX) |
| self.assertEqual(qY, qY_hat, message="{} relu failed".format(name)) |
| |
| """Tests the correctness of the add and add_relu op.""" |
| def test_qadd_relu_same_qparams(self): |
| add_relu = torch.ops.quantized.add_relu |
| add = torch.ops.quantized.add |
| add_out = torch.ops.quantized.add_out |
| add_relu_out = torch.ops.quantized.add_relu_out |
| |
| A = torch.arange(-25, 25, dtype=torch.float) |
| B = torch.arange(-25, 25, dtype=torch.float) |
| scale = 2.0 |
| zero_point = 127 |
| qA = torch.quantize_linear(A, scale=scale, zero_point=zero_point, |
| dtype=torch.quint8) |
| qB = torch.quantize_linear(B, scale=scale, zero_point=zero_point, |
| dtype=torch.quint8) |
| |
| # Add ReLU ground truth |
| C = (qA.dequantize() + qB.dequantize()).numpy() |
| qC = _quantize(C, scale, zero_point) |
| qC_hat = add(qA, qB, scale=scale, zero_point=zero_point) |
| np.testing.assert_equal(qC, qC_hat.int_repr(), |
| "Quantized addition failed.") |
| qC_out_hat = torch._empty_affine_quantized(qC.shape, |
| scale=scale, |
| zero_point=zero_point, |
| dtype=torch.quint8) |
| add_out(qA, qB, out=qC_out_hat) |
| self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed") |
| |
| # Add + ReLU ground truth |
| Crelu = C.copy() |
| Crelu[C < 0] = 0 |
| qCrelu = _quantize(Crelu, scale, zero_point) |
| qCrelu_hat = add_relu(qA, qB, scale=scale, zero_point=zero_point) |
| np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(), |
| "Quantized addition with ReLU failed.") |
| qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape, |
| scale=scale, |
| zero_point=zero_point, |
| dtype=torch.quint8) |
| add_relu_out(qA, qB, out=qCrelu_out_hat) |
| self.assertEqual(qCrelu_hat, qCrelu_out_hat, |
| message="AddReLU.out failed") |
| |
| """Tests the correctness of the add and add_relu op.""" |
| def test_qadd_relu_different_qparams(self): |
| add_relu = torch.ops.quantized.add_relu |
| add = torch.ops.quantized.add |
| add_out = torch.ops.quantized.add_out |
| add_relu_out = torch.ops.quantized.add_relu_out |
| |
| A = torch.arange(-25, 25, dtype=torch.float) |
| B = torch.arange(-25, 25, dtype=torch.float) |
| scale_A = 3.0 |
| zero_point_A = 7 |
| scale_B = 5.0 |
| zero_point_B = 127 |
| |
| scale_C = 0.5 |
| zero_point_C = 5 |
| |
| qA = torch.quantize_linear(A, scale=scale_A, zero_point=zero_point_A, |
| dtype=torch.quint8) |
| qB = torch.quantize_linear(B, scale=scale_B, zero_point=zero_point_B, |
| dtype=torch.quint8) |
| |
| # Add ground truth |
| C = (qA.dequantize() + qB.dequantize()).numpy() |
| qC = _quantize(C, scale_C, zero_point_C) |
| qC_hat = add(qA, qB, scale=scale_C, zero_point=zero_point_C) |
| np.testing.assert_equal(qC, qC_hat.int_repr(), |
| "Quantized addition failed.") |
| qC_out_hat = torch._empty_affine_quantized(qC.shape, |
| scale=scale_C, |
| zero_point=zero_point_C, |
| dtype=torch.quint8) |
| add_out(qA, qB, out=qC_out_hat) |
| self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed") |
| |
| # Add + ReLU ground truth |
| Crelu = C.copy() |
| Crelu[C < 0] = 0 |
| qCrelu = _quantize(Crelu, scale_C, zero_point_C) |
| qCrelu_hat = add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C) |
| np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(), |
| "Quantized addition with ReLU failed.") |
| qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape, |
| scale=scale_C, |
| zero_point=zero_point_C, |
| dtype=torch.quint8) |
