| #pragma once |
| |
| // ${generated_comment} |
| |
| #include <ATen/ATen.h> |
| #include <ATen/core/functional.h> |
| #include <ATen/TensorGeometry.h> |
| |
| #include "torch/csrc/autograd/function.h" |
| #include "torch/csrc/autograd/variable.h" |
| #include "torch/csrc/autograd/saved_variable.h" |
| #include <torch/csrc/Export.h> |
| |
| namespace torch { namespace autograd { namespace generated { |
| |
| using at::Scalar; |
| using at::Tensor; |
| using at::IntArrayRef; |
| using at::ArrayRef; |
| using at::Type; |
| using at::TensorGeometry; |
| using at::ScalarType; |
| using c10::optional; |
| using c10::fmap; |
| |
| inline std::vector<Tensor> unpack_list(at::ArrayRef<SavedVariable> xs) { |
| // NB: we must explicitly do the conversion in the lambda, otherwise template |
| // deduction will give a Tensor of Variable which is not convertible |
| return fmap(xs, [](const SavedVariable& x) { |
| return static_cast<Tensor>(x.unpack()); |
| }); |
| } |
| |
| inline c10::List<c10::optional<Tensor>> unpack_opt_list(at::ArrayRef<SavedVariable> xs) { |
| torch::List<c10::optional<Tensor>> result; |
| result.reserve(xs.size()); |
| for (const SavedVariable& v : xs) { |
| auto var = v.unpack(); |
| result.push_back(var.defined() ? c10::optional<Tensor>(var) : c10::nullopt); |
| } |
| return result; |
| } |
| |
| struct TypeAndSize { |
| TypeAndSize() : options(at::TensorOptions()) {} |
| /* implicit */ |
| TypeAndSize(const Tensor & t) |
| : sizes(t.sizes().vec()) |
| , options(t.options()) {} |
| |
| Tensor zeros() { return at::zeros(sizes, options); } |
| |
| private: |
| std::vector<int64_t> sizes; |
| at::TensorOptions options; |
| }; |
| |
| ${autograd_function_declarations} |
| |
| }}} // namespace torch::autograd::generated |