blob: 515d30f7f8a6c2905dd50c02c21bf60a4cf523a3 [file] [log] [blame]
#include <gtest/gtest.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <unordered_map>
#include <test/cpp/tensorexpr/padded_buffer.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/bounds_inference.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/testing/file_check.h>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
void checkIR(Stmt* s, const std::string& pattern) {
std::ostringstream oss;
oss << *s;
torch::jit::testing::FileCheck().run(pattern, oss.str());
}
TEST(LoopNest, ExprSimple01) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{16, "X"}, {5, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
For* x_outer;
For* x_inner;
For* x_tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.splitWithTail(loops[0], 2, &x_outer, &x_inner, &x_tail);
l.splitWithTail(x_outer, 2);
}
TEST(LoopNest, ExprLower01) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{16, "x"}, {5, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 20);
ASSERT_LT(oss.str().size(), 200);
}
TEST(LoopNest, ExprSimple02) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x, const ExprHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
};
Tensor* tensor = Compute("f", {{26, "x"}, {5, "y"}}, func);
LoopNest l({tensor});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.splitWithTail(loops[0], 4);
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 200);
ASSERT_LT(oss.str().size(), 600);
{
// Compare to a reference loop structure structure.
VarHandle x_outer("x_outer", kInt);
VarHandle x_inner("x_inner", kInt);
VarHandle y("y", kInt);
VarHandle x_tail("x_tail", kInt);
BufHandle f("f", {26, 5}, kFloat);
ExprHandle x_1 = x_outer * 4 + x_inner;
ExprHandle x_outer_end = (ExprHandle(26) - 0) / 4;
For* stmt1 = For::make(
x_outer,
0,
x_outer_end,
For::make(
x_inner,
0,
4,
For::make(y, 0, 5, Store::make(f, {x_1, y}, func(x_1, y)))));
ExprHandle x_2 = x_tail + x_outer_end * 4;
For* stmt2 = For::make(
x_tail,
0,
(ExprHandle(26) - 0) % 4,
For::make(y, 0, 5, Store::make(f, {x_2, y}, func(x_2, y))));
Stmt* stmt = Block::make({stmt1, stmt2});
std::ostringstream oss_ref;
oss_ref << *stmt;
ASSERT_EQ(oss.str(), oss_ref.str());
}
{
PaddedBuffer<float> f_v(26, 5, "f_v");
PaddedBuffer<float> f_ref(26, 5, "f_res");
stmt = FlattenIndexes(stmt);
SimpleIREvaluator ir_eval(stmt, {tensor});
ir_eval(f_v);
for (int x = 0; x < 26; x++) {
for (int y = 0; y < 5; y++) {
f_ref(x, y) = 1 + x * x + y * y;
}
}
ExpectAllNear(f_v, f_ref, 1e-5);
}
}
Block* getSimplifiedBody(const LoopNest& l) {
Stmt* stmt = l.root_stmt();
Stmt* simplified = IRSimplifier::simplify(stmt);
return dynamic_cast<Block*>(simplified);
}
void assertForRange(For* f, int expected_start, int expected_stop) {
ASSERT_NE(f, nullptr);
const IntImm* start = dynamic_cast<const IntImm*>(f->start());
ASSERT_NE(start, nullptr);
ASSERT_EQ(start->value(), expected_start);
const IntImm* stop = dynamic_cast<const IntImm*>(f->stop());
ASSERT_NE(stop, nullptr);
ASSERT_EQ(stop->value(), expected_stop);
}
void assertForRanges(
Block* body,
const std::vector<std::pair<int, int>>& start_stops) {
ASSERT_EQ(body->nstmts(), start_stops.size());
auto it = body->begin();
for (size_t i = 0; i < start_stops.size(); i++, it++) {
For* loop = dynamic_cast<For*>(*it);
assertForRange(loop, start_stops[i].first, start_stops[i].second);
}
}
TEST(LoopNest, ExprSliceHeadWithLoopOptions) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.setGPUBlockIndex(loops[0], LoopOptions::IDX_Y);
l.sliceHead(loops[0], 2, &head, &tail);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 2}, {0, 8}});
ASSERT_TRUE(tail->loop_options().is_gpu_block_index());
ASSERT_EQ(tail->loop_options().gpu_block_index(), LoopOptions::IDX_Y);
ASSERT_TRUE(head->loop_options().isDefault());
}
TEST(LoopNest, ExprSliceTailWithLoopOptions) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.sliceTail(loops[0], 4, &head, &tail);
For* tail_head;
For* tail_tail;
l.setGPUBlockIndex(tail, LoopOptions::IDX_Y);
l.sliceTail(tail, 2, &tail_head, &tail_tail);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 6}, {0, 2}, {8, 10}});
ASSERT_TRUE(tail_head->loop_options().is_gpu_block_index());
ASSERT_EQ(tail_head->loop_options().gpu_block_index(), LoopOptions::IDX_Y);
ASSERT_TRUE(head->loop_options().isDefault());
ASSERT_TRUE(tail_tail->loop_options().isDefault());
}
TEST(LoopNest, ExprSliceHeadWhenFactorEqualsSize) {
// When factor equals the For loop's original size, keep using the original
// For loop.
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.sliceHead(loops[0], 10, &head, &tail);
ASSERT_EQ(head, loops[0]);
ASSERT_EQ(tail, nullptr);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 10}});
}
TEST(LoopNest, ExprSliceHeadWhenFactorLargerThanSize) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.sliceHead(loops[0], 100, &head, &tail);
ASSERT_EQ(head, loops[0]);
ASSERT_EQ(tail, nullptr);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 10}});
}
TEST(LoopNest, ExprSliceHead) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.sliceHead(loops[0], 4, &head, &tail);
ASSERT_NE(head, nullptr);
ASSERT_NE(head, loops[0]);
ASSERT_NE(tail, nullptr);
ASSERT_NE(tail, loops[0]);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 4}, {4, 10}});
}
TEST(LoopNest, ExprSliceHeadWithNonZeroStart) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
For* head;
For* tail;
l.sliceTail(loops[0], 4, &head, &tail);
// head: [0, 6)
// tail: [6, 10)
l.sliceHead(tail, 2);
// tail_head: [6, 8)
// tail_tail: [8, 10)
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 6}, {6, 8}, {8, 10}});
}
TEST(LoopNest, ExprSliceTailWhenFactorEqualsSize) {
// When factor equals the For loop's original size, keep using the original
// For loop.
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.sliceTail(loops[0], 10, &head, &tail);
ASSERT_EQ(head, nullptr);
ASSERT_EQ(tail, loops[0]);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 10}});
}
TEST(LoopNest, ExprSliceTailWhenFactorLargerThanSize) {
// When factor equals the For loop's original size, keep using the original
// For loop.
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.sliceTail(loops[0], 100, &head, &tail);
ASSERT_EQ(head, nullptr);
ASSERT_EQ(tail, loops[0]);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 10}});
}
TEST(LoopNest, ExprSliceTail) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
For* head;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.sliceTail(loops[0], 4, &head, &tail);
ASSERT_NE(head, nullptr);
ASSERT_NE(head, loops[0]);
ASSERT_NE(tail, nullptr);
ASSERT_NE(tail, loops[0]);
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 6}, {6, 10}});
}
TEST(LoopNest, ExprSplitAndSlice) {
// 0: splitWithTail
// 1: sliceTail on inner loop
// 2: sliceHead on outer loop
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{100, "x"}}, func);
LoopNest l({tensor});
For* outer;
For* inner;
For* tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
// outer: [0, 4)
// inner: [0, 21)
// tail: [84, 100)
l.splitWithTail(loops[0], 21, &outer, &inner, &tail);
l.sliceTail(inner, 2);
l.sliceHead(outer, 2);
// for (int x_outer = 0; x_outer < 2; x_outer++) {
// for (int x_inner = 0; x_inner < 19; x_inner++) {
// f[21 * x_outer + x_inner] = 1.f + float(21 * x_outer + x_inner);
// }
// for (int x_inner = 19; x_inner < 21; x_inner++) {
// f[21 * x_outer + x_inner] = 1.f + float(21 * x_outer + x_inner);
// }
// }
// for (int x_outer = 2; x_outer < 4; x_outer++) {
// for (int x_inner = 0; x_inner < 19; x_inner++) {
// f[21 * x_outer + x_inner] = 1.f + float(21 * x_outer + x_inner);
// }
// for (int x_inner = 19; x_inner < 21; x_inner++) {
// f[21 * x_outer + x_inner] = 1.f + float(21 * x_outer + x_inner);
// }
// }
// for (int x_tail = 0; x_tail < 16; x_tail++) {
// f[x_tail + 84] = 1.f + float(x_tail + 84);
// }
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 2}, {2, 4}, {0, 16}});
auto biter = body->begin();
For* loop = dynamic_cast<For*>(*biter++);
assertForRanges(loop->body(), {{0, 19}, {19, 21}});
loop = dynamic_cast<For*>(*biter);
assertForRanges(loop->body(), {{0, 19}, {19, 21}});
}
TEST(LoopNest, ExprSliceAndNormalize) {
// 0: sliceHead
// 1: normalize tail
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{10, "x"}}, func);
LoopNest l({tensor});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
For* head;
For* tail;
l.sliceHead(loops[0], 2, &head, &tail);
// head: [0, 2)
// tail: [2, 10)
For* normalized_tail;
LoopNest::normalize(tail, &normalized_tail);
// normalized_tail: [0, 8)
Block* body = getSimplifiedBody(l);
assertForRanges(body, {{0, 2}, {0, 8}});
}
template <typename T>
T evalExpr(const ExprHandle& expr, const VarHandle& var, T value) {
ExprEval<SimpleIREvaluator> eval(expr, {var});
return eval.value<T>(value);
}
TEST(LoopNest, ExprSliceWithVariableDimension) {
auto testWithDimension =
[](int dimension,
const std::vector<std::pair<int, int>>& expected_for_ranges) {
KernelScope kernel_scope;
VarHandle dim("dim", kInt);
Tensor* tensor =
Compute("f", {{dim, "x"}}, [](const ExprHandle& x) { return x; });
LoopNest l({tensor});
std::vector<For*> loops =
l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
For* head;
For* tail;
l.sliceHead(loops[0], 2, &head, &tail);
l.sliceTail(tail, 2);
Block* body = getSimplifiedBody(l);
ASSERT_EQ(expected_for_ranges.size(), 3);
auto it = body->begin();
for (auto& start_stop : expected_for_ranges) {
For* loop = dynamic_cast<For*>(*it++);
int start = evalExpr<int>(ExprHandle(loop->start()), dim, dimension);
int stop = evalExpr<int>(ExprHandle(loop->stop()), dim, dimension);
ASSERT_EQ(start, start_stop.first);
ASSERT_EQ(stop, start_stop.second);
}
};
testWithDimension(1, {{0, 1}, {1, 1}, {1, 1}});
testWithDimension(2, {{0, 2}, {2, 2}, {2, 2}});
testWithDimension(3, {{0, 2}, {2, 2}, {2, 3}});
testWithDimension(4, {{0, 2}, {2, 2}, {2, 4}});
testWithDimension(5, {{0, 2}, {2, 3}, {3, 5}});
testWithDimension(10, {{0, 2}, {2, 8}, {8, 10}});
}
TEST(LoopNest, ExprSplitWithTail) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{199, "x"}}, func);
LoopNest l({tensor});
For* x_outer;
For* x_inner;
For* x_tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.splitWithTail(loops[0], 17, &x_outer, &x_inner, &x_tail);
l.splitWithTail(x_outer, 7);
Stmt* stmt = l.root_stmt();
Stmt* simplified = IRSimplifier::simplify(stmt);
Block* body = dynamic_cast<Block*>(simplified);
ASSERT_EQ(body->nstmts(), 3);
auto biter = body->begin();
// Verify that the split loops are ordered correctly.
For* loop = dynamic_cast<For*>(*biter++);
assertForRange(loop, 0, 7);
loop = dynamic_cast<For*>(*biter++);
assertForRange(loop, 0, 4);
loop = dynamic_cast<For*>(*biter);
assertForRange(loop, 0, 12);
}
TEST(LoopNest, ExprSplitWithTailNone) {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x, const ExprHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
};
Tensor* tensor = Compute("f", {{24, "x"}, {5, "y"}}, func);
LoopNest l({tensor});
For* x_outer;
For* x_inner;
For* x_tail;
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.splitWithTail(loops[0], 4, &x_outer, &x_inner, &x_tail);
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 200);
ASSERT_LT(oss.str().size(), 600);
{
// Compare to a reference loop structure structure.
VarHandle x_outer("x_outer", kInt);
VarHandle x_inner("x_inner", kInt);
VarHandle y("y", kInt);
VarHandle x_tail("x_tail", kInt);
BufHandle f("f", {24, 5}, kFloat);
ExprHandle x_1 = x_outer * 4 + x_inner;
ExprHandle x_outer_end = (ExprHandle(24) - 0) / 4;
Stmt* stmt = new Block({For::make(
x_outer,
0,
x_outer_end,
For::make(
x_inner,
0,
4,
For::make(y, 0, 5, Store::make(f, {x_1, y}, func(x_1, y)))))});
std::ostringstream oss_ref;
oss_ref << *stmt;
ASSERT_EQ(oss.str(), oss_ref.str());
}
{
PaddedBuffer<float> f_v(24, 5, "f_v");
PaddedBuffer<float> f_ref(24, 5, "f_res");
SimpleIREvaluator ir_eval(stmt, {tensor});
ir_eval(f_v);
for (int x = 0; x < 24; x++) {
for (int y = 0; y < 5; y++) {
f_ref(x, y) = 1 + x * x + y * y;
}
}
ExpectAllNear(f_v, f_ref, 1e-5);
}
}
TEST(LoopNest, ExprSplitWithMask01) {
KernelScope kernel_scope;
const int M = 26;
const int N = 5;
Placeholder a_buf("a", kFloat, {M, N});
Placeholder b_buf("b", kFloat, {M, N});
Tensor* tensor = Compute(
"f", {{M, "m"}, {N, "n"}}, [&](const ExprHandle& m, const ExprHandle& n) {
return a_buf.load(m, n) + b_buf.load(m, n) + 1.0f;
});
LoopNest l({tensor});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.splitWithMask(loops[1], 4);
Stmt* stmt = l.root_stmt();
PaddedBuffer<float> a_v(M, N, "a");
PaddedBuffer<float> b_v(M, N, "b");
PaddedBuffer<float> c_v(M, N, "c");
PaddedBuffer<float> c_ref(M, N, "c_ref");
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
a_v(m, n) = 2 * m;
b_v(m, n) = 3 * n;
c_ref(m, n) = a_v(m, n) + b_v(m, n) + 1.0f;
}
}
SimpleIREvaluator(stmt, {a_buf, b_buf, tensor})(a_v, b_v, c_v);
ExpectAllNear(c_v, c_ref, 1e-5);
}
// Tests the case where we split a loop cleanly multiple times, we should not
// insert any masks.
TEST(LoopNest, ExprSplitWithMaskRepeatedNoMask) {
KernelScope kernel_scope;
const int M = 64;
Placeholder a_buf("a", kFloat, {M});
Placeholder b_buf("b", kFloat, {M});
Tensor* tensor = Compute("f", {{M, "m"}}, [&](const ExprHandle& m) {
return a_buf.load(m) + b_buf.load(m) + 1.0f;
});
LoopNest l({tensor});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
For *outer, *mid, *inner;
l.splitWithMask(loops[0], 4, &outer, &inner);
l.splitWithMask(outer, 4);
Stmt* stmt1 = IRSimplifier::simplify(l.root_stmt());
// Two splits mean 3 loops, but should need no masks in this case.
checkIR(stmt1, R"IR(
# CHECK: for (
# CHECK-NOT: if (
# CHECK: for (
# CHECK-NOT: if (
# CHECK: for (
# CHECK-NOT: if (
# CHECK: f[)IR");
}
TEST(LoopNest, SplitWithTailWithLoopOptions) {
KernelScope kernel_scope;
const int M = 21;
Placeholder a_buf("a", kFloat, {M});
Placeholder b_buf("b", kFloat, {M});
Tensor* tensor = Compute("f", {{M, "m"}}, [&](const ExprHandle& m) {
return a_buf.load(m) + b_buf.load(m) + 1.0f;
});
For *outer, *inner, *tail;
LoopNest l({tensor});
auto loops = NodeFinder<For>::find(l.root_stmt());
ASSERT_GT(loops.size(), 0);
l.setGPUBlockIndex(loops[0], LoopOptions::IDX_Y);
l.splitWithTail(loops[0], 4, &outer, &inner, &tail);
ASSERT_NE(outer, nullptr);
ASSERT_NE(inner, nullptr);
ASSERT_NE(tail, nullptr);
// Outer loop carries loop axis bindings.