| add_relu_out(qA, qB, out=qCrelu_out_hat) |
| self.assertEqual(qCrelu_hat, qCrelu_out_hat, |
| message="AddReLU.out failed") |
| |
| """Tests max pool operation on quantized tensors.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| kernel=st.sampled_from((3, 5, 7)), |
| stride=st.sampled_from((None, 1, 2)), |
| dilation=st.integers(1, 2), |
| padding=st.integers(0, 2)) |
| def test_max_pool2d(self, X, kernel, stride, dilation, padding): |
| X, (scale, zero_point, torch_type) = X |
| # Check constraints |
| assume(kernel // 2 >= padding) # Kernel cannot be overhanging! |
| iH, iW = X.shape[-2:] |
| oH = self._pool_output_shape(iH, kernel, padding, stride, dilation) |
| assume(oH > 0) |
| oW = self._pool_output_shape(iW, kernel, padding, stride, dilation) |
| assume(oW > 0) |
| |
| a = torch.from_numpy(X) |
| a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel, |
| stride=stride, |
| padding=padding, dilation=dilation) |
| a_ref = torch.quantize_linear(a_pool, scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| a_ref = a_ref.dequantize() |
| qa = torch.quantize_linear(a, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| ops_under_test = { |
| "torch": torch.max_pool2d, |
| "nn.functional": torch.nn.functional.max_pool2d, |
| "nn.quantized.functional": torch.nn.quantized.functional.max_pool2d |
| } |
| |
| for name, op in ops_under_test.items(): |
| a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding, |
| dilation=dilation) |
| self.assertEqual(a_ref, a_hat.dequantize(), |
| message="{} results are off".format(name)) |
| # Test the ops.quantized separately, because None is not treated. |
| a_hat = torch.ops.quantized.max_pool2d( |
| qa, kernel_size=_pair(kernel), |
| stride=_pair(kernel if stride is None else stride), |
| padding=_pair(padding), dilation=_pair(dilation)) |
| self.assertEqual(a_ref, a_hat.dequantize(), |
| message="ops.quantized.max_pool2d results are off") |
| |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| output_size_h=st.integers(1, 10), |
| output_size_w=st.integers(1, 10)) |
| def test_adaptive_avg_pool2d(self, X, output_size_h, output_size_w): |
| X, (scale, zero_point, torch_type) = X |
| |
| H, W = X.shape[-2:] |
| assume(output_size_h <= H) |
| assume(output_size_w <= W) |
| if output_size_h == output_size_w: |
| output_size = output_size_h |
| else: |
| output_size = (output_size_h, output_size_w) |
| |
| X = torch.from_numpy(X) |
| qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point, |
| dtype=torch_type) |
| |
| # Run reference on int_repr + round to avoid double rounding error. |
| X_ref = torch.nn.functional.adaptive_avg_pool2d( |
| qX.int_repr().to(torch.float), output_size).round() |
| |
| ops_under_test = { |
| "nn.functional": torch.nn.functional.adaptive_avg_pool2d, |
| "nn.quantized.functional": |
| torch.nn.quantized.functional.adaptive_avg_pool2d |
| } |
| |
| error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}" |
| |
| for name, op in ops_under_test.items(): |
| qX_hat = op(qX, output_size=output_size) |
| qX_repr = qX_hat.int_repr() |
| self.assertEqual(X_ref, qX_repr, |
| message=error_message.format(name, X_ref, qX_repr)) |
| |
| |
| """Tests quantize concatenation (both fused and not).""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4, |
| min_side=1, max_side=10), |
| qparams=hu.qparams()), |
| num=st.integers(1, 4), |
| axis=st.integers(1, 4), |
| relu=st.booleans()) |
