blob: 23d81bca9ec515b522b6911b9dd00d51e68b1f7a [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
import hypothesis
import io
import torch
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
from common_utils import TestCase
from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, QConfig, default_observer, default_weight_observer, \
default_qat_qconfig, propagate_qconfig, convert, DEFAULT_DYNAMIC_MODULE_MAPPING
# Disable deadline testing if this version of hypthesis supports it, otherwise
# just return the original function
def no_deadline(fn):
try:
return hypothesis.settings(deadline=None)(fn)
except hypothesis.errors.InvalidArgument:
return fn
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
total, correct = 0, 0
for data, target in calib_data:
output = model(data)
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return correct / total
_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
r"""
Default train function takes a torch.utils.data.Dataset and train the model
on the dataset
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
for i in range(10):
model.train()
for data, target in train_data:
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
def convert_dynamic(module):
convert(module, DEFAULT_DYNAMIC_MODULE_MAPPING)
def prepare_dynamic(model, qconfig_dict=None):
propagate_qconfig(model, qconfig_dict)
return model
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):
self.calib_data = [(torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)) for _ in range(2)]
self.train_data = [(torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)) for _ in range(2)]
self.img_data = [(torch.rand(2, 3, 10, 10, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long))
for _ in range(2)]
def checkNoPrepModules(self, module):
r"""Checks the module does not contain child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertFalse(hasattr(module, 'quant'))
self.assertFalse(hasattr(module, 'dequant'))
def checkHasPrepModules(self, module):
r"""Checks the module contains child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertTrue(hasattr(module, 'module'))
self.assertTrue(hasattr(module, 'quant'))
self.assertTrue(hasattr(module, 'dequant'))
def checkObservers(self, module):
r"""Checks the module or module's leaf descendants
have observers in preperation for quantization
"""
if hasattr(module, 'qconfig') and module.qconfig is not None and len(module._modules) == 0:
self.assertTrue(hasattr(module, 'observer'))
for child in module.children():
self.checkObservers(child)
def checkQuantDequant(self, mod):
r"""Checks that mod has nn.Quantize and
nn.DeQuantize submodules inserted
"""
self.assertEqual(type(mod.quant), nnq.Quantize)
self.assertEqual(type(mod.dequant), nnq.DeQuantize)
def checkWrappedQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnq.Linear
module, the bias is qint32, and that the module
has Quantize and DeQuantize submodules
"""
self.assertEqual(type(mod.module), nnq.Linear)
self.assertEqual(mod.module.bias.dtype, torch.qint32)
self.checkQuantDequant(mod)
def checkQuantizedLinear(self, mod):
self.assertEqual(type(mod), nnq.Linear)
self.assertEqual(mod.bias.dtype, torch.qint32)
def checkDynamicQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
self.assertEqual(type(mod), nnqd.Linear)
self.assertEqual(mod.bias.dtype, torch.float)
def checkLinear(self, mod):
self.assertEqual(type(mod), torch.nn.Linear)
# calib_data follows the same schema as calib_data for
# test_only_eval_fn, i.e. (input iterable, output iterable)
def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
scripted = torch.jit.script(orig_mod)
self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)
# Call this twice: once for a scripted module and once for a traced module
def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)
# Test save/load
buffer = io.BytesIO()
torch.jit.save(script_mod, buffer)
buffer.seek(0)
loaded_mod = torch.jit.load(buffer)
# Pending __get_state_ and __set_state__ support
# See tracking task https://github.com/pytorch/pytorch/issues/23984
if check_save_load:
self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)
def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
for (inp, _) in calib_data:
ref_output = orig_mod(inp)
scripted_output = test_mod(inp)
self.assertEqual(scripted_output, ref_output)
# Below are a series of neural net models to use in testing quantization
class SingleLayerLinearModel(torch.nn.Module):
def __init__(self):
super(SingleLayerLinearModel, self).__init__()
self.qconfig = default_qconfig
self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
class SingleLayerLinearDynamicModel(torch.nn.Module):