ASSERT_TRUE(outer->loop_options().is_gpu_block_index());
ASSERT_EQ(outer->loop_options().gpu_block_index(), LoopOptions::IDX_Y);
// Inner loop has none.
ASSERT_TRUE(inner->loop_options().isDefault());
// Tail loop has none.
ASSERT_TRUE(tail->loop_options().isDefault());
}
TEST(LoopNest, SplitWithMaskWithLoopOptions) {
KernelScope kernel_scope;
const int M = 21;
Placeholder a_buf("a", kFloat, {M});
Placeholder b_buf("b", kFloat, {M});
Tensor* tensor = Compute("f", {{M, "m"}}, [&](const ExprHandle& m) {
return a_buf.load(m) + b_buf.load(m) + 1.0f;
});
For *outer, *inner;
LoopNest l({tensor});
auto loops = NodeFinder<For>::find(l.root_stmt());
l.setGPUBlockIndex(loops[0], LoopOptions::IDX_Y);
l.splitWithMask(loops[0], 4, &outer, &inner);
// Outer loop carries loop axis bindings.
ASSERT_TRUE(outer->loop_options().is_gpu_block_index());
ASSERT_EQ(outer->loop_options().gpu_block_index(), LoopOptions::IDX_Y);
// Inner loop has none.
ASSERT_TRUE(inner->loop_options().isDefault());
}
TEST(LoopNest, ScheduleBroadcastAddBuffer) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Placeholder a_buf("a", kFloat, {M, N});
Placeholder b_buf("b", kFloat, {N, K});
Tensor* c = Compute(
"broadcast_add",
{{M, "m"}, {N, "n"}, {K, "k"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n) + b_buf.load(n, k);
});
LoopNest l({c});
Stmt* stmt = l.root_stmt();
PaddedBuffer<float> a_v(M, N, "a_v");
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
a_v(m, n) = 7 * m * n;
}
}
a_v.Backup();
PaddedBuffer<float> b_v(N, K, "b_v");
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
b_v(n, k) = 11 * n * k;
}
}
b_v.Backup();
PaddedBuffer<float> c_v(M, N, K, "c_buf");
SimpleIREvaluator ir_eval(stmt, {a_buf, b_buf, c});
ir_eval(a_v, b_v, c_v);
a_v.CheckBackup();
b_v.CheckBackup();
PaddedBuffer<float> c_ref(M, N, K, "c_ref");
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
c_ref(m, n, k) = 7 * m * n + 11 * n * k;
}
}
}
ExpectAllNear(c_v, c_ref, 1e-5);
}
TEST(LoopNest, ScheduleFunctionCall01) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Placeholder a_buf("a", kFloat, {M, N});
Placeholder b_buf("b", kFloat, {N, K});
Tensor* c = Compute(
"broadcast_add",
{{M, "m"}, {N, "n"}, {K, "k"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n) + b_buf.load(n, k);
});
Tensor* d = Compute(
"d",
{{M, "m"}, {N, "n"}, {K, "k"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return c->load(m, n, k) + 1;
});
LoopNest l({d}, {c, d});
l.prepareForCodegen();
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 100);
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
PaddedBuffer<float> c_v(M, N, K);
PaddedBuffer<float> d_v(M, N, K);
PaddedBuffer<float> d_ref(M, N, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
b_v(i, j) = j * j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
for (int k = 0; k < K; k++) {
d_ref(i, j, k) = a_v(i, j) + b_v(j, k) + 1;
}
}
}
SimpleIREvaluator eval(stmt, {a_buf, b_buf, d});
eval(a_v, b_v, d_v);
ExpectAllNear(d_v, d_ref, 1e-5);
}
TEST(LoopNest, ScheduleInlineSimple) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Placeholder a_buf("a", kFloat, {M, N});
Placeholder b_buf("b", kFloat, {N, K});
Placeholder c_buf("c", kFloat, {M, N});
Placeholder d_buf("d", kFloat, {M, K});
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n) * b_buf.load(n, k);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return c_buf.load(m, n) * d_buf.load(m, k) + x->load(m, n, k);
});
LoopNest l1({y}, {x, y});
LoopNest l2(l1);
l2.computeInline(x->buf());
l1.prepareForCodegen();
l2.prepareForCodegen();
Stmt* stmt1 = IRSimplifier::simplify(l1.root_stmt());
Stmt* stmt2 = IRSimplifier::simplify(l2.root_stmt());
SimpleIREvaluator eval1(stmt1, {a_buf, b_buf, c_buf, d_buf, y});
SimpleIREvaluator eval2(stmt2, {a_buf, b_buf, c_buf, d_buf, y});
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
PaddedBuffer<float> c_v(M, N);
PaddedBuffer<float> d_v(M, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
b_v(i, j) = j * j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
c_v(i, j) = i + j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
d_v(i, j) = i * j;
}
}
PaddedBuffer<float> y_1(M, N, K);
PaddedBuffer<float> y_2(M, N, K);
eval1(a_v, b_v, c_v, d_v, y_1);
eval2(a_v, b_v, c_v, d_v, y_2);
ExpectAllNear(y_1, y_2, 1e-5);
std::ostringstream oss1, oss2;
oss1 << *stmt1;
oss2 << *stmt2;
ASSERT_GT(oss1.str().size(), oss2.str().size());
}
static std::string remove_space(const std::string& str) {
std::string str_new = str;
str_new.erase(
remove_if(str_new.begin(), str_new.end(), isspace), str_new.end());
return str_new;
}
void InlineFunc01Helper(const std::vector<std::string>& inline_order) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Placeholder a_buf("a", kFloat, {M, N});
Placeholder b_buf("b", kFloat, {N, K});
Placeholder c_buf("c", kFloat, {M, N});
Placeholder d_buf("d", kFloat, {M, K});
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n) * b_buf.load(n, k);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return c_buf.load(m, n) * d_buf.load(m, k) + x->load(m, n, k);
});
Tensor* z = Compute(
"z",
{{M, "m3"}, {N, "n3"}, {K, "k3"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->load(m, n, k) + y->load(m, n, k);
});
LoopNest l({z}, {x, y, z});
for (const std::string& order : inline_order) {
if (order == "x") {
l.computeInline(x->buf());
} else if (order == "y") {
l.computeInline(y->buf());
} else {
throw std::runtime_error("Invalid order: " + order);
}
}
l.prepareForCodegen();
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
std::string str1 = remove_space(oss.str());
{
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
PaddedBuffer<float> c_v(M, N);
PaddedBuffer<float> d_v(M, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
b_v(i, j) = j * j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
c_v(i, j) = i + j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
d_v(i, j) = i * j;
}
}
PaddedBuffer<float> z_v(M, N, K);
PaddedBuffer<float> z_ref(M, N, K);
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
z_ref(m, n, k) = a_v(m, n) * b_v(n, k) * 2 + c_v(m, n) * d_v(m, k);
}
}
}
SimpleIREvaluator eval(stmt, {a_buf, b_buf, c_buf, d_buf, z});
eval(a_v, b_v, c_v, d_v, z_v);
ExpectAllNear(z_v, z_ref, 1e-5);
}
if (inline_order.size() == 2) {
Tensor* z2 = Compute(
"z",
{{M, "m3"}, {N, "n3"}, {K, "k3"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n) * b_buf.load(n, k) +
(c_buf.load(m, n) * d_buf.load(m, k) +
a_buf.load(m, n) * b_buf.load(n, k));
});
LoopNest l2({z2});
l2.prepareForCodegen();
Stmt* stmt2 = l2.root_stmt();
std::ostringstream oss2;
oss2 << *stmt2;
std::string str2 = remove_space(oss2.str());
ASSERT_EQ(str1, str2);
ASSERT_GT(str1.size(), 100);
}
}
TEST(LoopNest, ScheduleInlineFunc01) {
InlineFunc01Helper({"x", "y"});
InlineFunc01Helper({"y", "x"});
InlineFunc01Helper({"x"});
InlineFunc01Helper({"y"});
InlineFunc01Helper({});
}
// Make sure we cache random vars if we should.
TEST(LoopNest, ScheduleInlineRandom) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return Mod::make(Intrinsics::make(kRand, kInt), 5);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->load(m, n, k) + x->load(m, n, k);
});
LoopNest l1({y}, {x, y});
l1.computeInline(x->buf());
// would normally compare results but Rand isn't implemented in the
// SimpleIREvaluator, even if we could seed it.
Stmt* stmt1 = IRSimplifier::simplify(l1.root_stmt());
// Check the IR we produced
checkIR(stmt1, R"IR(
# CHECK: for (int m2 = 0; m2 < 4; m2++)
# CHECK: for (int n2 = 0; n2 < 5; n2++)
# CHECK: for (int k2 = 0; k2 < 6; k2++)
# CHECK: int x = rand();
# CHECK: y[m2, n2, k2] = 2 * (x % 5);)IR");
}
// Make sure we don't cache random vars that are not being inlined.
TEST(LoopNest, ScheduleInlineRandomUnrelated) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return m * n * k;
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->load(m, n, k) + Intrinsics::make(kRand, kInt) +
Intrinsics::make(kRand, kInt);
});
LoopNest l1({y}, {x, y});
l1.computeInline(x->buf());
// would normally compare results but Rand isn't implemented in the
// SimpleIREvaluator, even if we could seed it.
Stmt* stmt1 = IRSimplifier::simplify(l1.root_stmt());
// Check the IR we produced
checkIR(stmt1, R"IR(
# CHECK: for (int m2 = 0; m2 < 4; m2++)
# CHECK: for (int n2 = 0; n2 < 5; n2++)
# CHECK: for (int k2 = 0; k2 < 6; k2++)
# CHECK: y[m2, n2, k2] = ((n2 * m2) * k2 + (rand())) + (rand());)IR");
}
// Make sure we generate the right number of random values == the dimensionality
// of the production tensor.
TEST(LoopNest, ScheduleInlineRandomLowerDimensions) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Tensor* x = Compute("x", {{M, "m1"}}, [&](const VarHandle& m) {
return Mod::make(Intrinsics::make(kRand, kInt), 5);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->load(m) + x->load(m);
});
LoopNest l1({y}, {x, y});
l1.computeInline(x->buf());
// would normally compare results but Rand isn't implemented in the
// SimpleIREvaluator, even if we could seed it.
Stmt* stmt1 = IRSimplifier::simplify(l1.root_stmt());
// Check the IR we produced
checkIR(stmt1, R"IR(
# CHECK: for (int m2 = 0; m2 < 4; m2++)
# CHECK: int x = rand();
# CHECK: for (int n2 = 0; n2 < 5; n2++)
# CHECK: for (int k2 = 0; k2 < 6; k2++)
# CHECK: y[m2, n2, k2] = 2 * (x % 5);)IR");
}
// Make sure we don't screw up intrinsics thinking they're rand.
TEST(LoopNest, ScheduleInlineIntrinsics) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Placeholder a_buf("a", kFloat, {M, N});
Placeholder b_buf("b", kFloat, {N, K});
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n) * b_buf.load(n, k);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return Intrinsics::make(kSqrt, x->load(m, n, k));
});
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
b_v(i, j) = j * j;
}
}
LoopNest l1({y}, {x, y});
LoopNest l2(l1);
l2.computeInline(x->buf());
l1.prepareForCodegen();
l2.prepareForCodegen();
Stmt* stmt1 = IRSimplifier::simplify(l1.root_stmt());
Stmt* stmt2 = IRSimplifier::simplify(l2.root_stmt());
SimpleIREvaluator eval1(stmt1, {a_buf, b_buf, y});
SimpleIREvaluator eval2(stmt2, {a_buf, b_buf, y});
PaddedBuffer<float> y_1(M, N, K);
PaddedBuffer<float> y_2(M, N, K);
eval1(a_v, b_v, y_1);
eval2(a_v, b_v, y_2);
ExpectAllNear(y_1, y_2, 1e-5);
std::ostringstream oss1, oss2;
oss1 << *stmt1;
oss2 << *stmt2;
ASSERT_GT(oss1.str().size(), oss2.str().size());
}
// Make sure we can handle rand and non-rand intrinsics.
TEST(LoopNest, ScheduleInlineRandWithIntrinsics) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return Intrinsics::make(kRand, kFloat);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return Intrinsics::make(kSqrt, x->load(m, n, k));
});
LoopNest l1({y}, {x, y});
l1.computeInline(x->buf());
Stmt* stmt1 = IRSimplifier::simplify(l1.root_stmt());
// Check the IR we produced
checkIR(stmt1, R"IR(
# CHECK: for (int m2 = 0; m2 < 4; m2++)
# CHECK: for (int n2 = 0; n2 < 5; n2++)
# CHECK: for (int k2 = 0; k2 < 6; k2++)
# CHECK: float x = rand();
# CHECK: y[m2, n2, k2] = sqrt(x);)IR");
}
// Split a Compute then inline it into another compute.
TEST(LoopNest, ScheduleSplitAThenInline) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{2, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
LoopNest l({b}, {a, b});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(a->buf()).at(0);
l.splitWithMask(loops[0], 4);
ASSERT_THROWS_WITH(l.computeInline(a->buf()), "compound indices");
}
// Split a Compute then inline another Compute into it.
TEST(LoopNest, ScheduleSplitBThenInline) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{6, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
LoopNest l({b}, {a, b});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(b->buf()).at(0);
l.splitWithMask(loops[0], 3);
l.computeInline(a->buf());
l.prepareForCodegen();
Stmt* s = IRSimplifier::simplify(l.root_stmt());
std::vector<int> output(6, 0);
SimpleIREvaluator eval(s, {b});
eval(output);
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(output[i], (i + 8) * (i + 8));
}
}
// Split a Compute twice then inline it.
TEST(LoopNest, ScheduleSplitTwiceThenInline) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{2, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
For* i_outer;
For* i_inner;
LoopNest l({b}, {a, b});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(a->buf()).at(0);
l.splitWithMask(loops[0], 4, &i_outer, &i_inner);
l.splitWithMask(i_inner, 2);
ASSERT_THROWS_WITH(l.computeInline(a->buf()), "compound indices");
}
// Inline a Compute, then split.
TEST(LoopNest, ScheduleInlineThenSplit) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{6, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
LoopNest l({b}, {a, b});
l.computeInline(a->buf());
std::vector<For*> loops = NodeFinder<For>::find(l.root_stmt());
l.splitWithMask(loops.back(), 3);
l.prepareForCodegen();
Stmt* s = IRSimplifier::simplify(l.root_stmt());
std::vector<int> output(6, 0);
SimpleIREvaluator eval(s, {b});
eval(output);
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(output[i], (i + 8) * (i + 8));
}
}
// Split a Compute, inline it, then split the result.
TEST(LoopNest, ScheduleSplitInlineThenSplit) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{16, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
LoopNest l({b}, {a, b});
auto loops = NodeFinder<For>::find(l.root_stmt());
l.splitWithMask(loops.back(), 2);
l.computeInline(a->buf());
loops = NodeFinder<For>::find(l.root_stmt());
l.splitWithMask(loops.front(), 2);
l.prepareForCodegen();
Stmt* s = IRSimplifier::simplify(l.root_stmt());
std::vector<int> output(16, 0);
SimpleIREvaluator eval(s, {b});
eval(output);
for (int i = 0; i < 16; ++i) {
ASSERT_EQ(output[i], (i + 8) * (i + 8));
}
}
// Oversplit a loop that is simplified out after inlining.
TEST(LoopNest, ScheduleSplitInlineSimplify) {
KernelScope kernel_scope;
Tensor* a = Compute("a", {{18, "i"}}, [&](const VarHandle& i) {
return ExprHandle(4) * i - ExprHandle(2) * i;
});
Tensor* b = Compute("b", {{2, "j"}}, [&](const VarHandle& j) {
return a->load(j) - ExprHandle(1);
});
LoopNest l({b}, {a, b});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(a->buf()).at(0);
l.splitWithMask(loops[0], 4);
ASSERT_THROWS_WITH(l.computeInline(a->buf()), "compound indices");
}
// Inline a Compute with two consumers.
TEST(LoopNest, ScheduleInlineThreeMixedOnce) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{6, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
Tensor* c = Compute(
"c", {{4, "k"}, {3, "l"}}, [&](const VarHandle& k, const VarHandle& l) {
return a->load(k) * b->load(l);
});
LoopNest l({c}, {a, b, c});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(a->buf()).at(0);
l.computeInline(a->buf());
l.prepareForCodegen();
Stmt* s = IRSimplifier::simplify(l.root_stmt());
std::vector<int> output(4 * 3, 0);
SimpleIREvaluator eval(s, {c});
eval(output);
for (int k = 0; k < 4; ++k) {
for (int l = 0; l < 3; ++l) {
ASSERT_EQ(output[k * 3 + l], (k) * (k) * (l + 8) * (l + 8));
}
}
}
// Inline Compute A into B, then inline B into C.