| def test_cat(self, X, num, axis, relu): |
| tensors_q = [] |
| tensors_ref = [] |
| X, (scale, zero_point, torch_type) = X |
| assume(axis < X.ndim) |
| X = torch.from_numpy(X) |
| new_shape = np.array(X.shape) |
| new_shape[axis] = 0 |
| for idx in range(num): |
| tensors_q.append(torch.quantize_linear(X, scale, zero_point, |
| torch_type)) |
| tensors_ref.append(X) |
| new_shape[axis] += tensors_ref[-1].shape[axis] |
| |
| cat_ref = torch.cat(tensors_ref, axis=axis) |
| cat_ref = torch.quantize_linear(cat_ref, scale, zero_point, torch_type) |
| cat_ref = cat_ref.dequantize() |
| |
| if relu: |
| cat_ref = F.relu(cat_ref) |
| q_cat_op = torch.ops.quantized.cat_relu |
| q_cat_out_op = torch.ops.quantized.cat_relu_out |
| else: |
| q_cat_op = torch.ops.quantized.cat |
| q_cat_out_op = torch.ops.quantized.cat_out |
| |
| cat_q = q_cat_op(tensors_q, axis=axis, scale=scale, |
| zero_point=zero_point) |
| cat_q = cat_q.dequantize() |
| np.testing.assert_equal(cat_ref.numpy(), cat_q.numpy()) |
| |
| cat_q_out = torch._empty_affine_quantized( |
| list(new_shape), scale=scale, |
| zero_point=zero_point, dtype=torch_type) |
| q_cat_out_op(tensors_q, axis=axis, out=cat_q_out) |
| cat_q_out = cat_q_out.dequantize() |
| np.testing.assert_equal(cat_ref.numpy(), cat_q_out.numpy()) |
| |
| # Test the cat on per-channel quantized tensor. |
| ch_axis = 1 |
| scales = torch.from_numpy(np.array([1.0] * X.shape[ch_axis])) |
| scales = scales.to(torch.float64) |
| zero_points = torch.from_numpy(np.array([0] * X.shape[ch_axis])) |
| zero_points = zero_points.to(torch.long) |
| tensors_q[0] = torch.quantize_linear_per_channel( |
| X, scales, zero_points, axis=[ch_axis], dtype=torch_type) |
| with self.assertRaisesRegex(RuntimeError, "supported.*cat"): |
| cat_q = q_cat_op(tensors_q, axis=axis, scale=scale, |
| zero_point=zero_point) |
| |
| |
| @unittest.skipIf( |
| TEST_WITH_UBSAN or not torch.fbgemm_is_cpu_supported(), |
| " Quantized Linear requires FBGEMM. FBGEMM does not play" |
| " well with UBSAN at the moment, so we skip the test if" |
| " we are in a UBSAN environment.", |
| ) |
| class TestDynamicQuantizedLinear(TestCase): |
| """Tests the correctness of the dynamic quantized linear and linear_relu op.""" |
| @given( |
| batch_size=st.integers(1, 4), |
| input_channels=st.integers(16, 32), |
| output_channels=st.integers(4, 8), |
| use_bias=st.booleans(), |
| use_relu=st.booleans(), |
| ) |
| def test_qlinear(self, batch_size, input_channels, output_channels, use_bias, use_relu): |
| qlinear_prepack = torch.ops.quantized.fbgemm_linear_prepack |
| if use_relu: |
| qlinear_dynamic = torch.ops.quantized.fbgemm_linear_relu_dynamic |
| else: |
| qlinear_dynamic = torch.ops.quantized.fbgemm_linear_dynamic |
| |
| X_scale = 1.0 |
| X_zp = 0 |
| X_value_min = 0 |
| X_value_max = 255 |
| X_q0 = np.round(np.random.rand(batch_size, input_channels) * ( |
| X_value_max - X_value_min) + X_value_min |
| ).astype(np.uint8) |
| X_q0[0, 0] = X_value_min |
| X_q0[0, 1] = X_value_max |
| |
| W_scale = 1.0 |
| W_zp = 0 |
| W_value_min = -128 |
| W_value_max = 127 |
| W_q0 = np.round( |
| np.random.rand(output_channels, input_channels) |
| * (W_value_max - W_value_min) |
| + W_value_min |
| ).astype(np.int8) |
| W_q0[0, 0] = W_value_min |
| W_q0[1, 0] = W_value_max |
| |
| b_value_min = -10 |
| b_value_max = 10 |
| b_q0 = np.round( |
| np.random.rand(output_channels) * (b_value_max - b_value_min) + |