def __init__(self):
super(SingleLayerLinearDynamicModel, self).__init__()
self.qconfig = default_qconfig
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class TwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super(TwoLayerLinearModel, self).__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class AnnotatedTwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super(AnnotatedTwoLayerLinearModel, self).__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
self.fc2.qconfig = default_qconfig
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class LinearReluModel(torch.nn.Module):
def __init__(self):
super(LinearReluModel, self).__init__()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
class NestedModel(torch.nn.Module):
def __init__(self):
super(NestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedNestedModel(torch.nn.Module):
def __init__(self):
super(AnnotatedNestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc1.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedSubNestedModel(torch.nn.Module):
def __init__(self):
super(AnnotatedSubNestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedCustomConfigNestedModel(torch.nn.Module):
def __init__(self):
super(AnnotatedCustomConfigNestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
custom_options = {
'dtype': torch.quint8,
'qscheme': torch.per_tensor_affine
}
custom_qconfig = QConfig(weight=default_weight_observer(),
activation=default_observer(**custom_options))
self.sub2.fc1.qconfig = custom_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc2 = QuantWrapper(self.sub2.fc2)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class QuantSubModel(torch.nn.Module):
def __init__(self):
super(QuantSubModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.sub2.qconfig = default_qconfig
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.fc3.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class InnerModule(torch.nn.Module):
def __init__(self):
super(InnerModule, self).__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
return self.relu(self.fc2(self.relu(self.fc1(x))))
class SkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self):
super(SkipQuantModel, self).__init__()
self.qconfig = default_qconfig
self.sub = QuantWrapper(InnerModule())
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
# don't quantize this fc
self.fc.qconfig = None
def forward(self, x):
return self.fc(self.sub(x))
class QuantStubModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self):
super(QuantStubModel, self).__init__()
self.qconfig = default_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc(x)
return self.dequant(x)
class ManualLinearQATModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self):
super(ManualLinearQATModel, self).__init__()
self.qconfig = default_qat_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class ManualConvLinearQATModel(torch.nn.Module):
r"""A module with manually inserted `QuantStub` and `DeQuantStub`
and contains both linear and conv modules
"""
def __init__(self):
super(ManualConvLinearQATModel, self).__init__()
self.qconfig = default_qat_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = x.view(-1, 64).contiguous()
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class SubModForFusion(torch.nn.Module):
def __init__(self):
super(SubModForFusion, self).__init__()
self.conv = torch.nn.Conv2d(20, 20, 1, bias=None)
self.bn = torch.nn.BatchNorm2d(20)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class ModForFusion(torch.nn.Module):
def __init__(self):
super(ModForFusion, self).__init__()
self.conv1 = torch.nn.Conv2d(10, 20, 5, bias=None)
self.bn1 = torch.nn.BatchNorm2d(20)
self.relu1 = torch.nn.ReLU(inplace=False)
self.sub1 = SubModForFusion()
self.sub2 = SubModForFusion()
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.sub1(x)
x = self.sub2(x)
return x
class DummyObserver(torch.nn.Module):
def calculate_qparams(self):
return 1.0, 0
def forward(self, x):
return x
class ModForWrapping(torch.nn.Module):
def __init__(self, quantized=False):
super(ModForWrapping, self).__init__()
self.qconfig = default_qconfig
if quantized:
self.mycat = nnq.QFunctional()
self.myadd = nnq.QFunctional()
else:
self.mycat = nnq.FloatFunctional()
self.myadd = nnq.FloatFunctional()
self.mycat.observer = DummyObserver()
self.myadd.observer = DummyObserver()
def forward(self, x):
y = self.mycat.cat([x, x, x])
z = self.myadd.add(y, y)
return z
@classmethod
def from_float(cls, mod):
new_mod = cls(quantized=True)
new_mod.mycat = new_mod.mycat.from_float(mod.mycat)
new_mod.myadd = new_mod.myadd.from_float(mod.myadd)
return new_mod