TEST(LoopNest, ScheduleInlineThreeMixedTwice) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{6, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
Tensor* c = Compute(
"c", {{4, "k"}, {3, "l"}}, [&](const VarHandle& k, const VarHandle& l) {
return a->load(k) * b->load(l);
});
LoopNest l({c}, {a, b, c});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(a->buf()).at(0);
l.computeInline(a->buf());
l.computeInline(b->buf());
l.prepareForCodegen();
Stmt* s = IRSimplifier::simplify(l.root_stmt());
std::vector<int> output(4 * 3, 0);
SimpleIREvaluator eval(s, {c});
eval(output);
for (int k = 0; k < 4; ++k) {
for (int l = 0; l < 3; ++l) {
ASSERT_EQ(output[k * 3 + l], (k) * (k) * (l + 8) * (l + 8));
}
}
}
// Inline a Compute that is both a producer and consumer.
TEST(LoopNest, ScheduleInlineThreeMixedInner) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{6, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
Tensor* c = Compute(
"c", {{4, "k"}, {3, "l"}}, [&](const VarHandle& k, const VarHandle& l) {
return a->load(k) * b->load(l);
});
LoopNest l({c}, {a, b, c});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(a->buf()).at(0);
l.computeInline(b->buf());
l.prepareForCodegen();
Stmt* s = IRSimplifier::simplify(l.root_stmt());
std::vector<int> output(4 * 3, 0);
SimpleIREvaluator eval(s, {c});
eval(output);
for (int k = 0; k < 4; ++k) {
for (int l = 0; l < 3; ++l) {
ASSERT_EQ(output[k * 3 + l], (k) * (k) * (l + 8) * (l + 8));
}
}
}
// Split 3 Computes, then inline the first two into the last.
TEST(LoopNest, ScheduleInlineThreeMixedSplit) {
KernelScope kernel_scope;
Tensor* a =
Compute("a", {{18, "i"}}, [&](const VarHandle& i) { return i * i; });
Tensor* b = Compute("b", {{6, "j"}}, [&](const VarHandle& j) {
return a->load(j + ExprHandle(8));
});
Tensor* c = Compute(
"c", {{4, "k"}, {3, "l"}}, [&](const VarHandle& k, const VarHandle& l) {
return a->load(k) * b->load(l);
});
LoopNest l({c}, {a, b, c});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(a->buf()).at(0);
l.splitWithMask(loops[0], 4);
loops = l.getAllLoopNestsWritingToBuf(b->buf()).at(0);
l.splitWithMask(loops[0], 3);
loops = l.getAllLoopNestsWritingToBuf(c->buf()).at(0);
l.splitWithMask(loops[0], 2);
ASSERT_THROWS_WITH(l.computeInline(a->buf()), "compound indices");
}
// Check that inlining works for output tensors too
TEST(LoopNest, ScheduleInlineOutputTensors) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return m * n * k;
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->load(m, n, k) + m;
});
LoopNest l1({x, y});
l1.computeInline(x->buf());
// would normally compare results but Rand isn't implemented in the
// SimpleIREvaluator, even if we could seed it.
Stmt* stmt1 = IRSimplifier::simplify(l1.root_stmt());
// Check the IR we produced
checkIR(stmt1, R"IR(
# CHECK: for (int m1 = 0; m1 < 4; m1++)
# CHECK: for (int n1 = 0; n1 < 5; n1++)
# CHECK: for (int k1 = 0; k1 < 6; k1++)
# CHECK: x[m1, n1, k1] = (n1 * m1) * k1;
# CHECK: for (int m2 = 0; m2 < 4; m2++)
# CHECK: for (int n2 = 0; n2 < 5; n2++)
# CHECK: for (int k2 = 0; k2 < 6; k2++)
# CHECK: y[m2, n2, k2] = (n2 * m2) * k2 + m2;)IR");
}
TEST(LoopNest, ScheduleFuserStyle) {
KernelScope kernel_scope;
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
Placeholder a_buf(BufHandle("A", {ExprHandle(kTotalSize)}, kFloat));
Tensor* b = Compute(
"f", {{kTotalSize, "i"}}, [&](const std::vector<VarHandle>& axes) {
return a_buf.load(axes[0]) + 11.0f;
});
Tensor* c = Compute(
"g", {{kTotalSize, "i"}}, [&](const std::vector<VarHandle>& axes) {
return b->load(axes[0]) + 1.0f;
});
LoopNest l({b, c});
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::vector<float> a_data(kTotalSize, 7.0f);
std::vector<float> b_data(kTotalSize, 0.0f);
std::vector<float> c_data(kTotalSize, 0.0f);
SimpleIREvaluator(s, {a_buf, b, c})(a_data, b_data, c_data);
for (int i = 0; i < kTotalSize; i++) {
ASSERT_EQ(b_data[i], 18.0f);
ASSERT_EQ(c_data[i], 19.0f);
}
}
TEST(LoopNest, ScheduleFuserThreeArg) {
KernelScope kernel_scope;
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
Placeholder a(BufHandle("A", {ExprHandle(kTotalSize)}, kFloat));
Placeholder b(BufHandle("B", {ExprHandle(kTotalSize)}, kFloat));
Placeholder c(BufHandle("C", {ExprHandle(kTotalSize)}, kFloat));
Placeholder d(BufHandle("D", {ExprHandle(kTotalSize)}, kFloat));
Tensor* e = Compute("e", {{kTotalSize, "i"}}, [&](const VarHandle& i) {
return a.load(i) + b.load(i);
});
Tensor* f = Compute("f", {{kTotalSize, "i"}}, [&](const VarHandle& i) {
return e->load(i) + c.load(i);
});
Tensor* g = Compute("g", {{kTotalSize, "i"}}, [&](const VarHandle& i) {
return f->load(i) + d.load(i);
});
LoopNest l({g}, {e, f, g});
l.computeInline(l.getLoopBodyFor(e));
l.computeInline(l.getLoopBodyFor(f));
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::vector<float> a_data(kTotalSize, 1.0f);
std::vector<float> b_data(kTotalSize, 2.0f);
std::vector<float> c_data(kTotalSize, 3.0f);
std::vector<float> d_data(kTotalSize, 4.0f);
std::vector<float> g_data(kTotalSize, 0.0f);
SimpleIREvaluator(s, {a, b, c, d, g})(a_data, b_data, c_data, d_data, g_data);
for (int i = 0; i < kTotalSize; i++) {
ASSERT_EQ(g_data[i], 10.0f);
}
}
TEST(LoopNest, ScheduleDynamicShape2D) {
KernelScope kernel_scope;
auto testWithSize = [](int32_t M, int32_t N) {
VarHandle m("m", kInt);
VarHandle n("n", kInt);
Placeholder a(BufHandle("a", {m, n}, kFloat));
Placeholder b(BufHandle("b", {m, n}, kFloat));
Tensor* c = Compute(
"c", {{m, "m"}, {n, "n"}}, [&](const VarHandle& i, const VarHandle& j) {
return a.load(i, j) + b.load(i, j);
});
LoopNest l({c});
Stmt* s = l.root_stmt();
SimpleIREvaluator cg(s, {a, b, c, m, n});
std::vector<float> aData(M * N, 1.0f);
std::vector<float> bData(M * N, 2.0f);
std::vector<float> cData(M * N, 0.0f);
cg.call({aData, bData, cData, M, N});
ExpectAllNear(cData, std::vector<float>(M * N, 3.0f), 1e-7);
};
testWithSize(1, 8);
testWithSize(16, 32);
testWithSize(37, 11);
}
TEST(LoopNest, LoopNestComputeAt_1) {
// Verify that compute_at works on the following example:
//
// for (int i_a = 0; i_a < N; i_a++) {
// A[i_a] = i_a * i_a
// }
// for (int i_b = 0; i_b < N; i_b++) {
// B[i_b] = A[i_b]
// }
//
// After the transformation the i_b loop should have an allocation for a temp
// buffer and that buffer should be used in computation of B. No use of A
// should be in that loop after the transformation. Also, computation of A
// should not be inlined into B. Instead, it should be computed into the temp,
// and the temp should be used in B.
KernelScope kernel_scope;
VarHandle N("N", kInt);
Tensor* A = Compute(
"A", {{N, "i_a"}}, [&](const VarHandle& i_a) { return i_a * i_a; });
Tensor* B = Compute(
"B", {{N, "i_b"}}, [&](const VarHandle& i_b) { return A->load(i_b); });
LoopNest l({B}, {A, B});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(B->buf()).at(0);
l.computeAt(l.getLoopBodyFor(A), loops[0]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
checkIR(s, R"IR(
# CHECK: for (int i_b = 0; i_b < N; i_b++)
# CHECK: Allocate(temp); // dtype=int, dims=[1]
# CHECK: temp[
# CHECK-NOT: A[
# CHECK: B[i_b] = temp[0]
# CHECK: Free(temp))IR");
// Now check that the loop still produces the correct result.
std::vector<int> b_data(100, 0);
SimpleIREvaluator cg(s, {B, N});
cg.call({b_data, 100});
std::vector<int> b_ref(100, 0);
for (int i = 0; i < 100; i++) {
b_ref[i] = i * i;
}
assertAllEqual(b_data, b_ref);
}
TEST(LoopNest, LoopNestComputeAt_2) {
// Verify that compute_at works on the following example:
//
// for (int py = 0; py < H+1; py++) {
// for (int px = 0; px < W+1; px++) {
// p[py, px] = py*px
// }
// }
// for (int cy = 0; cy < H; cy++) {
// for (int cx = 0; cx < W; cx++) {
// c[py, px] = p[cy,cx] + p[cy+1,cx] +
// p[cy,cx+1] + p[cy+1,cx+1]
// }
// }
KernelScope kernel_scope;
const int kW = 16, kH = 16;
VarHandle W("W", kInt);
VarHandle H("H", kInt);
Tensor* p = Compute(
"prod",
{{H + 1, "py"}, {W + 1, "px"}},
[&](const VarHandle& py, const VarHandle& px) { return px * py; });
Tensor* c = Compute(
"cons",
{{H, "cy"}, {W, "cx"}},
[&](const VarHandle& y, const VarHandle& x) {
return p->load(y, x) + p->load(y + 1, x) + p->load(y, x + 1) +
p->load(y + 1, x + 1);
});
std::vector<int> c_ref(kW * kH, 0);
for (int y = 0; y < kH; y++) {
for (int x = 0; x < kW; x++) {
c_ref[y * kW + x] = y * x + (y + 1) * x + y * (x + 1) + (y + 1) * (x + 1);
}
}
LoopNest orig_loopnest({c}, {p, c});
{
// First let's try to compute P at axis cy (the outer loop)
LoopNest l(orig_loopnest);
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(c->buf()).at(0);
l.computeAt(l.getLoopBodyFor(p), loops[0]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
// Check the IR we produced
checkIR(s, R"IR(
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: Allocate(temp); // dtype=int, dims=[2, W + 1]
# CHECK: for
# CHECK: for
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK-NOT: prod[
# CHECK: cons[
# CHECK: Free(temp))IR");
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {c, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
{
// Now let's try to compute P at axis cx (the inner loop)
LoopNest l(orig_loopnest);
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(c->buf()).at(0);
l.computeAt(l.getLoopBodyFor(p), loops[1]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
// Check the IR we produced
checkIR(s, R"IR(
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK: Allocate(temp); // dtype=int, dims=[2, 2]
# CHECK: for
# CHECK: for
# CHECK-NOT: prod[
# CHECK: cons[
# CHECK: Free(temp))IR");
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {c, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
}
TEST(LoopNest, LoopNestComputeAt_3) {
// Verify that compute_at works on the following example:
//
// A(x,y) = x*y
// B(x,y) = A(x, y)
// C(x,y) = B(x+1, y)
// D(x,y) = A(x, y+1) + C(x, y)
//
// i.e. when 'A' comes to 'D' directly and indirectly through 'C'.
KernelScope kernel_scope;
const int kW = 16, kH = 16;
VarHandle W("W", kInt);
VarHandle H("H", kInt);
Tensor* A = Compute(
"A",
{{H + 1, "ay"}, {W + 1, "ax"}},
[&](const VarHandle& ay, const VarHandle& ax) { return ax * ay; });
Tensor* B = Compute(
"B",
{{H + 1, "by"}, {W + 1, "bx"}},
[&](const VarHandle& by, const VarHandle& bx) {
return A->load(by, bx);
});
Tensor* C = Compute(
"C",
{{H, "cy"}, {W, "cx"}},
[&](const VarHandle& cy, const VarHandle& cx) {
return B->load(cy, cx + 1);
});
Tensor* D = Compute(
"D",
{{H, "dy"}, {W, "dx"}},
[&](const VarHandle& dy, const VarHandle& dx) {
return A->load(dy + 1, dx) + C->load(dy, dx);
});
std::vector<int> c_ref(kW * kH, 0);
for (int y = 0; y < kH; y++) {
for (int x = 0; x < kW; x++) {
c_ref[y * kW + x] = (y + 1) * x + y * (x + 1);
}
}
LoopNest orig_loopnest({D}, {A, B, C, D});
{
// First let's try to compute A at axis dy (the outer loop)
LoopNest l(orig_loopnest);
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(D->buf()).at(0);
l.computeAt(l.getLoopBodyFor(A), loops[0]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
// Check the IR we produced
checkIR(s, R"IR(
# CHECK: for (int ay = 0; ay < H + 1; ay++)
# CHECK: for (int ax = 0; ax < W + 1; ax++)
# CHECK: A[
# CHECK: for (int by = 0; by < H + 1; by++)
# CHECK: for (int bx = 0; bx < W + 1; bx++)
# CHECK: B[
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK: C[
# CHECK: for (int dy = 0; dy < H; dy++)
# CHECK: Allocate(temp); // dtype=int, dims=[1, W]
# CHECK: for (int dx = 0; dx < W; dx++)
# CHECK-NOT: A[)IR");
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {D, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
{
// Now let's try to compute A at axis dx (the inner loop)
LoopNest l(orig_loopnest);
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(D->buf()).at(0);
l.computeAt(l.getLoopBodyFor(A), loops[1]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
// Check the IR we produced
checkIR(s, R"IR(
# CHECK: for (int ay = 0; ay < H + 1; ay++)
# CHECK: for (int ax = 0; ax < W + 1; ax++)
# CHECK: A[
# CHECK: for (int by = 0; by < H + 1; by++)
# CHECK: for (int bx = 0; bx < W + 1; bx++)
# CHECK: B[
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK: C[
# CHECK: for (int dy = 0; dy < H; dy++)
# CHECK: for (int dx = 0; dx < W; dx++)
# CHECK: Allocate(temp); // dtype=int, dims=[1, 1]
# CHECK-NOT: A[)IR");
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {D, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
}
using Axis = const VarHandle&;
TEST(LoopNest, Reduce2dComputeAt) {
KernelScope kernel_scope;
const int kW = 16, kH = 16;
VarHandle W("W", kInt);
VarHandle H("H", kInt);
Tensor* p =
Compute("prod", {{H + 1, "py"}, {W + 1, "px"}}, [&](Axis py, Axis px) {
return px * py;
});
Tensor* c = Reduce(
"cons",
{{H, "cy"}, {W, "cx"}},
Sum(),
[&](Axis y, Axis x, Axis r, Axis s) { return p->load(y + r, x + s); },
{{2, "r"}, {2, "s"}});
std::vector<int> c_ref(kW * kH, 0);
for (int y = 0; y < kH; y++) {
for (int x = 0; x < kW; x++) {
c_ref[y * kW + x] = y * x + (y + 1) * x + y * (x + 1) + (y + 1) * (x + 1);
}
}
LoopNest orig_loopnest({c}, {p, c});
checkIR(orig_loopnest.root_stmt(), R"IR(
# CHECK: for (int py = 0; py < H + 1; py++) {
# CHECK: for (int px = 0; px < W + 1; px++) {
# CHECK: prod[py, px] = px * py;
# CHECK: }
# CHECK: }
# CHECK: for (int cy = 0; cy < H; cy++) {
# CHECK: for (int cx = 0; cx < W; cx++) {
# CHECK: cons[cy, cx] = int(0);
# CHECK: for (int r = 0; r < 2; r++) {
# CHECK: for (int s = 0; s < 2; s++) {
# CHECK: cons[cy, cx] = ReduceOp((cons[cy, cx]) + (prod[cy + r, cx + s]), reduce_args={r, s});
# CHECK: }
# CHECK: }
# CHECK: }
# CHECK: }
)IR");
{
// First let's try to compute P at axis cy (the outer loop)
LoopNest l(orig_loopnest);
auto loops = l.getAllLoopNestsWritingToBuf(c->buf()).at(0);
l.computeAt(l.getLoopBodyFor(p), loops[0]);
// FIXME: Calling simplify here breaks the IR:
// MALFORMED INPUT: could not find base node in Load - temp[...]