| b_value_min |
| ).astype(np.int32) if use_bias else None |
| |
| avoid_vpmaddubsw_overflow_linear( |
| batch_size, |
| input_channels, |
| output_channels, |
| X_q0, |
| X_value_min, |
| X_value_max, |
| W_q0, |
| W_value_min, |
| W_value_max, |
| ) |
| |
| X_fp32 = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float) |
| W_fp32 = torch.from_numpy(_dequantize(W_q0, W_scale, W_zp)).to(dtype=torch.float) |
| b_fp32 = torch.from_numpy( |
| _dequantize(b_q0, X_scale * W_scale, 0) |
| ).to(dtype=torch.float) if use_bias else None |
| |
| W_scale, W_zp = _calculate_dynamic_qparams(W_fp32, torch.qint8) |
| W_q = torch.quantize_linear(W_fp32, scale=W_scale, zero_point=W_zp, dtype=torch.qint8) |
| |
| # Observe X_fp32 and determine X_scale and X_zero_point, this should match |
| # internals of dynamic linear. |
| X_scale, X_zp = _calculate_dynamic_qparams(X_fp32, torch.quint8) |
| X_q = torch.quantize_linear(X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8) |
| |
| # Weight prepacking operator for dynamic quantized Linear |
| W_prepack = qlinear_prepack(W_q) |
| # Dynamic quantized Linear operator with prepacked weight |
| Y_fp32 = qlinear_dynamic(X_q.dequantize(), W_prepack, b_fp32) |
| # Y_fp32 = qlinear_dynamic(X_fp32, W_prepack, b_fp32) |
| |
| Y_fp32_ref = F.linear(X_q.dequantize(), W_q.dequantize(), b_fp32) |
| # Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32) |
| |
| if use_relu: |
| Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0 |
| |
| self.assertEqual(Y_fp32, Y_fp32_ref, |
| message="torch.ops.quantized.fbgemm_linear_dynamic results are off") |
| |
| |
| @unittest.skipIf( |
| not torch.fbgemm_is_cpu_supported(), |
| " Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs" |
| " with instruction set support avx2 or newer.", |
| ) |
| class TestQuantizedLinear(unittest.TestCase): |
| """Tests the correctness of the quantized linear and linear_relu op.""" |
| @given(batch_size=st.integers(1, 4), |
| input_channels=st.integers(16, 32), |
| output_channels=st.integers(4, 8), |
| use_bias=st.booleans(), |
| use_relu=st.booleans()) |
| def test_qlinear(self, batch_size, input_channels, output_channels, use_bias, use_relu): |
| qlinear_prepack = torch.ops.quantized.fbgemm_linear_prepack |
| if use_relu: |
| qlinear = torch.ops.quantized.fbgemm_linear_relu |
| else: |
| qlinear = torch.ops.quantized.fbgemm_linear |
| |
| X_scale = 1.5 |
| X_zp = 5 |
| X_value_min = 0 |
| X_value_max = 225 |
| X_q0 = np.round( |
| np.random.rand(batch_size, input_channels) * (X_value_max - X_value_min) |
| + X_value_min |
| ).astype(np.uint8) |
| |
| W_scale = 0.4 |
| W_zp = 2 |
| W_value_min = -128 |
| W_value_max = 127 |
| W_q0 = np.round( |
| np.random.rand(output_channels, input_channels) |
| * (W_value_max - W_value_min) |
| + W_value_min |
| ).astype(np.int8) |
| |
| b_value_min = -10 |
| b_value_max = 10 |
| b_q0 = np.round( |
| np.random.rand(output_channels) * (b_value_max - b_value_min) + b_value_min |
| ).astype(np.int32) if use_bias else None |
| |
| avoid_vpmaddubsw_overflow_linear( |
| batch_size, |
| input_channels, |
| output_channels, |
| X_q0, |
| X_value_min, |
| X_value_max, |
| W_q0, |
| W_value_min, |
| W_value_max, |
| ) |
| |
| X = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float) |
| W = torch.from_numpy(_dequantize(W_q0, W_scale, W_zp)).to(dtype=torch.float) |