// l.simplify();
l.eliminateDeadStores();
l.prepareForCodegen();
checkIR(l.root_stmt(), R"IR(
# CHECK: for (int cy = 0; cy < H; cy++) {
# CHECK: Allocate(temp); // dtype=int, dims=[2, W + 1]
# CHECK: for (int idx0 = 0; idx0 < 2; idx0++) {
# CHECK: for (int idx1 = 0; idx1 < W + 1; idx1++) {
# CHECK: temp[(0 + idx0 * (1 * (W + 1))) + idx1 * 1] = (idx0 + cy) * (idx1 + 0);
# CHECK: }
# CHECK: }
# CHECK: for (int cx = 0; cx < W; cx++) {
# CHECK: cons[(0 + cy * (1 * W)) + cx * 1] = int(0);
# CHECK: for (int r = 0; r < 2; r++) {
# CHECK: for (int s = 0; s < 2; s++) {
# CHECK: cons[(0 + cy * (1 * W)) + cx * 1] = (cons[(0 + cy * (1 * W)) + cx * 1]) + (temp[(0 + r * (1 * (W + 1))) + (s + cx) * 1]);
# CHECK: }
# CHECK: }
# CHECK: }
# CHECK: Free(temp);
# CHECK: }
)IR");
Stmt* s = l.root_stmt();
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {c, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
{
// Now let's try to compute P at axis cx (the inner loop)
LoopNest l(orig_loopnest);
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(c->buf()).at(0);
l.computeAt(l.getLoopBodyFor(p), loops[1]);
l.simplify();
l.eliminateDeadStores();
l.prepareForCodegen();
checkIR(l.root_stmt(), R"IR(
# CHECK: for (int cy = 0; cy < H; cy++) {
# CHECK: for (int cx = 0; cx < W; cx++) {
# CHECK: Allocate(temp); // dtype=int, dims=[2, 2]
# CHECK: for (int idx0 = 0; idx0 < 2; idx0++) {
# CHECK: for (int idx1 = 0; idx1 < 2; idx1++) {
# CHECK: temp[(0 + idx0 * (1 * 2)) + idx1 * 1] = (cy + idx0) * (cx + idx1);
# CHECK: }
# CHECK: }
# CHECK: cons[(0 + cy * (1 * W)) + cx * 1] = 0;
# CHECK: for (int r = 0; r < 2; r++) {
# CHECK: for (int s = 0; s < 2; s++) {
# CHECK: cons[(0 + cy * (1 * W)) + cx * 1] = (cons[(0 + cy * (1 * W)) + cx * 1]) + (temp[(0 + r * (1 * 2)) + s * 1]);
# CHECK: }
# CHECK: }
# CHECK: Free(temp);
# CHECK: }
# CHECK: }
)IR");
Stmt* s = l.root_stmt();
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {c, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
}
TEST(LoopNest, DISABLED_Conv1d_NH) {
// Lots of stuff is broken here. The computeAt swaps the axes for some odd
// reason. Even without that, the index flattener fails due to "dimensions
// mismatch in flatten index".
KernelScope kernel_scope;
int N = 4;
int H = 256;
int R = 3;
int Pad = 1;
Placeholder IP("input", kFloat, {H});
Tensor* A =
Compute("A", {{N, "np"}, {H + 2 * Pad, "hp"}}, [&](Axis n, Axis h) {
auto cond = CompareSelect::make(h, Pad, 1, 0, kLT);
cond = CompareSelect::make(h, H + Pad, 1, cond, kGE);
return ifThenElse(cond, 0.f, IP.load(n, h - Pad));
});
Tensor* B = Reduce(
"B",
{{N, "n"}, {H, "h"}},
Sum(),
[&](Axis n, Axis h, Axis r) { return A->load(n, h + r); },
{{R, "r"}});
LoopNest l({B});
checkIR(l.root_stmt(), R"IR(
# CHECK: for (int np = 0; np < 4; np++) {
# CHECK: for (int hp = 0; hp < 258; hp++) {
# CHECK: A[np, hp] = IfThenElse(hp>=257 ? 1 : (hp<1 ? 1 : 0), 0.f, input[np, hp - 1]);
# CHECK: }
# CHECK: }
# CHECK: for (int n = 0; n < 4; n++) {
# CHECK: for (int h = 0; h < 256; h++) {
# CHECK: B[n, h] = float(0);
# CHECK: for (int r = 0; r < 3; r++) {
# CHECK: B[n, h] = ReduceOp((B[n, h]) + (A(n, h + r)), reduce_args={r});
# CHECK: }
# CHECK: }
# CHECK: }
)IR");
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(B->buf()).at(0);
l.computeAt(l.getLoopBodyFor(A), loops[0]);
// FIXME: The current IR is totally broken. The body of the inlined loop is:
// temp[idx0, idx1] = IfThenElse(idx0 + n>=257 ? 1 : (idx0 + n<1 ? 1 : 0),
// 0.f, input[idx1 + 0, (idx0 + n) - 1]);
// Which seems to mix up the axes. The CHECK below is my best guess at what
// the input "should" look like
checkIR(l.root_stmt(), R"IR(
# CHECK: for (int n = 0; n < 4; n++) {
# CHECK: for (int idx0 = 0; idx0 < 1; idx0++) {
# CHECK: for (int idx1 = 0; idx1 < 258; idx1++) {
temp[idx0, idx1] = IfThenElse(idx1>=257 ? 1 : (idx1<1 ? 1 : 0), 0.f, input[n, idx1 - 1]);
# CHECK: }
# CHECK: }
# CHECK: for (int h = 0; h < 256; h++) {
# CHECK: B[n, h] = float(0);
# CHECK: for (int r = 0; r < 3; r++) {
# CHECK: B[n, h] = ReduceOp((B[n, h]) + (temp[0, r + h]), reduce_args={r});
# CHECK: }
# CHECK: }
# CHECK: }
)IR");
l.simplify();
l.prepareForCodegen();
Stmt* s = l.root_stmt();
SimpleIREvaluator cg(s, {IP, B});
// auto At = at::ones({N, H}, at::kFloat);
auto At = at::arange(N * H, at::kFloat).reshape({N, H});
auto Rt = at::conv1d(
At, at::ones({1, 1, 3}), at::Tensor(), /*stride=*/1, /*padding=*/3);
auto Bt = at::empty_like(Rt);
cg.call({At.data_ptr<float>(), Bt.data_ptr<float>()});
ASSERT_TRUE(at::allclose(Rt, Bt));
}
class LoopOrderHelper : public IRVisitor {
std::stringstream ordering;
public:
std::string getOrder(Stmt* s) {
ordering.str("");
s->accept(this);
return ordering.str();
}
void visit(const For* v) {
ordering << v->var()->name_hint() << ",";
IRVisitor::visit(v);
}
};
TEST(LoopNest, LoopNestReorderAxis1) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{2, "x"}, {3, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> stmt1_output(6, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[0], loops[1]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
ASSERT_NE(stmt1, stmt2);
LoopOrderHelper loopOrderHelper;
std::string order1 = loopOrderHelper.getOrder(stmt1);
std::string order2 = loopOrderHelper.getOrder(stmt2);
ASSERT_EQ(order1, "x,y,");
ASSERT_EQ(order2, "y,x,");
std::vector<int> stmt2_output(6, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg.call({stmt2_output});
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
// Reorder them back.
loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[0], loops[1]);
Stmt* stmt3 = l.root_stmt();
std::string order3 = loopOrderHelper.getOrder(stmt3);
ASSERT_EQ(order3, order1);
std::ostringstream oss1, oss2;
oss1 << *stmt1;
oss2 << *stmt3;
// Should be identical to the unreordered statement.
ASSERT_EQ(oss1.str(), oss2.str());
}
TEST(LoopNest, LoopNestReorderPartialAxes) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& x, const VarHandle& y, const VarHandle& z) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
LoopOrderHelper loopOrderHelper;
Stmt* stmt1 = Stmt::clone(l.root_stmt());
ASSERT_EQ(loopOrderHelper.getOrder(stmt1), "x,y,z,");
std::vector<int> stmt1_output(24, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[0], loops[1]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "y,x,z,");
Stmt* stmt2 = Stmt::clone(l.root_stmt());
std::vector<int> stmt2_output(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg2.call({stmt2_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[1], loops[2]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "y,z,x,");
Stmt* stmt3 = Stmt::clone(l.root_stmt());
std::vector<int> stmt3_output(24, 0);
SimpleIREvaluator cg3(stmt3, {tensor});
cg3.call({stmt3_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt3_output[i]);
}
}
TEST(LoopNest, LoopNestReorderInternalAxis) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{1, "w"}, {2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& w,
const VarHandle& x,
const VarHandle& y,
const VarHandle& z) {
return ExprHandle(1.0f) + w + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
LoopOrderHelper loopOrderHelper;
Stmt* stmt1 = Stmt::clone(l.root_stmt());
ASSERT_EQ(loopOrderHelper.getOrder(stmt1), "w,x,y,z,");
std::vector<int> stmt1_output(24, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[2], loops[1]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "w,y,x,z,");
Stmt* stmt2 = l.root_stmt();
std::vector<int> stmt2_output(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg2.call({stmt2_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
}
TEST(LoopNest, LoopNestReorderEnclosingAxis) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{1, "w"}, {2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& w,
const VarHandle& x,
const VarHandle& y,
const VarHandle& z) {
return ExprHandle(1.0f) + w + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
LoopOrderHelper loopOrderHelper;
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> stmt1_output(24, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[0], loops[3]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "z,x,y,w,");
Stmt* stmt2 = l.root_stmt();
std::vector<int> stmt2_output(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg2.call({stmt2_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
}
TEST(LoopNest, LoopNestReorderSameAxis) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{2, "x"}, {3, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
Stmt* stmt1 = Stmt::clone(l.root_stmt());
auto loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[1], loops[1]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
std::ostringstream oss, oss2;
oss << *stmt1;
oss2 << *stmt2;
ASSERT_EQ(oss.str(), oss2.str());
}
TEST(LoopNest, LoopNestReorderExtraStatements) {
/* We're going for a structure like this:
* for x in ...
* Stmt 1
* for y in ...
* Stmt 2
* for z in ...
* Stmt 3
* Stmt 4
*/
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& x, const VarHandle& y, const VarHandle& z) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
Placeholder extra(BufHandle("res", {6, 3}, kFloat));
auto loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
VarHandle i = VarHandle(loops[0]->var());
Stmt* store_1 = Store::make(BufHandle(extra.data()), {i, 0}, ExprHandle(1.f));
Stmt* store_2 = Store::make(BufHandle(extra.data()), {i, 1}, ExprHandle(2.f));
// stmt 3 is the Function body.
Stmt* store_3 = Store::make(BufHandle(extra.data()), {i, 2}, ExprHandle(4.f));
loops[0]->body()->prepend_stmt(store_1);
loops[1]->body()->prepend_stmt(store_2);
loops[1]->body()->append_stmt(store_3);
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> extra1(6, 0);
std::vector<int> res1(24, 0);
SimpleIREvaluator cg(stmt1, {tensor, extra});
cg.call({res1, extra1});
/* Then we reorder loop y and z, we want it to look like:
*
* for x in ...
* Stmt 1
* for y in ...
* Stmt 2
* for z in ...
* for y in ...
* Stmt 3
* for y in ...
* Stmt 4
*
* We need extra loops because we don't have dependency info about stmt 3
* and 4.
*
*/
l.reorderAxis(loops[1], loops[2]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
// Check the IR we produced
checkIR(stmt2, R"IR(
# CHECK: for (int x
# CHECK: res[x, 0] = 1
# CHECK: for (int y
# CHECK: res[x, 1] = 2
# CHECK: for (int z
# CHECK: for (int y
# CHECK: f[
# CHECK: for (int y
# CHECK: res[x, 2] = 4
)IR");
std::vector<int> extra2(6, 0);
std::vector<int> res2(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor, extra});
cg2.call({res2, extra2});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(res1[i], res2[i]);
}
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(extra1[i], extra2[i]);
}
/* Now reorder x and the y above stmt 3:
*
*
* for x in ...
* Stmt 1
* for y in ...
* Stmt 2
*
* for y in ...
* for z in ...
* for x in ...
* Stmt 3
*
* for x in ...
* for y in ...
* Stmt 4
*
*
*/
loops = l.getAllLoopNestsWritingToBuf(tensor->buf()).at(0);
l.reorderAxis(loops[0], loops[2]);
Stmt* stmt3 = Stmt::clone(l.root_stmt());
// Check the IR we produced
checkIR(stmt3, R"IR(
# CHECK: for (int x
# CHECK: res[x, 0] = 1
# CHECK: for (int y
# CHECK: res[x, 1] = 2
# CHECK: for (int y
# CHECK: for (int z
# CHECK: for (int x
# CHECK: f[
# CHECK: for (int x
# CHECK: for (int y
# CHECK: res[x, 2] = 4
)IR");
std::vector<int> extra3(6, 0);
std::vector<int> res3(24, 0);
SimpleIREvaluator cg3(stmt3, {tensor, extra});
cg3.call({res3, extra3});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(res1[i], res3[i]);
}
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(extra1[i], extra3[i]);
}
}
void LoopNestReorderTestHelper(
bool prepend,
bool append,
int index1,
int index2) {
KernelScope kernel_scope;
Tensor* c = Compute(
"5d",
{{2, "a"}, {3, "b"}, {2, "c"}, {3, "d"}, {2, "e"}},
[](const std::vector<VarHandle>&) { return -1; });
LoopNest l({c});
Placeholder extra(BufHandle("extra", {5}, kInt));
auto loops = l.getAllLoopNestsWritingToBuf(c->buf()).at(0);
int j = 0;
for (auto* l : loops) {
// Add an increment at each layer of the loop which counts the number of
// times the loop executes.