| b = torch.from_numpy(_dequantize(b_q0, X_scale * W_scale, 0)).to(dtype=torch.float) if use_bias else None |
| |
| X_q = torch.quantize_linear(X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8) |
| W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp, dtype=torch.qint8) |
| b_q = torch.quantize_linear(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32) if use_bias else None |
| |
| # Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with |
| # Y_scale * 255 (max for uint8). |
| Y_scale = 125.1234 |
| Y_zp = 5 |
| |
| # Reference quantized Linear operator |
| Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0, W_scale, W_zp, b_q0, Y_scale, Y_zp) |
| if use_relu: |
| Y_q_ref[Y_q_ref < Y_zp] = Y_zp |
| |
| # Weight prepacking operator for quantized Linear |
| W_prepack = qlinear_prepack(W_q) |
| # Quantized Linear operator with prepacked weight |
| Y_q = qlinear(X_q, W_prepack, b_q, Y_scale, Y_zp) |
| |
| # Y_q_ref_real = _dequantize(Y_q_ref, Y_scale, Y_zp) |
| # Y_q_real = Y_q.dequantize() |
| |
| # Assert equal |
| np.testing.assert_equal(Y_q_ref, Y_q.int_repr().numpy()) |
| |
| # Reference quantized result from PyTorch Linear operator |
| W_fp32 = W_q.dequantize().to(dtype=torch.float) |
| X_fp32 = X_q.dequantize().to(dtype=torch.float) |
| b_fp32 = b_q.dequantize().to(dtype=torch.float) if use_bias else None |
| Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32) |
| if use_relu: |
| Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0 |
| Y_q_ref2 = torch.quantize_linear(Y_fp32_ref, Y_scale, Y_zp, torch.quint8) |
| |
| # Assert equal |
| np.testing.assert_equal(Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy()) |
| |
| """Tests the correctness of the quantized::fbgemm_linear_unpack op.""" |
| @given(W=hu.tensor(shapes=hu.array_shapes(2, 2,), |
| qparams=hu.qparams(dtypes=torch.qint8))) |
| def test_qlinear_unpack(self, W): |
| W, (W_scale, W_zp, torch_type) = W |
| qlinear_prepack = torch.ops.quantized.fbgemm_linear_prepack |
| qlinear_unpack = torch.ops.quantized.fbgemm_linear_unpack |
| |
| W = torch.from_numpy(W) |
| W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp, |
| dtype=torch_type) |
| |
| # Weight prepacking operator for quantized Linear |
| W_prepack = qlinear_prepack(W_q) |
| # Weight unpack operator for quantized Linear (Used for serialization) |
| W_q_origin = qlinear_unpack(W_prepack) |
| |
| # Assert equal |
| np.testing.assert_equal(W_q.int_repr(), W_q_origin.int_repr().numpy()) |
| np.testing.assert_equal(W_q.q_scale(), W_q_origin.q_scale()) |
| np.testing.assert_equal(W_q.q_zero_point(), W_q_origin.q_zero_point()) |
| |
| @unittest.skipIf( |
| not torch.fbgemm_is_cpu_supported(), |
| " Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs" |
| " with instruction set support avx2 or newer.", |
| ) |
| class TestQuantizedConv(unittest.TestCase): |
| """Tests the correctness of quantized convolution op.""" |
| @given(batch_size=st.integers(1, 3), |
| input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]), |
| height=st.integers(10, 16), |
| width=st.integers(7, 14), |
| output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]), |
| groups=st.integers(1, 3), |
| kernel_h=st.integers(1, 7), |
| kernel_w=st.integers(1, 7), |
| stride_h=st.integers(1, 2), |
| stride_w=st.integers(1, 2), |
| pad_h=st.integers(0, 2), |
| pad_w=st.integers(0, 2), |
| dilation=st.integers(1, 1), |
| X_scale=st.floats(0.2, 1.6), |
| X_zero_point=st.integers(0, 4), |
| W_scale=st.floats(0.2, 1.6), |
| W_zero_point=st.integers(-5, 5), |
| Y_scale=st.floats(0.2, 1.6), |
| Y_zero_point=st.integers(0, 4), |
| use_bias=st.booleans(), |
| use_relu=st.booleans()) |
| def test_qconv( |
| self, |
| batch_size, |
| input_channels_per_group, |
| height, |
| width, |
| output_channels_per_group, |
| groups, |
| kernel_h, |
| kernel_w, |
| stride_h, |
| stride_w, |
| pad_h, |
| pad_w, |
| dilation, |
| X_scale, |
| X_zero_point, |
| W_scale, |
| W_zero_point, |
| Y_scale, |
| Y_zero_point, |
| use_bias, |
| use_relu |
| ): |
| |
| qconv = torch.ops.quantized.fbgemm_conv2d |
| if use_relu: |
| qconv = torch.ops.quantized.fbgemm_conv2d_relu |
| qconv_prepack = torch.ops.quantized.fbgemm_conv_prepack |
| |
| # C |
| input_channels = input_channels_per_group * groups |
| # K |
| output_channels = output_channels_per_group * groups |
| |
| dilation_h = dilation_w = dilation |
| |
| # For testing, we use small values for weights and for activations so that no overflow occurs |
| # in vpmaddubsw instruction. If the overflow occurs in qconv implementation and if there is no overflow |
| # in reference we can't exactly match the results with reference. |
| # Please see the comment in qconv implementation file (aten/src/ATen/native/quantized/cpu/qconv.cpp) |
| # for more details. |
| W_value_min = -5 |
| W_value_max = 5 |
| |
| # the operator expects them in the format (output_channels, input_channels/groups, kernel_h, kernel_w) |
| W_init = torch.from_numpy( |
| np.random.randint( |
| W_value_min, |
| W_value_max, |
| (output_channels, int(input_channels / groups), kernel_h, kernel_w)), |
| ) |
| |
| |
| b_init = torch.from_numpy(np.random.randint(0, 10, (output_channels,))) |
| |
| stride = [stride_h, stride_w] |
| pad = [pad_h, pad_w] |
| dilation = [dilation_h, dilation_w] |
| |
| X_value_min = 0 |
| X_value_max = 4 |
| X_init = torch.from_numpy(np.random.randint( |
| X_value_min, X_value_max, (batch_size, input_channels, height, width))) |
| |
| X = X_scale * (X_init - X_zero_point).to(dtype=torch.float) |
| |
| W = W_scale * (W_init - W_zero_point).to(dtype=torch.float) |
| |
| b = X_scale * W_scale * (b_init - 0).to(dtype=torch.float) |
| |
| # Existing floating point conv operator |
| conv_op = torch.nn.Conv2d(input_channels, |
| output_channels, |
| (kernel_h, kernel_w), |
| (stride_h, stride_w), |
| (pad_h, pad_w), |
| (dilation_h, dilation_w), |
| groups) |
| |
| # assign weights |
| conv_op.weight = torch.nn.Parameter(W, requires_grad=False) |
| |
| conv_op.bias = torch.nn.Parameter(b, requires_grad=False) if use_bias else None |
| |
| result_ref = conv_op(X) |
| if use_relu: |
| relu = torch.nn.ReLU() |
| result_ref = relu(result_ref) |
| # quantize reference results for comparision |
| result_ref_q = torch.quantize_linear(result_ref, scale=Y_scale, zero_point=Y_zero_point, dtype=torch.quint8) |
| |
| # reformat X_init and W_init in the required format by qconv operator |
| # NCHW -> NHWC |
| X_NHWC = X.permute([0, 2, 3, 1]).contiguous() |
| # K(C/G)RS -> KRS(C/G) |
| W_KRSC = W.permute([0, 2, 3, 1]).contiguous() |
| |
| X_q = torch.quantize_linear(X_NHWC, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8) |
| W_q = torch.quantize_linear(W_KRSC, scale=W_scale, zero_point=W_zero_point, dtype=torch.qint8) |
| b_q = torch.quantize_linear(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32) if use_bias else None |