Load* load = new Load(extra.data(), {new IntImm(j)});
Add* add = new Add(load, new IntImm(1));
Stmt* store = new Store(extra.data(), {new IntImm(j)}, add);
if (prepend) {
l->body()->prepend_stmt(store);
}
if (append) {
l->body()->append_stmt(Stmt::clone(store));
}
j++;
}
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> extra1(5, 0);
std::vector<int> res1(2 * 3 * 2 * 3 * 2, 0);
SimpleIREvaluator cg(stmt1, {c, extra});
cg.call({res1, extra1});
std::vector<int> loopExtents = {2, 3, 2, 3, 2};
int expected_loops = 0;
if (prepend) {
expected_loops++;
}
if (append) {
expected_loops++;
}
for (int i = 0; i < 5; ++i) {
expected_loops *= loopExtents[i];
ASSERT_EQ(extra1[i], expected_loops);
}
loops = l.getAllLoopNestsWritingToBuf(c->buf()).at(0);
l.reorderAxis(loops[index1], loops[index2]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
std::ostringstream oss, oss2;
oss << *stmt1;
oss2 << *stmt2;
ASSERT_NE(oss.str(), oss2.str());
std::vector<int> extra2(5, 0);
std::vector<int> res2(2 * 3 * 2 * 3 * 2, 0);
SimpleIREvaluator cg2(stmt2, {c, extra});
cg2.call({res2, extra2});
expected_loops = 0;
if (prepend) {
expected_loops++;
}
if (append) {
expected_loops++;
}
for (int i = 0; i < 5; ++i) {
expected_loops *= loopExtents[i];
ASSERT_EQ(extra2[i], expected_loops);
}
for (int i = 0; i < 2 * 3 * 2 * 3 * 2; ++i) {
ASSERT_EQ(res2[i], res1[i]);
}
}
TEST(LoopNest, LoopNestReorderLongStringOfPreOrphans) {
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
// skip noops, since we check the loop isn't the same after reordering.
if (i != j) {
LoopNestReorderTestHelper(true, false, i, j);
}
}
}
}
TEST(LoopNest, LoopNestReorderLongStringOfPostOrphans) {
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
// skip noops, since we check the loop isn't the same after reordering.
if (i != j) {
LoopNestReorderTestHelper(false, true, i, j);
}
}
}
}
TEST(LoopNest, LoopNestReorderLongStringFull) {
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
// skip noops, since we check the loop isn't the same after reordering.
if (i != j) {
LoopNestReorderTestHelper(true, true, i, j);
}
}
}
}
TEST(LoopNest, LoopNestReorderInternalLoopNest) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Placeholder a_buf("a", kFloat, {M, N});
Placeholder b_buf("b", kFloat, {N, K});
Placeholder c_buf("c", kFloat, {M, N});
Placeholder d_buf("d", kFloat, {M, K});
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n) * b_buf.load(n, k);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return c_buf.load(m, n) * d_buf.load(m, k) + x->load(m, n, k);
});
Tensor* z = Compute(
"z",
{{M, "m3"}, {N, "n3"}, {K, "k3"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->load(m, n, k) + y->load(m, n, k);
});
LoopNest l({z}, {x, y, z});
For* a = nullptr;
For* b = nullptr;
auto fors = NodeFinder<For>::find(l.root_stmt());
for (auto* f : fors) {
if (f->var()->name_hint() == "m2") {
a = f;
} else if (f->var()->name_hint() == "k2") {
b = f;
}
}
l.reorderAxis(a, b);
l.prepareForCodegen();
Stmt* stmt = IRSimplifier::simplify(l.root_stmt());
// Check the IR we produced has the 3 nests in the right order, but k and m
// swapped in the middle.
checkIR(stmt, R"IR(
# CHECK: for (int m1
# CHECK: for (int n1
# CHECK: for (int k1
# CHECK: for (int k2
# CHECK: for (int n2
# CHECK: for (int m2
# CHECK: for (int m3
# CHECK: for (int n3
# CHECK: for (int k3)IR");
{
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
PaddedBuffer<float> c_v(M, N);
PaddedBuffer<float> d_v(M, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
b_v(i, j) = j * j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
c_v(i, j) = i + j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
d_v(i, j) = i * j;
}
}
PaddedBuffer<float> z_v(M, N, K);
PaddedBuffer<float> z_ref(M, N, K);
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
z_ref(m, n, k) = a_v(m, n) * b_v(n, k) * 2 + c_v(m, n) * d_v(m, k);
}
}
}
SimpleIREvaluator eval(stmt, {a_buf, b_buf, c_buf, d_buf, z});
eval(a_v, b_v, c_v, d_v, z_v);
ExpectAllNear(z_v, z_ref, 1e-5);
}
}
TEST(LoopNest, OuterLoopVectorization) {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{8, "X"}, {8, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
l.vectorize(l.getAllLoopNestsWritingToBuf(tensor->buf())[0][0]);
Stmt* root_stmt = l.root_stmt();
Block* outer_block = dynamic_cast<Block*>(root_stmt);
ASSERT_NE(outer_block, nullptr);
while (Block* inner_block = dynamic_cast<Block*>(outer_block->front())) {
outer_block = inner_block;
}
// Verify that we have only a single loop level remaining after
// vectorization.
ASSERT_EQ(outer_block->nstmts(), 1);
For* for_loop = dynamic_cast<For*>(outer_block->front());
ASSERT_NE(for_loop, nullptr);
Block* for_body = for_loop->body();
ASSERT_EQ(for_body->nstmts(), 1);
ASSERT_EQ(dynamic_cast<For*>(for_body->front()), nullptr);
}
namespace {
std::string constantUpperBoundLoopIR(int upper_bound_val) {
KernelScope kernel_scope;
ExprHandle upper_bound(upper_bound_val);
Tensor* A = Compute(
"A", {{upper_bound, "x"}}, [&](const VarHandle& x) { return x * 2; });
LoopNest l({A});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(A->buf())[0];
Stmt* unrolled = nullptr;
LoopNest::unroll(loops[0], &unrolled);
std::ostringstream oss;
oss << *unrolled;
return oss.str();
}
} // namespace
TEST(LoopNest, Unroll) {
const std::string actual = constantUpperBoundLoopIR(3);
const std::string& verification_pattern =
R"IR(
# CHECK: A[0] = 0;
# CHECK: A[1] = 2;
# CHECK: A[2] = 4)IR";
torch::jit::testing::FileCheck().run(verification_pattern, actual);
}
TEST(LoopNest, UnrollOuter) {
KernelScope kernel_scope;
ExprHandle outer_bound(3);
ExprHandle inner_bound(4);
Tensor* A = Compute(
"A",
{{outer_bound, "x"}, {inner_bound, "y"}},
[&](const VarHandle& x, const VarHandle& y) { return x + y; });
LoopNest l({A});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(A->buf())[0];
Stmt* unrolled = nullptr;
LoopNest::unroll(loops[0], &unrolled);
checkIR(unrolled, R"IR(
# CHECK: for (int y = 0; y < 4; y++) {
# CHECK: A[0, y] = y;
# CHECK: }
# CHECK: for (int y = 0; y < 4; y++) {
# CHECK: A[1, y] = y + 1;
# CHECK: }
# CHECK: for (int y = 0; y < 4; y++) {
# CHECK: A[2, y] = y + 2;
# CHECK: })IR");
}
TEST(LoopNest, UnrollInner) {
KernelScope kernel_scope;
ExprHandle outer_bound(3);
ExprHandle inner_bound(4);
Tensor* A = Compute(
"A",
{{outer_bound, "x"}, {inner_bound, "y"}},
[&](const VarHandle& x, const VarHandle& y) { return x + y; });
LoopNest l({A});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(A->buf())[0];
Stmt* unrolled = nullptr;
LoopNest::unroll(
static_cast<For*>(loops[0]->body()->stmts().front()), &unrolled);
checkIR(loops[0], R"IR(
# CHECK: for (int x = 0; x < 3; x++) {
# CHECK: A[x, 0] = x;
# CHECK: A[x, 1] = x + 1;
# CHECK: A[x, 2] = x + 2;
# CHECK: A[x, 3] = x + 3;
# CHECK: })IR");
}
TEST(LoopNest, UnrollMultipleStatements) {
KernelScope kernel_scope;
const int kTotalSize = 3;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle x("x", kInt);
auto f = For::make(
x,
0,
kTotalSize,
Block::make(
{Store::make(a_buf, {x}, x * 2),
Store::make(b_buf, {x}, Load::make(a_buf, {x}))}));
Block::make({f});
Stmt* unrolled = nullptr;
LoopNest::unroll(f, &unrolled);
checkIR(unrolled, R"IR(
# CHECK: A[0] = 0;
# CHECK: B[0] = A[0];
# CHECK: A[1] = 2;
# CHECK: B[1] = A[1];
# CHECK: A[2] = 4
# CHECK: B[2] = A[2];)IR");
}
TEST(LoopNest, UnrollNonLiteralConstantBounds) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 2 - 1; i < 12 / 3; i++) {
// for (int j = 0; j < 4; j++) {
// A[i,j] = i * j;
// }
// }
BufHandle a_buf("A", {3, 4}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto for_body = Block::make({Store::make(a_buf, {i, j}, i * j)});
auto inner_for = For::make(j, 0, 4, for_body);
auto outer_for = For::make(
i,
IntImm::make(2) - IntImm::make(1),
IntImm::make(12) / IntImm::make(3),
inner_for);
auto b = Block::make({outer_for});
std::vector<For*> loops = {outer_for, inner_for};
Stmt* unrolled = nullptr;
LoopNest::unroll(loops[0], &unrolled);
checkIR(unrolled, R"IR(
# CHECK: for (int j = 0; j < 4; j++) {
# CHECK: A[1, j] = j;
# CHECK: }
# CHECK: for (int j = 0; j < 4; j++) {
# CHECK: A[2, j] = 2 * j;
# CHECK: }
# CHECK: for (int j = 0; j < 4; j++) {
# CHECK: A[3, j] = 3 * j;
# CHECK: })IR");
}
TEST(LoopNest, UnrollEmpty) {
const std::string actual = constantUpperBoundLoopIR(0);
const std::string& verification_pattern = R"IR(
# CHECK-NOT: A[
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, actual);
}
TEST(LoopNest, NoUnroll) {
KernelScope kernel_scope;
VarHandle upper_bound("N", kInt);
Tensor* A = Compute(
"A", {{upper_bound, "x"}}, [&](const VarHandle& x) { return x * 2; });
LoopNest l({A});
std::vector<For*> loops = l.getAllLoopNestsWritingToBuf(A->buf())[0];
Stmt* unrolled = nullptr;
ASSERT_THROWS_WITH(
LoopNest::unroll(loops[0], &unrolled), "non-constant loop");
}
TEST(LoopNest, UnrollWithLet) {
KernelScope kernel_scope;
const int kTotalSize = 3;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle e("e", kInt);
VarHandle x("x", kInt);
auto f = For::make(
x,
0,
kTotalSize,
Block::make(
{Let::make(e, 7),
Store::make(a_buf, {x}, e),
Store::make(b_buf, {x}, e + 1)}));
Block::make({f});
Stmt* unrolled = nullptr;
LoopNest::unroll(f, &unrolled);
std::ostringstream oss;
oss << *unrolled;
const std::string& verification_pattern =
R"IR(
# CHECK: int e = 7;
# CHECK: A[0] = e;
# CHECK: B[0] = e + 1;
# CHECK: A[1] = e;
# CHECK: B[1] = e + 1;
# CHECK: A[2] = e;
# CHECK: B[2] = e + 1;)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<int> a_v(kTotalSize, 0);
std::vector<int> b_v(kTotalSize, 0);
SimpleIREvaluator eval(unrolled, {a_buf, b_buf});
eval(a_v, b_v);
for (int i = 0; i < kTotalSize; ++i) {
ASSERT_EQ(a_v[i], 7);
ASSERT_EQ(b_v[i], 8);
}
}
TEST(LoopNest, NormalizeStartPositive) {
KernelScope kernel_scope;
// Input IR:
// for (int x = 50; x < 100; x++) {
// A[x] = B[x];
// B[x] = x * 2;
// }
const int kTotalSize = 50;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle x("x", kInt);
auto for_body = Block::make(
{Store::make(a_buf, {x}, Load::make(kInt, b_buf, {x})),
Store::make(b_buf, {x}, x * 2)});
auto for_stmt = For::make(x, 50, 100, for_body);
Block::make({for_stmt});
For* normalized = nullptr;
LoopNest::normalize(for_stmt, &normalized);
auto result = IRSimplifier::simplify(normalized);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int x = 0; x < 50; x++) {
# CHECK: A[x + 50] = B[x + 50];
# CHECK: B[x + 50] = 2 * (x + 50);
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(LoopNest, NormalizeStartNegative) {
KernelScope kernel_scope;
// Input IR:
// for (int x = -50; x < 100; x++) {
// A[x + 50] = B[x + 50];
// B[x + 50] = x * 2;
// }
const int kTotalSize = 150;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle x("x", kInt);
auto for_body = Block::make(
{Store::make(a_buf, {x + 50}, Load::make(kInt, b_buf, {x + 50})),
Store::make(b_buf, {x + 50}, x * 2)});
auto for_stmt = For::make(x, -50, 100, for_body);
Block::make({for_stmt});
For* normalized = nullptr;
LoopNest::normalize(for_stmt, &normalized);
auto result = IRSimplifier::simplify(normalized);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int x = 0; x < 150; x++) {
# CHECK: A[x] = B[x];
# CHECK: B[x] = 2 * (x - 50);
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(LoopNest, NormalizeStartZero) {
KernelScope kernel_scope;
// Input IR:
// for (int x = 0; x < 100; x++) {
// A[x] = B[x];
// B[x] = x * 2;
// }
// Should not be modified.
const int kTotalSize = 100;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle x("x", kInt);
auto for_body = Block::make(
{Store::make(a_buf, {x}, Load::make(kInt, b_buf, {x})),
Store::make(b_buf, {x}, x * 2)});
auto for_stmt = For::make(x, 0, 100, for_body);
Block::make({for_stmt});
For* normalized = nullptr;
LoopNest::normalize(for_stmt, &normalized);
auto result = IRSimplifier::simplify(normalized);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int x = 0; x < 100; x++) {
# CHECK: A[x] = B[x];
# CHECK: B[x] = 2 * x;
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(LoopNest, NormalizeStartVariable) {
KernelScope kernel_scope;
// Input IR:
// for (int x = y; x < 100; x++) {
// A[x] = B[x];
// B[x] = x * 2;
// }
const int kTotalSize = 100;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle x("x", kInt);
VarHandle y("y", kInt);
auto for_body = Block::make(
{Store::make(a_buf, {x}, Load::make(kInt, b_buf, {x})),
Store::make(b_buf, {x}, x * 2)});
auto for_stmt = For::make(x, y, 100, for_body);
Block::make({for_stmt});
For* normalized = nullptr;
LoopNest::normalize(for_stmt, &normalized);
auto result = IRSimplifier::simplify(normalized);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int x = 0; x < 100 - y; x++) {
# CHECK: A[y + x] = B[y + x];
# CHECK: B[y + x] = 2 * (y + x);
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(LoopNest, NormalizeOnNestedOuterLoop) {
KernelScope kernel_scope;
// Input IR:
// for (int x = 50; x < 100; x++) {
// for (int y = 10; y < 100; y++) {
// A[x] = A[x] + B[y] + y * 2;
// }
// }
BufHandle a_buf("A", {ExprHandle(50)}, kInt);
BufHandle b_buf("B", {ExprHandle(100)}, kInt);
VarHandle x("x", kInt);
VarHandle y("y", kInt);
auto inner_for_body = Store::make(
a_buf, {x}, Load::make(a_buf, {x}) + Load::make(b_buf, {y}) + y * 2);
auto inner_for = For::make(y, 10, 100, inner_for_body);
auto for_stmt = For::make(x, 50, 100, inner_for);
Block::make({for_stmt});
For* normalized = nullptr;
LoopNest::normalize(for_stmt, &normalized);
auto result = IRSimplifier::simplify(normalized);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int x = 0; x < 50; x++) {
# CHECK: for (int y = 10; y < 100; y++) {
# CHECK: A[x + 50] = ((A[x + 50]) + (B[y])) + 2 * y;
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(LoopNest, NormalizeOnNestedInnerLoop) {
KernelScope kernel_scope;
// Input IR:
// for (int x = 50; x < 100; x++) {
// for (int y = 10; y < 100; y++) {
// A[x] = A[x] + B[y] + y * 2;
// }
// }
BufHandle a_buf("A", {ExprHandle(50)}, kInt);
BufHandle b_buf("B", {ExprHandle(100)}, kInt);
VarHandle x("x", kInt);
VarHandle y("y", kInt);
auto inner_for_body = Store::make(
a_buf, {x}, Load::make(a_buf, {x}) + Load::make(b_buf, {y}) + y * 2);
auto inner_for = For::make(y, 10, 100, inner_for_body);
auto for_stmt = For::make(x, 50, 100, inner_for);
Block::make({for_stmt});
For* normalized = nullptr;
LoopNest::normalize(inner_for, &normalized);
auto result = IRSimplifier::simplify(for_stmt);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int x = 50; x < 100; x++) {
# CHECK: for (int y = 0; y < 90; y++) {
# CHECK: A[x] = (((B[y + 10]) + 2 * y) + (A[x])) + 20;
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(LoopNest, NormalizeAndSplitWithTail) {
KernelScope kernel_scope;
// Create a dummy tensor to construct LoopNest.