| |
| W_prepack = qconv_prepack(W_q, stride, pad, dilation, groups) |
| |
| Y_q = qconv( |
| X_q, |
| W_prepack, |
| b_q, |
| stride, |
| pad, |
| dilation, |
| groups, |
| Y_scale, |
| Y_zero_point, |
| ) |
| |
| # Back to NCHW format |
| Y_q = Y_q.permute([0, 3, 1, 2]).contiguous() |
| |
| |
| # Make sure the results match |
| # assert_array_almost_equal compares using the following formula: |
| # abs(desired-actual) < 1.5 * 10**(-decimal) |
| # (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html) |
| |
| # We use decimal = 0 to ignore off-by-1 differences between reference and |
| # test. Off-by-1 differences arise due to the order of round and |
| # zero_point addition operation, i.e., if addition followed by round is |
| # used by reference and round followed by addition is used by test, the |
| # results may differ by 1. |
| |
| # For example, the result of round(2.5) + 1 is 3 while round(2.5 + 1) is 4 |
| # assuming the rounding mode is round-to-nearest, ties-to-even. |
| np.testing.assert_array_almost_equal(result_ref_q.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=0) |
| |
| """Tests the correctness of the quantized::fbgemm_qconv_unpack op.""" |
| @given(X=hu.tensor_conv2d(min_batch=1, max_batch=3, |
| min_in_channels=1, max_in_channels=7, |
| min_out_channels=1, max_out_channels=7, |
| H_range=(6, 12), W_range=(6, 12), |
| kH_range=(3, 5), kW_range=(3, 5), |
| max_groups=4, |
| qparams=[hu.qparams(dtypes=torch.quint8, |
| zero_point_min=0, |
| zero_point_max=0), |
| hu.qparams(dtypes=torch.qint8, |
| zero_point_min=0, |
| zero_point_max=0), |
| hu.qparams(dtypes=torch.qint32, |
| zero_point_min=0, |
| zero_point_max=0)]), |
| strideH=st.integers(1, 3), strideW=st.integers(1, 3), |
| padH=st.integers(1, 2), padW=st.integers(1, 2)) |
| def test_qconv_unpack(self, X, strideH, strideW, padH, padW): |
| (inputs, filters, bias, groups) = X |
| inputs, (inputs_scale, inputs_zero_point, inputs_qtype) = inputs |
| filters, (filters_scale, filters_zero_point, filters_qtype) = filters |
| bias, (bias_scale, bias_zero_point, bias_qtype) = bias |
| |
| qconv_prepack = torch.ops.quantized.fbgemm_conv_prepack |
| qconv_unpack = torch.ops.quantized.fbgemm_conv_unpack |
| |
| # Orig tensor is assumed to be in K(C/G)RS format |
| W = torch.from_numpy(filters).to(torch.float) |
| # K(C/G)RS -> KRS(C/G) |
| W_KRSC = W.permute([0, 2, 3, 1]).contiguous() |
| W_q = torch.quantize_linear(W_KRSC, scale=filters_scale, zero_point=filters_zero_point, dtype=filters_qtype) |
| |
| # Pack weights using weight packing operator |
| strides = [strideH, strideW] |
| paddings = [padH, padW] |
| dilations = [1, 1] |
| W_packed = qconv_prepack(W_q, strides, paddings, dilations, groups) |
| # Unpack weights weight unpacking operator (Used for serialization) |
| W_unpacked = qconv_unpack(W_packed) |
| |
| # Assert equal |
| np.testing.assert_equal(W_q.int_repr().numpy(), W_unpacked.int_repr().numpy()) |
| np.testing.assert_equal(W_q.q_scale(), W_unpacked.q_scale()) |
| np.testing.assert_equal(W_q.q_zero_point(), W_unpacked.q_zero_point()) |
| |
| |
| @unittest.skipIf(IS_WINDOWS, "QNNPACK has not been built for Windows") |
| @unittest.skipIf(IS_PPC, "QNNPACK is not currently supported on ppc64le") |
| @unittest.skipIf(TEST_WITH_UBSAN, |
| "QNNPACK does not play well with UBSAN at the moment," |
| " so we skip the test if we are in a UBSAN environment.") |