ExprHandle n(100);
Placeholder a(BufHandle("a", {n}, kFloat));
Tensor* b =
Compute("b", {{n, "i"}}, [&](const VarHandle& i) { return a.load(i); });
LoopNest l({b});
// Input IR:
// for (int x = 5; x < 10; x++) {
// A[x] = x * 2;
// }
const int kTotalSize = 5;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
VarHandle x("x", kInt);
auto for_stmt = For::make(x, 5, 10, Store::make(a_buf, {x}, x * 2));
Block::make({for_stmt});
For* normalized = nullptr;
LoopNest::normalize(for_stmt, &normalized);
For* x_outer;
For* x_inner;
For* x_tail;
l.splitWithTail(normalized, 10, &x_outer, &x_inner, &x_tail);
auto x_outer_result = IRSimplifier::simplify(x_outer);
std::ostringstream oss_outer;
oss_outer << *x_outer_result;
const std::string& expected_outer_ir =
R"IR(
# CHECK: {
# CHECK: }
)IR";
torch::jit::testing::FileCheck().run(expected_outer_ir, oss_outer.str());
auto x_tail_result = IRSimplifier::simplify(x_tail);
std::ostringstream oss_tail;
oss_tail << *x_tail_result;
const std::string& expected_tail_ir =
R"IR(
# CHECK: for (int x_tail = 0; x_tail < 5; x_tail++) {
# CHECK: A[x_tail + 5] = 2 * (x_tail + 5);
)IR";
torch::jit::testing::FileCheck().run(expected_tail_ir, oss_tail.str());
}
TEST(LoopNest, FlattenSimpleLoopNest2D) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 10; i++) {
// for (int j = 0; j < 5; j++) {
// A[i,j] = i * j;
// }
// }
BufHandle a_buf("A", {10, 5}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto for_body = Block::make({Store::make(a_buf, {i, j}, i * j)});
auto inner_for = For::make(j, 0, 5, for_body);
auto outer_for = For::make(i, 0, 10, inner_for);
Block::make({outer_for});
std::vector<For*> loops = {outer_for, inner_for};
For* flattened = nullptr;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_TRUE(success);
auto result = IRSimplifier::simplify(flattened);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int i_flat = 0; i_flat < 50; i_flat++) {
# CHECK: A[i_flat / 5, i_flat % 5] =
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
{
SimpleIREvaluator eval1(loops[0], {a_buf});
PaddedBuffer<int> inp1(10, 5);
eval1(inp1);
SimpleIREvaluator eval2(flattened, {a_buf});
PaddedBuffer<int> inp2(10, 5);
eval2(inp2);
ExpectAllNear(inp1, inp2, 1e-5);
}
}
TEST(LoopNest, FlattenSimpleLoopNest3D) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 10; i++) {
// for (int j = 0; j < 5; j++) {
// for (int k = 0; k < 7; k++) {
// A[i,j,k] = i + j * k;
// }
// }
// }
BufHandle a_buf("A", {10, 5, 7}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto for_body = Block::make({Store::make(a_buf, {i, j, k}, i + j * k)});
auto for1 = For::make(k, 0, 7, for_body);
auto for2 = For::make(j, 0, 5, for1);
auto for3 = For::make(i, 0, 10, for2);
Block::make({for3});
std::vector<For*> loops = {for3, for2, for1};
For* flattened = nullptr;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_TRUE(success);
auto result = IRSimplifier::simplify(flattened);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int i_flat = 0; i_flat < 350; i_flat++) {
# CHECK: A[i_flat / 35, (i_flat / 7) % 5, i_flat % 7] =
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
{
SimpleIREvaluator eval1(loops[0], {a_buf});
PaddedBuffer<int> inp1(10, 5, 7);
eval1(inp1);
SimpleIREvaluator eval2(flattened, {a_buf});
PaddedBuffer<int> inp2(10, 5, 7);
eval2(inp2);
ExpectAllNear(inp1, inp2, 1e-5);
}
}
TEST(LoopNest, FlattenLoopNestAfterNormalize) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 2; i < 10; i++) {
// for (int j = 3; j < 15; j++) {
// A[i - 2,j - 3] = i * j;
// }
// }
BufHandle a_buf("A", {8, 12}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto for_body = Block::make({Store::make(a_buf, {i - 2, j - 3}, i * j)});
auto inner_for = For::make(j, 3, 15, for_body);
auto outer_for = For::make(i, 2, 10, inner_for);
Block::make({outer_for});
std::vector<For*> loops = {outer_for, inner_for};
For* flattened = nullptr;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_TRUE(success);
auto result = IRSimplifier::simplify(flattened);
std::ostringstream oss;
oss << *result;
const std::string& expected_ir =
R"IR(
# CHECK: for (int i_flat = 0; i_flat < 96; i_flat++) {
# CHECK: A[i_flat / 12, i_flat % 12] =
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
{
SimpleIREvaluator eval1(loops[0], {a_buf});
PaddedBuffer<int> inp1(8, 12);
eval1(inp1);
SimpleIREvaluator eval2(flattened, {a_buf});
PaddedBuffer<int> inp2(8, 12);
eval2(inp2);
ExpectAllNear(inp1, inp2, 1e-5);
}
}
TEST(LoopNest, FlattenLoopNestWithNonLiteralConstantBounds) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 15-5; i++) {
// for (int j = 0; j < 20/4; j++) {
// A[i,j] = i * j;
// }
// }
BufHandle a_buf("A", {10, 5}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto for_body = Block::make({Store::make(a_buf, {i, j}, i * j)});
auto inner_for =
For::make(j, 0, IntImm::make(20) / IntImm::make(4), for_body);
auto outer_for =
For::make(i, 0, IntImm::make(15) - IntImm::make(5), inner_for);
auto b = Block::make({outer_for});
std::vector<For*> loops = {outer_for, inner_for};
For* flattened = nullptr;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_TRUE(success);
auto result = IRSimplifier::simplify(flattened);
checkIR(result, R"IR(
# CHECK: for (int i_flat = 0; i_flat < 50; i_flat++) {
# CHECK: A[i_flat / 5, i_flat % 5] =
)IR");
{
SimpleIREvaluator eval1(loops[0], {a_buf});
PaddedBuffer<int> inp1(10, 5);
eval1(inp1);
SimpleIREvaluator eval2(flattened, {a_buf});
PaddedBuffer<int> inp2(10, 5);
eval2(inp2);
ExpectAllNear(inp1, inp2, 1e-5);
}
}
TEST(LoopNest, FlattenImperfectLoopNest) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 10; i++) {
// A[i, i] = 0;
// for (int j = 0; j < 15; j++) {
// A[i,j] = i * j;
// }
// }
// Do not flatten.
BufHandle a_buf("A", {10, 15}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto for_body = Block::make({Store::make(a_buf, {i, j}, i * j)});
auto inner_for = For::make(j, 0, 15, for_body);
auto outer_for = For::make(
i, 0, 10, Block::make({Store::make(a_buf, {i, i}, 0), inner_for}));
Block::make({outer_for});
std::vector<For*> loops = {outer_for, inner_for};
For* flattened = nullptr;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_FALSE(success);
auto result = IRSimplifier::simplify(flattened);
checkIR(result, R"IR(
# CHECK: for (int i = 0; i < 10; i++) {
# CHECK-NEXT: A[i, i] =
# CHECK-NEXT: for (int j = 0; j < 15; j++) {
# CHECK-NEXT: A[i, j] =
)IR");
}
TEST(LoopNest, FlattenReductionLoopNest) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 10; i++) {
// S[i] = 0;
// for (int j = 0; j < 15; j++) {
// S[i] = S[i] + A[i,j];
// }
// }
// Do not flatten.
BufHandle a_buf("A", {10, 15}, kInt);
BufHandle s_buf("S", {10}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto for_body = Block::make({Store::make(
s_buf, {i}, Load::make(s_buf, {i}) + Load::make(a_buf, {i, j}))});
auto inner_for = For::make(j, 0, 15, for_body);
auto outer_for =
For::make(i, 0, 10, Block::make({Store::make(s_buf, {i}, 0), inner_for}));
Block::make({outer_for});
std::vector<For*> loops = {outer_for, inner_for};
For* flattened = nullptr;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_FALSE(success);
auto result = IRSimplifier::simplify(flattened);
checkIR(result, R"IR(
# CHECK: for (int i = 0; i < 10; i++) {
# CHECK-NEXT: S[i] =
# CHECK-NEXT: for (int j = 0; j < 15; j++) {
# CHECK-NEXT: S[i] = (S[i]) + (A[i, j])
)IR");
}
TEST(LoopNest, FlattenReductionLoopNestFromTensor) {
KernelScope kernel_scope;
const int M = 3;
const int N = 7;
VarHandle m("m", kInt);
VarHandle n("n", kInt);
Placeholder b(BufHandle("b", {m, n}, kFloat));
Tensor* c = Reduce("sum", {{M, "m"}}, Sum(), b, {{N, "n"}});
LoopNest loop({c});
auto loops = loop.getAllLoopNestsWritingToBuf(c->buf())[0];
For* flattened;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_FALSE(success);
auto result = IRSimplifier::simplify(flattened);
checkIR(result, R"IR(
# CHECK: for (int m = 0; m < 3; m++) {
# CHECK-NEXT: sum[m] =
# CHECK-NEXT: for (int n = 0; n < 7; n++) {
# CHECK-NEXT: sum[m] =
)IR");
}
TEST(LoopNest, FlattenIncorrectLoopsAsInput) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 10; i++) {
// for (int j = 0; j < 5; j++) {
// A[i,j] = i * j;
// }
// }
// for (int x = 0; x < 10; x++) {
// for (int y = 0; y < 5; y++) {
// A[x,y] = A[x,y] + x + y;
// }
// }
// Flatten({For_i, For_y}) => should not succeed
BufHandle a_buf("A", {10, 5}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle x("x", kInt);
VarHandle y("y", kInt);
auto for_body1 = Block::make({Store::make(a_buf, {i, j}, i * j)});
auto inner_for1 = For::make(j, 0, 5, for_body1);
auto outer_for1 = For::make(i, 0, 10, inner_for1);
auto for_body2 = Block::make(
{Store::make(a_buf, {x, y}, Load::make(a_buf, {x, y}) + x + y)});
auto inner_for2 = For::make(y, 0, 5, for_body2);
auto outer_for2 = For::make(x, 0, 10, inner_for2);
Block::make({outer_for1, outer_for2});
std::vector<For*> loops = {outer_for1, inner_for2};
For* flattened = nullptr;
bool success = LoopNest::flatten(loops, &flattened);
ASSERT_FALSE(success);
auto result = IRSimplifier::simplify(flattened);
checkIR(result, R"IR(
# CHECK: for (int i = 0; i < 10; i++) {
# CHECK-NEXT: for (int j = 0; j < 5; j++) {
# CHECK-NEXT: A[i, j] = i * j
)IR");
}
TEST(LoopNest, DetectInlineRankMismatch) {
KernelScope kernel_scope;
const int kTotalSize = 8;
Placeholder a_buf(BufHandle("A", {ExprHandle(kTotalSize)}, kFloat));
Tensor* a = Compute("a", {{kTotalSize, "i"}}, [&](const VarHandle& i) {
return a_buf.load(i);
});
Tensor* reshape = Compute(
"reshape",
{{kTotalSize / 2, "i"}, {2, "j"}},
[&](const VarHandle& i, const VarHandle& j) { return a->load(i, j); });
LoopNest l({reshape}, {a, reshape});
ASSERT_THROWS_WITH(
l.computeInline(l.getLoopBodyFor(a)),
"Placeholder indexed access is inconsistent with its rank");
}
TEST(LoopNest, CacheReadsSimple) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
Tensor* B = Compute(
"B", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 30, j + 3);
});
Tensor* C = Compute(
"C", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 10, j + 20) + A->load(i + 30, j + 40);
});
LoopNest l({B, C}, {A, B, C});
Stmt* j_loop = l.getAllLoopNestsWritingToBuf(B->buf())[0][1];
l.cacheAccesses(A->buf(), "A_local", j_loop);
l.prepareForCodegen();
Stmt* result = IRSimplifier::simplify(l.root_stmt());
// just this once: verify the whole thing.
checkIR(result, R"IR(
#CHECK: Allocate(A); // dtype=int, dims=[64, 64]
#CHECK: for (int i
#CHECK: for (int j
#CHECK: A[
#CHECK: }
#CHECK: }
#CHECK: for (int i_1
#CHECK: Allocate(A_local); // dtype=int, dims=[1, 10]
#CHECK: for (int j_1
#CHECK: A_local[j_1] = A[
#CHECK: }
#CHECK: for (int j_2
#CHECK: B[10 * i_1 + j_2] = A_local[j_2];
#CHECK: }
#CHECK: Free(A_local);
#CHECK: }
#CHECK: for (int i_2
#CHECK: for (int j_3
#CHECK: C[
#CHECK: }
#CHECK: }
#CHECK: Free(A);
)IR");
std::vector<int> b_data(200, 0);
std::vector<int> c_data(200, 0);
SimpleIREvaluator cg(l.root_stmt(), {B, C});
cg.call({b_data, c_data});
std::vector<int> b_ref(200, 0);
std::vector<int> c_ref(200, 0);
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 10; ++j) {
b_ref[i * 10 + j] = (i + 30) * (j + 3);
c_ref[i * 10 + j] = (i + 10) * (j + 20) + (i + 30) * (j + 40);
}
}
assertAllEqual(b_data, b_ref);
assertAllEqual(c_data, c_ref);
}
TEST(LoopNest, CacheReadsOuter) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
Tensor* B = Compute(
"B", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 30, j + 40) + A->load(i + 31, j + 41);
});
Tensor* C = Compute(
"C", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 10, j + 20) + A->load(i + 30, j + 40);
});
LoopNest l({B, C}, {A, B, C});
Stmt* i_loop = l.getAllLoopNestsWritingToBuf(B->buf())[0][0];
l.cacheAccesses(A->buf(), "A_local", i_loop);
l.prepareForCodegen();
Stmt* result = IRSimplifier::simplify(l.root_stmt());
checkIR(result, R"IR(
#CHECK: Allocate(A_local); // dtype=int, dims=[21, 11]
#CHECK: A_local[j_1 + 11 * i_1] =
#CHECK: B[10 * i_2 + j_2] = (A_local[(j_2 + 11 * i_2) + 12]) + (A_local[j_2 + 11 * i_2]);
)IR");
std::vector<int> b_data(200, 0);
std::vector<int> c_data(200, 0);
SimpleIREvaluator cg(l.root_stmt(), {B, C});
cg.call({b_data, c_data});
std::vector<int> b_ref(200, 0);
std::vector<int> c_ref(200, 0);
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 10; ++j) {
b_ref[i * 10 + j] = (i + 30) * (j + 40) + (i + 31) * (j + 41);
c_ref[i * 10 + j] = (i + 10) * (j + 20) + (i + 30) * (j + 40);
}
}
assertAllEqual(b_data, b_ref);
assertAllEqual(c_data, c_ref);
}
TEST(LoopNest, CacheReadsInternal) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
Tensor* B = Compute(
"B", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 30, j + 40) + A->load(i + 31, j + 41);
});
Tensor* C = Compute(
"C", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 10, j + 20) + A->load(i + 30, j + 40);
});
LoopNest l({B, C}, {A, B, C});
Stmt* j_loop = l.getAllLoopNestsWritingToBuf(B->buf())[0][1];
l.cacheAccesses(A->buf(), "A_local", j_loop);
l.prepareForCodegen();
Stmt* result = IRSimplifier::simplify(l.root_stmt());
checkIR(result, R"IR(
#CHECK: Allocate(A_local); // dtype=int, dims=[2, 11]
#CHECK: A_local[j_1 + 11 * i_2] =
#CHECK: B[10 * i_1 + j_2] = (A_local[j_2 + 12]) + (A_local[j_2]);
)IR");
std::vector<int> b_data(200, 0);
std::vector<int> c_data(200, 0);
SimpleIREvaluator cg(l.root_stmt(), {B, C});
cg.call({b_data, c_data});
std::vector<int> b_ref(200, 0);
std::vector<int> c_ref(200, 0);
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 10; ++j) {
b_ref[i * 10 + j] = (i + 30) * (j + 40) + (i + 31) * (j + 41);
c_ref[i * 10 + j] = (i + 10) * (j + 20) + (i + 30) * (j + 40);
}
}
assertAllEqual(b_data, b_ref);
assertAllEqual(c_data, c_ref);
}
TEST(LoopNest, CacheReadsInner) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
// note im changing the offset of the first arg of the first call to A.