| class TestQNNPackOps(TestCase): |
| """Tests the correctness of the quantized::qnnpack_relu op.""" |
| @given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5), |
| qparams=hu.qparams(dtypes=torch.quint8, |
| zero_point_min=0, |
| zero_point_max=0))) |
| def test_qnnpack_relu(self, X): |
| X, (scale, zero_point, torch_type) = X |
| relu = torch.ops.quantized.qnnpack_relu |
| |
| X = torch.from_numpy(X) |
| Y = X.clone() |
| |
| qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point, dtype=torch_type) |
| qY_hat = relu(qX) |
| |
| Y[Y < 0] = 0 |
| qY = torch.quantize_linear(Y, scale=scale, zero_point=zero_point, dtype=torch_type) |
| self.assertEqual(qY, qY_hat) |
| |
| """Tests the correctness of the quantized::qnnpack_linear op.""" |
| @given(output_channels=st.sampled_from([2, 4, 5, 8, 16, 32]), |
| X=hu.tensor(shapes=hu.array_shapes(2, 3, 8, 15), |
| qparams=hu.qparams(dtypes=torch.quint8))) |
| def test_qnnpack_linear(self, output_channels, X): |
| X, (X_scale, X_zp, torch_type) = X |
| qmin = torch.iinfo(torch_type).min |
| qmax = torch.iinfo(torch_type).max |
| |
| input_channels = X.shape[X.ndim - 1] |
| |
| input_rows = 1 |
| |
| for x in range(X.ndim - 1): |
| input_rows *= X.shape[x] |
| |
| qnnpack_linear = torch.ops.quantized.qnnpack_linear |
| |
| X_q0 = np.round(X * (qmin - qmax) + qmin).astype(np.uint8) |
| |
| W_scale = 0.4 |
| W_zp = 0 |
| W_value_min = 0 |
| W_value_max = 255 |
| W_q0 = np.round( |
| np.random.rand(output_channels, input_channels) |
| * (W_value_max - W_value_min) |
| + W_value_min |
| ).astype(np.uint8) |
| |
| b_value_min = -10 |
| b_value_max = 10 |
| b_q0 = np.round( |
| np.random.rand(output_channels) * (b_value_max - b_value_min) + b_value_min |
| ).astype(np.int32) |
| |
| X_scale = 10 |
| X_zp = 0 |
| X = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float) |
| W = torch.from_numpy(_dequantize(W_q0, W_scale, W_zp)).to(dtype=torch.float) |
| b = torch.from_numpy(_dequantize(b_q0, X_scale * W_scale, 0)).to(dtype=torch.float) |
| |
| X_q = torch.quantize_linear(X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8) |
| W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp, dtype=torch.quint8) |
| b_q = torch.quantize_linear(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32) |
| |
| Y_scale = 5.4 # This makes sure that the max output value does not exceed 255. |
| Y_zp = 0 |
| |
| # Reference quantized Linear operator |
| Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0, W_scale, W_zp, b_q0, Y_scale, Y_zp) |
| Y_q_ref_float = _dequantize(Y_q_ref, Y_scale, Y_zp) |
| |
| # Quantized linear operator |
| Y_q = qnnpack_linear(X_q, W_q, b_q, Y_scale, Y_zp) |
| |
| # Assert equal |
| np.testing.assert_array_almost_equal(Y_q_ref_float, Y_q.dequantize().numpy(), decimal=4) |
| |
| # Reference quantized result from PyTorch Linear operator |
| |
| W_fp32 = W_q.dequantize().to(dtype=torch.float) |
| X_fp32 = X_q.dequantize().to(dtype=torch.float) |
| b_fp32 = b_q.dequantize().to(dtype=torch.float) |
| Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32) |
| Y_fp32_ref = Y_fp32_ref.view(-1, output_channels) |
| Y_q_ref2 = torch.quantize_linear(Y_fp32_ref, Y_scale, Y_zp, torch.quint8) |
| |
| # Assert equal |
| np.testing.assert_array_almost_equal(Y_q_ref2.dequantize().numpy(), Y_q.dequantize().numpy(), decimal=4) |
| |
| if __name__ == "__main__": |
| run_tests() |