Tensor* B = Compute(
"B", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 34, j + 40) + A->load(i + 30, j + 41);
});
Tensor* C = Compute(
"C", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 10, j + 20) + A->load(i + 30, j + 40);
});
LoopNest l({B, C}, {A, B, C});
Stmt* body = l.getLoopBodyFor(B);
l.cacheAccesses(A->buf(), "A_local", body);
l.prepareForCodegen();
Stmt* result = IRSimplifier::simplify(l.root_stmt());
checkIR(result, R"IR(
#CHECK: Allocate(A_local); // dtype=int, dims=[5, 2]
#CHECK: A_local[2 * i_2 + j_2] =
#CHECK: B[10 * i_1 + j_1] = (A_local[1]) + (A_local[8]);
)IR");
std::vector<int> b_data(200, 0);
std::vector<int> c_data(200, 0);
SimpleIREvaluator cg(l.root_stmt(), {B, C});
cg.call({b_data, c_data});
std::vector<int> b_ref(200, 0);
std::vector<int> c_ref(200, 0);
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 10; ++j) {
b_ref[i * 10 + j] = (i + 34) * (j + 40) + (i + 30) * (j + 41);
c_ref[i * 10 + j] = (i + 10) * (j + 20) + (i + 30) * (j + 40);
}
}
assertAllEqual(b_data, b_ref);
assertAllEqual(c_data, c_ref);
}
TEST(LoopNest, CacheWritesSimple) {
KernelScope kernel_scope;
Tensor* A = Compute(
"A", {{64, "i"}, {64, "j"}}, [](const VarHandle& i, const VarHandle& j) {
return i * j;
});
Tensor* B = Compute(
"B", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 30, j + 40) + A->load(i + 31, j + 41);
});
Tensor* C = Compute(
"C", {{20, "i"}, {10, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i + 10, j + 20) + A->load(i + 30, j + 40);
});
LoopNest l({B, C}, {A, B, C});
Stmt* a_loop = l.getAllLoopNestsWritingToBuf(A->buf())[0][1];
l.cacheAccesses(A->buf(), "A_local", a_loop);
l.prepareForCodegen();
Stmt* result = IRSimplifier::simplify(l.root_stmt());
checkIR(result, R"IR(
#CHECK: Allocate(A_local); // dtype=int, dims=[1, 64]
#CHECK: for (int j = 0; j < 64
#CHECK: A_local[j] = i * j;
#CHECK: for (int j_1 = 0; j_1 < 64
#CHECK: A[64 * i + j_1] = A_local[
#CHECK: Free(A_local);
#CHECK-NOT: A_local
)IR");
std::vector<int> b_data(200, 0);
std::vector<int> c_data(200, 0);
SimpleIREvaluator cg(l.root_stmt(), {B, C});
cg.call({b_data, c_data});
std::vector<int> b_ref(200, 0);
std::vector<int> c_ref(200, 0);
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 10; ++j) {
b_ref[i * 10 + j] = (i + 30) * (j + 40) + (i + 31) * (j + 41);
c_ref[i * 10 + j] = (i + 10) * (j + 20) + (i + 30) * (j + 40);
}
}
assertAllEqual(b_data, b_ref);
assertAllEqual(c_data, c_ref);
}
TEST(LoopNest, DeadStoreElimination) {
KernelScope kernel_scope;
VarHandle y("y", kInt);
VarHandle x("x_tail", kInt);
BufHandle f("f", {26, 5}, kInt);
BufHandle g("g", {26, 5}, kInt);
ExprHandle x_outer_end = 5;
ExprHandle x_2 = x + x_outer_end * 4;
For* stmt1 = For::make(
x,
0,
5,
For::make(
y,
0,
5,
Block::make({
Store::make(f, {x_2, y}, (x_2 + y)),
Store::make(g, {x_2, y}, (x_2 * y)),
})));
Stmt* stmt = Block::make({stmt1});
// Will eliminate if not used by an output.
LoopNest loop(stmt, {f.node()});
loop.eliminateDeadStores();
checkIR(loop.root_stmt(), R"IR(
#CHECK: f[x_tail + 5 * 4, y]
#CHECK-NOT: g[x_tail + 5 * 4, y]
)IR");
// But won't eliminate if used by different outputs.
LoopNest loop2(stmt, {f.node(), g.node()});
loop2.eliminateDeadStores();
checkIR(loop2.root_stmt(), R"IR(
#CHECK: f[x_tail + 5 * 4, y]
#CHECK: g[x_tail + 5 * 4, y]
)IR");
}
TEST(LoopNest, DeadStoreEliminationWithIntermediates) {
KernelScope kernel_scope;
VarHandle x("x", kInt);
VarHandle y("y", kInt);
VarHandle z("z", kInt);
BufHandle f("f", {26 * 5}, kInt);
BufHandle g("g", {26 * 5}, kInt);
BufHandle h("h", {26, 5}, kInt);
ExprHandle x_outer_end = 5;
ExprHandle x_2 = x + x_outer_end * 4;
For* stmt1 = For::make(x, 0, 26 * 5, Store::make(f, {x}, x));
For* stmt2 = For::make(z, 0, 26 * 5, Store::make(g, {z}, z + 1));
For* stmt3 = For::make(
x,
0,
5,
For::make(
y,
0,
5,
Block::make({
Store::make(h, {x, y}, Load::make(f, {x * y})),
})));
Stmt* stmt = Block::make({stmt1, stmt2, stmt3});
// Will eliminate the write to g, but not f since it used by the producer of
// h.
LoopNest loop(stmt, {h.node()});
loop.eliminateDeadStores();
checkIR(loop.root_stmt(), R"IR(
#CHECK: f[x] = x;
#CHECK-NOT: g[z] =
#CHECK: h[x, y] = f[x * y];
)IR");
// Sanity check won't eliminate if g is an output.
LoopNest loop2(stmt, {h.node(), g.node()});
loop2.eliminateDeadStores();
checkIR(loop2.root_stmt(), R"IR(
#CHECK: f[x] = x;
#CHECK: g[z] = z + 1;
#CHECK: h[x, y] = f[x * y];
)IR");
}
TEST(LoopNest, CompoundTensorSimple) {
KernelScope kernel_scope;
BufHandle a_buf("A", {10, 5}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle x("x", kInt);
VarHandle y("y", kInt);
auto for_body1 = Block::make({Store::make(a_buf, {i, j}, i * j)});
auto inner_for1 = For::make(j, 0, 5, for_body1);
auto outer_for1 = For::make(i, 0, 10, inner_for1);
auto for_body2 = Block::make(
{Store::make(a_buf, {x, y}, Load::make(a_buf, {x, y}) + x + y)});
auto inner_for2 = For::make(y, 0, 5, for_body2);
auto outer_for2 = For::make(x, 0, 10, inner_for2);
Block* body = Block::make({outer_for1, outer_for2});
Tensor* A = new Tensor(a_buf.node(), body);
LoopNest l({A});
l.prepareForCodegen();
std::vector<int> a_data(50, 0);
Stmt* s = IRSimplifier::simplify(l.root_stmt());
SimpleIREvaluator cg(s, {A});
std::vector<int> a_ref(50, 0);
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 5; ++j) {
a_ref[i * 5 + j] = (i * j) + i + j;
}
}
cg.call({a_data});
assertAllEqual(a_data, a_ref);
}
TEST(LoopNest, InlineConstantIndex) {
KernelScope kernel_scope;
const int N = 10;
Placeholder x_buf("a", kFloat, {1, N, 1});
Tensor* y = Compute(
"f",
{{1, "m"}, {N, "n"}, {1, "o"}},
[&](const ExprHandle& m, const ExprHandle& n, const ExprHandle& o) {
return x_buf.load(m, n, o);
});
Tensor* z = Compute(
"f",
{{1, "m"}, {N, "n"}, {1, "o"}},
[&](const ExprHandle& m, const ExprHandle& n, const ExprHandle& o) {
return y->load(m, n, o);
});
LoopNest l({z}, {y, z});
l.simplify();
ASSERT_TRUE(l.computeInline(y->buf()));
}
TEST(LoopNest, CompoundTensorUsed) {
KernelScope kernel_scope;
BufHandle a_buf("A", {10, 5}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle x("x", kInt);
VarHandle y("y", kInt);
auto for_body1 = Block::make({Store::make(a_buf, {i, j}, i * j)});
auto inner_for1 = For::make(j, 0, 5, for_body1);
auto outer_for1 = For::make(i, 0, 10, inner_for1);
auto for_body2 = Block::make(
{Store::make(a_buf, {x, y}, Load::make(a_buf, {x, y}) + x + y)});
auto inner_for2 = For::make(y, 0, 5, for_body2);
auto outer_for2 = For::make(x, 0, 10, inner_for2);
Block* body = Block::make({outer_for1, outer_for2});
Tensor* A = new Tensor(a_buf.node(), body);
Tensor* B = Compute(
"B", {{10, "i"}, {3, "j"}}, [&](const VarHandle& i, const VarHandle& j) {
return A->load(i, j + 1) + A->load(i, j + 2);
});
LoopNest l({B}, {A, B});
ASSERT_FALSE(l.computeInline(A->buf()));
l.prepareForCodegen();
std::vector<int> a_data(50, 0);
std::vector<int> b_data(50, 0);
Stmt* s = IRSimplifier::simplify(l.root_stmt());
SimpleIREvaluator cg(s, {B});
std::vector<int> b_ref(50, 0);
auto AT = [](int i, int j) { return i * j + i + j; };
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 3; ++j) {
b_ref[i * 3 + j] = AT(i, j + 1) + AT(i, j + 2);
}
}
cg.call({b_data});
assertAllEqual(b_data, b_ref);
}
TEST(LoopNest, InlineFromLoad) {
KernelScope kernel_scope;
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto store_a = For::make(i, 0, N, Store::make(a, {i}, i));
auto store_b = For::make(j, 0, N, Store::make(b, {j}, Load::make(a, {j})));
LoopNest l(Block::make({store_a, store_b}), {b.node()});
l.computeInline(a.node());
// Check that A[j] is replaced with j after inlining
std::ostringstream oss;
oss << *l.root_stmt();
torch::jit::testing::FileCheck().run(
R"IR(
# CHECK: for (int j
# CHECK-NOT: B[j] = A[j]
# CHECK-NEXT: B[j] = j
)IR",
oss.str());
}
static std::pair<std::unique_ptr<Placeholder>, Tensor*> colReduce(
int M,
int N) {
auto a =
std::make_unique<Placeholder>("a", kFloat, std::vector<ExprHandle>{M, N});
Tensor* t = Reduce(
"b",
{{N, "n"}},
Sum(),
[&](const VarHandle& n, const VarHandle& m) { return a->load(m, n); },
{{M, "m"}});
return {std::move(a), t};
}
static Stmt* splitTailReorder(Tensor* b) {
constexpr int kVectorWidth = 8;
LoopNest nest({b});
auto loops = nest.getAllLoopNestsWritingToBuf(b->buf())[0];
nest.splitWithTail(loops[0], kVectorWidth);
// Now the loopnests will look like:
//
// for (int n_outer = 0; ...
// for (int n_inner = 0; ...
// b[n_outer * 8 + n_inner] = float(0);
// for (int m = 0; ...
// b[n_outer * 8 + n_inner] = ReduceOp(...);
//
// for (int n_tail = 0; ...
// b[n_tail + ((100 - 0) / 8) * 8] = float(0);
// for (int m = 0; ...
// b[n_tail + ((100 - 0) / 8) * 8] = ReduceOp(...);
//
// Since there are 4 writes to b, we will get 4 loopnests from the
// call to `getAllLoopNestsWritingToBuf` below.
//
// Write #2: "b[n_outer * 8 + n_inner] = ReduceOp(...)"
// Loopnest #2: {n_outer, n_inner, m};
// We will have to reorder n_inner and m.
auto loopnests = nest.getAllLoopNestsWritingToBuf(b->buf());
nest.reorderAxis(loopnests[1][1], loopnests[1][2]);
nest.prepareForCodegen();
return nest.root_stmt();
}
static Stmt* splitMaskReorder(Tensor* b) {
constexpr int kVectorWidth = 8;
LoopNest nest({b});
auto loops = nest.getAllLoopNestsWritingToBuf(b->buf())[1];
nest.splitWithMask(loops[0], kVectorWidth);
loops = nest.getAllLoopNestsWritingToBuf(b->buf())[1];
nest.reorderAxis(loops[1], loops[2]);
nest.prepareForCodegen();
return nest.root_stmt();
}
static void checkColReduce(Stmt* s, Placeholder& p, Tensor* t) {
int M = immediateAs<int>(p.dim(0));
int N = immediateAs<int>(p.dim(1));
PaddedBuffer<float> a(M, N);
PaddedBuffer<float> b(N);
PaddedBuffer<float> ref(N);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a(i, j) = 1.0f;
}
}
for (int i = 0; i < N; i++) {
b(i) = 0.0f;
}
for (int i = 0; i < N; i++) {
ref(i) = 76.0f;
}
SimpleIREvaluator(s, {p, t}).call({a, b});
ExpectAllNear(b, ref, 1e-5);
}
TEST(LoopNest, ColReduceSplitTailEvenReorder) {
KernelScope kernel_scope;
constexpr int M = 76, N = 128;
auto p = colReduce(M, N);
Stmt* s = splitTailReorder(p.second);
std::ostringstream oss;
oss << *s;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int n_outer
# CHECK-NEXT: for (int n_inner
# CHECK-NEXT: b[
# CHECK: for (int m
# CHECK-NEXT: for (int n_inner
# CHECK-NEXT: b[
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
checkColReduce(s, *p.first, p.second);
}
TEST(LoopNest, ColReduceSplitTailUnevenReorder) {
KernelScope kernel_scope;
constexpr int M = 76, N = 100;
auto p = colReduce(M, N);
Stmt* s = splitTailReorder(p.second);
std::ostringstream oss;
oss << *s;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int n_outer
# CHECK-NEXT: for (int n_inner
# CHECK-NEXT: b[
# CHECK: for (int m
# CHECK-NEXT: for (int n_inner
# CHECK-NEXT: b[
# CHECK: for (int n_tail
# CHECK-NEXT: b[
# CHECK-NEXT: for (int m
# CHECK-NEXT: b[
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
checkColReduce(s, *p.first, p.second);
}
TEST(LoopNest, ColReduceSplitMaskEvenReorder) {
KernelScope kernel_scope;
constexpr int M = 76, N = 128;
auto p = colReduce(M, N);
Stmt* s = splitMaskReorder(p.second);
checkColReduce(s, *p.first, p.second);
}
TEST(LoopNest, DISABLED_ColReduceSplitMaskUnevenReorder) {
KernelScope kernel_scope;
constexpr int M = 76, N = 100;
auto p = colReduce(M, N);
Stmt* s = splitMaskReorder(p.second);
checkColReduce(s, *p.first, p.second);
}
TEST(LoopNest, DISABLED_VectorizeUse) {
KernelScope kernel_scope;
constexpr int N = 8;
Placeholder a("a", kFloat, {N});
Tensor* b = Compute(
"b", {{N, "n"}}, [&](const VarHandle& n) { return a.load(n) + 1.0f; });
Tensor* c = Compute(
"c", {{N, "n"}}, [&](const VarHandle& n) { return b->load(n) + 2.0f; });
LoopNest nest({c});
auto loops = nest.getAllLoopNestsWritingToBuf(b->buf())[0];
nest.vectorize(loops[0]);
loops = nest.getAllLoopNestsWritingToBuf(c->buf())[0];
nest.vectorize(loops[0]);
nest.prepareForCodegen();
Stmt* s = nest.root_stmt();
std::ostringstream oss;
oss << *nest.root_stmt();
torch::jit::testing::FileCheck().run(
R"IR(
# CHECK: c[Ramp
)IR",
oss.str());
}
const char* int64Loop = R"IR(
{
for (int64_t n = 0; n < 12; n++) {
b[n] = (a[n]) + 1;
}
}
)IR";
TEST(LoopNest, DISABLED_Int64Direct) {
KernelScope kernel_scope;
constexpr int64_t N = 12;
Placeholder a("a", kLong, {N});
Placeholder b("b", kLong, {N});
VarHandle n("n", kLong);
Stmt* s = For::make(n, 0, N, b.store({n}, a.load({n}) + LongImm::make(1l)));
s = IRSimplifier::simplify(s);
std::ostringstream oss;
oss << *s;
ASSERT_EQ(oss.str(), int64Loop);
}
TEST(LoopNest, DISABLED_Int64Compute) {
KernelScope kernel_scope;
constexpr int64_t N = 12;
Placeholder a("a", kLong, {N});
Tensor* b = Compute("b", {{N, "n"}}, [&](const VarHandle& n) {
return a.load(n) + LongImm::make(1l);
});
LoopNest nest({b});
nest.prepareForCodegen();
nest.simplify();
std::ostringstream oss;
oss << *nest.root_stmt();
ASSERT_EQ(oss.str(), int64Loop);
}
TEST(LoopNest, DistributeLoopWithAllStmtsAsPivots) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// A[i] = 0;
// for (int j = 0; j < 100; j++) {
// A[i] = A[i] + i * j;
// }
// B[i] = A[i];
// for (int k = 0; k < 50; k++) {
// B[i] = B[i] + i * k;
// }
// }
BufHandle a_buf("A", {20}, kInt);
BufHandle b_buf("B", {20}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto initA = Store::make(a_buf, {i}, 0);
auto forJ = For::make(
j,
0,
100,
Store::make(
a_buf, {i}, Add::make(Load::make(a_buf, {i}), Mul::make(i, j))));
auto initB = Store::make(b_buf, {i}, Load::make(a_buf, {i}));
auto forK = For::make(
k,
0,
50,
Store::make(
b_buf, {i}, Add::make(Load::make(b_buf, {i}), Mul::make(i, k))));
auto forI = For::make(i, 0, 20, Block::make({initA, forJ, initB, forK}));
auto par = Block::make({forI});
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: A[i] = 0
# CHECK: for (int i
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[i] =
# CHECK: for (int i
# CHECK-NEXT: B[i] = A[i]
# CHECK: for (int i
# CHECK-NEXT: for (int k
# CHECK-NEXT: B[i] =
# CHECK-NOT: for (
)IR";
LoopNest nest(par, {a_buf.node(), b_buf.node()});
auto new_loops = LoopNest::distributeLoop(forI, {initA, forJ, initB});
std::ostringstream oss;
oss << *par;
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The first loop after distribution must be same as the original For.
ASSERT_EQ(new_loops.front(), forI);
}
TEST(LoopNest, DistributeLoopWithOneStmtAsPivot) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// A[i] = 0;
// for (int j = 0; j < 100; j++) {
// A[i] = A[i] + i * j;
// }
// B[i] = A[i];
// for (int k = 0; k < 50; k++) {
// B[i] = B[i] + i * k;
// }
// }
BufHandle a_buf("A", {20}, kInt);
BufHandle b_buf("B", {20}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto initA = Store::make(a_buf, {i}, 0);
auto forJ = For::make(
j,
0,
100,
Store::make(
a_buf, {i}, Add::make(Load::make(a_buf, {i}), Mul::make(i, j))));
auto initB = Store::make(b_buf, {i}, Load::make(a_buf, {i}));
auto forK = For::make(
k,
0,
50,
Store::make(
b_buf, {i}, Add::make(Load::make(b_buf, {i}), Mul::make(i, k))));
auto forI = For::make(i, 0, 20, Block::make({initA, forJ, initB, forK}));
auto par = Block::make({forI});
LoopNest nest(par, {a_buf.node(), b_buf.node()});
auto new_loops = LoopNest::distributeLoop(forI, {forJ});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: A[i] = 0
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[i] =
# CHECK: for (int i
# CHECK-NEXT: B[i] = A[i]
# CHECK-NEXT: for (int k
# CHECK-NEXT: B[i] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The first loop after distribution must be same as the original For.
ASSERT_EQ(new_loops.front(), forI);
}
TEST(LoopNest, DistributeLoopWithoutAnyPivot) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// A[i] = 0;
// for (int j = 0; j < 100; j++) {
// A[i] = A[i] + i * j;
// }
// B[i] = A[i];
// for (int k = 0; k < 50; k++) {
// B[i] = B[i] + i * k;
// }
// }
BufHandle a_buf("A", {20}, kInt);
BufHandle b_buf("B", {20}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto initA = Store::make(a_buf, {i}, 0);
auto forJ = For::make(
j,
0,
100,
Store::make(
a_buf, {i}, Add::make(Load::make(a_buf, {i}), Mul::make(i, j))));
auto initB = Store::make(b_buf, {i}, Load::make(a_buf, {i}));
auto forK = For::make(
k,
0,
50,
Store::make(
b_buf, {i}, Add::make(Load::make(b_buf, {i}), Mul::make(i, k))));
auto forI = For::make(i, 0, 20, Block::make({initA, forJ, initB, forK}));
auto par = Block::make({forI});
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: A[i] = 0
# CHECK: for (int i
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[i] =
# CHECK: for (int i
# CHECK-NEXT: B[i] = A[i]
# CHECK: for (int i
# CHECK-NEXT: for (int k
# CHECK-NEXT: B[i] =
# CHECK-NOT: for (
)IR";
LoopNest nest(par, {a_buf.node(), b_buf.node()});
auto new_loops = LoopNest::distributeLoop(forI);
std::ostringstream oss;
oss << *par;
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The first loop after distribution must be same as the original For.
ASSERT_EQ(new_loops.front(), forI);
}
TEST(LoopNest, DistributeLoopOverInnerLoops) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// A[i] = 0;
// for (int j = 0; j < 100; j++) {
// A[i] = A[i] + i * j;
// }
// B[i] = A[i];
// for (int k = 0; k < 50; k++) {
// B[i] = B[i] + i * k;
// }
// }
BufHandle a_buf("A", {20}, kInt);
BufHandle b_buf("B", {20}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto initA = Store::make(a_buf, {i}, 0);
auto forJ = For::make(
j,
0,
100,
Store::make(
a_buf, {i}, Add::make(Load::make(a_buf, {i}), Mul::make(i, j))));
auto initB = Store::make(b_buf, {i}, Load::make(a_buf, {i}));
auto forK = For::make(
k,
0,
50,
Store::make(
b_buf, {i}, Add::make(Load::make(b_buf, {i}), Mul::make(i, k))));
auto forI = For::make(i, 0, 20, Block::make({initA, forJ, initB, forK}));
auto par = Block::make({forI});
LoopNest nest(par, {a_buf.node(), b_buf.node()});
auto new_loops = LoopNest::distributeLoopOverInnerLoops(forI);
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: A[i] = 0
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[i] =
# CHECK: for (int i
# CHECK-NEXT: B[i] = A[i]
# CHECK-NEXT: for (int k
# CHECK-NEXT: B[i] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The first loop after distribution must be same as the original For.
ASSERT_EQ(new_loops.front(), forI);
}
TEST(LoopNest, fuseLoopsSimple) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 0; k < 100; k++) {
// B[k] = 20 * k;
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(k, 0, 100, Store::make(b_buf, {k}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
auto fused_loop = LoopNest::fuseLoops({forJ, forK});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int j
# CHECK-NEXT: A[j] =
# CHECK-NEXT: B[j] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forJ);
}
TEST(LoopNest, fuseLoopsMultiple) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 100; i++) {
// A[i+100] = 20 + i;
// }
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 0; k < 100; k++) {
// B[k] = 20 * k;
// }
BufHandle a_buf("A", {200}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forI =
For::make(i, 0, 100, Store::make(a_buf, {i + 100}, Add::make(20, i)));
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(k, 0, 100, Store::make(b_buf, {k}, Mul::make(20, k)));
auto par = Block::make({forI, forJ, forK});
auto fused_loop = LoopNest::fuseLoops({forI, forJ, forK});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: A[i + 100] =
# CHECK-NEXT: A[i] =
# CHECK-NEXT: B[i] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forI);
}
TEST(LoopNest, fuseLoopsNested) {
KernelScope kernel_scope;
// Input IR:
// for (int m = 0; m < 20; m++) {
// A[m] = 0;
// for (int j = 0; j < 100; j++) {
// A[m] = A[m] + m * j;
// }
// }
// for (int n = 0; n < 20; n++) {
// B[n] = A[n];
// for (int k = 0; k < 50; k++) {
// B[n] = B[n] + n * k;
// }
// }
BufHandle a_buf("A", {20, 100}, kInt);
BufHandle b_buf("B", {20, 100}, kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto initA = Store::make(a_buf, {m}, 0);
auto forJ = For::make(
j,
0,
100,
Store::make(
a_buf, {m}, Add::make(Load::make(a_buf, {m}), Mul::make(m, j))));
auto initB = Store::make(b_buf, {n}, Load::make(a_buf, {n}));
auto forK = For::make(
k,
0,
50,
Store::make(
b_buf, {n}, Add::make(Load::make(b_buf, {n}), Mul::make(n, k))));
auto forM = For::make(m, 0, 20, Block::make({initA, forJ}));
auto forN = For::make(n, 0, 20, Block::make({initB, forK}));
auto par = Block::make({forM, forN});
auto fused_loop = LoopNest::fuseLoops({forM, forN});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int m
# CHECK-NEXT: A[m] = 0
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[m] =
# CHECK: B[m] = A[m]
# CHECK-NEXT: for (int k
# CHECK-NEXT: B[m] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forM);
}
TEST(LoopNest, fuseLoopsNested2D) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// }
// for (int m = 0; m < 20; m++) {
// for (int n = 0; n < 50; n++) {
// B[m,n] = m + n * 100;
// }
// }
BufHandle a_buf("A", {20, 100}, kInt);
BufHandle b_buf("B", {20, 100}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
auto forI = For::make(
i,
0,
20,
For::make(
j,
0,
100,
Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500))));
auto forM = For::make(
m,
0,
20,
For::make(
n,
0,
50,
Store::make(b_buf, {m, n}, Add::make(m, Mul::make(n, 100)))));
auto par = Block::make({forI, forM});
auto fused_loop = LoopNest::fuseLoops({forI, forM});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[i, j] =
# CHECK: for (int n
# CHECK-NEXT: B[i, n] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forI);
}
TEST(LoopNest, fuseLoopsNested2DInner) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// for (int n = 0; n < 100; n++) {
// B[i,n] = m + n * 100;
// }
// }
BufHandle a_buf("A", {20, 100}, kInt);
BufHandle b_buf("B", {2, 100}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle n("n", kInt);
auto forJ = For::make(
j, 0, 100, Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500)));
auto forN = For::make(
n, 0, 100, Store::make(b_buf, {i, n}, Add::make(i, Mul::make(n, 100))));
auto forI = For::make(i, 0, 20, Block::make({forJ, forN}));
auto fused_loop = LoopNest::fuseLoops({forJ, forN});
std::ostringstream oss;
oss << *forI;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[i, j] =
# CHECK-NEXT: B[i, j] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forJ);
}
TEST(LoopNest, fuseLoopsDifferentStopBounds) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 0; k < 50; k++) {
// B[k] = 20 * k;
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(k, 0, 50, Store::make(b_buf, {j}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forK}), "Loops with different stop bounds");
}
TEST(LoopNest, fuseLoopsDifferentStartBounds) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 50; k < 100; k++) {
// B[k] = 20 * k;
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(k, 50, 100, Store::make(b_buf, {j}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forK}), "Loops with different start bounds");
}
TEST(LoopNest, fuseLoopsNotContiguous) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
// B[0] = 0;
// for (int k = 50; k < 100; k++) {
// B[k] = 20 * k;
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto initB = Store::make(b_buf, {0}, 0);
auto forK = For::make(k, 50, 100, Store::make(b_buf, {j}, Mul::make(20, k)));
auto par = Block::make({forJ, initB, forK});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forK}), "Only contiguous loops can be fused");
}
TEST(LoopNest, fuseLoopsWithDifferentParents) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 50; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j;
// }
// }
// B[0] = 0;
// for (int k = 50; k < 100; k++) {
// B[k] = 20 * k;
// }
BufHandle a_buf("A", {50, 100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 0, 100, Store::make(a_buf, {i, j}, Mul::make(i, j)));
auto forI = For::make(i, 0, 50, forJ);
auto initB = Store::make(b_buf, {0}, 0);
auto forK = For::make(k, 50, 100, Store::make(b_buf, {j}, Mul::make(20, k)));
auto par = Block::make({forI, initB, forK});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forK}), "loops with different parents");
}
TEST(LoopNest, fuseLoopsWithVariableBounds) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 0; j < N; j++) {
// A[j] = 10 * j;
// }
// for (int k = 0; k < N; k++) {
// B[k] = 20 * k;
// }
BufHandle a_buf("A", {20}, kInt);
BufHandle b_buf("B", {20}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
VarHandle N("N", kInt);
auto forJ = For::make(j, 0, N, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(k, 0, N, Store::make(b_buf, {j}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
auto fused_loop = LoopNest::fuseLoops({forJ, forK});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int j
# CHECK-NEXT: A[j] =
# CHECK-NEXT: B[j] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forJ);
}
TEST(LoopNest, fuseLoopsWithNonOverlappingBufferAccesses) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 10; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 10; k < 100; k++) {
// A[k+100] = 30 * k
// }
BufHandle a_buf("A", {200}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK =
For::make(k, 10, 100, Store::make(a_buf, {k + 100}, Mul::make(30, k)));
auto par = Block::make({forJ, forK});
auto fused_loop = LoopNest::fuseLoops({forJ, forK});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int j
# CHECK-NEXT: A[j] =
# CHECK-NEXT: A[j + 100] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forJ);
}
TEST(LoopNest, fuseLoopsWithNonOverlapping2DBufferAccesses) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// }
// for (int m = 0; m < 20; m++) {
// for (int n = 0; n < 50; n++) {
// A[m+20,n+100] = m + n * 100;
// }
// }
BufHandle a_buf("A", {20, 100}, kInt);
BufHandle b_buf("B", {20, 50}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
auto storeA1 = Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500));
auto forJ = For::make(j, 0, 100, storeA1);
auto forI = For::make(i, 0, 20, forJ);
auto storeA2 =
Store::make(a_buf, {m + 20, n + 100}, Add::make(m, Mul::make(n, 100)));
auto forN = For::make(n, 0, 50, storeA2);
auto forM = For::make(m, 0, 20, forN);
auto par = Block::make({forI, forM});
auto fused_loop = LoopNest::fuseLoops({forI, forM});
std::ostringstream oss;
oss << *par;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i
# CHECK-NEXT: for (int j
# CHECK-NEXT: A[i, j] =
# CHECK: for (int n
# CHECK-NEXT: A[i + 20, n + 100] =
# CHECK-NOT: for (
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// The fused loop must be the same as the first loop.
ASSERT_EQ(fused_loop, forI);
}
TEST(LoopNest, fuseLoopsThatViolateDependencies1) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 10; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 10; k < 100; k++) {
// A[k-1] = 20 * k;
// }
BufHandle a_buf("A", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK =
For::make(k, 10, 100, Store::make(a_buf, {k - 1}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forK}),
"not valid since it results in a loop carried dependence");
}
TEST(LoopNest, fuseLoopsThatViolateDependencies2) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 10; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 10; k < 100; k++) {
// A[k+50] = 20 * k;
// }
BufHandle a_buf("A", {150}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK =
For::make(k, 10, 100, Store::make(a_buf, {k + 50}, Mul::make(20, k)));
auto par = Block::make({forJ, forK});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forK}),
"not valid since it results in a loop carried dependence");
}
TEST(LoopNest, fuseLoopsThatViolateDependencies3) {
KernelScope kernel_scope;
// Input IR:
// for (int m = 0; m < 20; m++) {
// A[m] = 0;
// for (int j = 0; j < 100; j++) {
// A[m] = A[m] + m * j;
// }
// }
// for (int n = 0; n < 20; n++) {
// B[n] = A[n+1];
// for (int k = 0; k < 50; k++) {
// B[n] = B[n] + n * k;
// }
// }
BufHandle a_buf("A", {25, 100}, kInt);
BufHandle b_buf("B", {20, 50}, kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto initA = Store::make(a_buf, {m}, 0);
auto forJ = For::make(
j,
0,
100,
Store::make(
a_buf, {m}, Add::make(Load::make(a_buf, {m}), Mul::make(m, j))));
auto initB = Store::make(b_buf, {n}, Load::make(a_buf, {n + 1}));
auto forK = For::make(
k,
0,
50,
Store::make(
b_buf, {n}, Add::make(Load::make(b_buf, {n}), Mul::make(n, k))));
auto forM = For::make(m, 0, 20, Block::make({initA, forJ}));
auto forN = For::make(n, 0, 20, Block::make({initB, forK}));
auto par = Block::make({forM, forN});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forM, forN}),
"not valid since it results in a loop carried dependence");
}
TEST(LoopNest, fuseLoopsThatViolateDependencies4) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// }
// for (int m = 0; m < 20; m++) {
// for (int n = 0; n < 50; n++) {
// A[m+1,n] = m + n * 100;
// }
// }
BufHandle a_buf("A", {30, 100}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
auto forI = For::make(
i,
0,
20,
For::make(
j,
0,
100,
Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500))));
auto forM = For::make(
m,
0,
20,
For::make(
n,
0,
50,
Store::make(a_buf, {m + 1, n}, Add::make(m, Mul::make(n, 100)))));
auto par = Block::make({forI, forM});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forI, forM}),
"not valid since it results in a loop carried dependence");
}
TEST(LoopNest, fuseLoopsThatViolateDependencies5) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 100; j++) {
// A[i,j] = i * j * 500;
// }
// for (int n = 0; n < 100; n++) {
// A[i,n+1] = m + n * 100;
// }
// }
BufHandle a_buf("A", {20, 200}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle n("n", kInt);
auto forJ = For::make(
j, 0, 100, Store::make(a_buf, {i, j}, Mul::make(Mul::make(i, j), 500)));
auto forN = For::make(
n,
0,
100,
Store::make(a_buf, {i, n + 1}, Add::make(i, Mul::make(n, 100))));
auto forI = For::make(i, 0, 20, Block::make({forJ, forN}));
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forN}),
"not valid since it results in a loop carried dependence");
}
TEST(LoopNest, fuseLoopsThatViolateDependencies6) {
KernelScope kernel_scope;
// Input IR:
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
// for (int k = 0; k < 100; k++) {
// B[k] = 20 * A[99-k];
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto forK = For::make(
k,
10,
100,
Store::make(
b_buf, {k}, Mul::make(20, Load::make(a_buf, {ExprHandle(99) - k}))));
auto par = Block::make({forJ, forK});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forJ, forK}),
"not valid since it results in a loop carried dependence");
}
TEST(LoopNest, fuseLoopsThatViolateDependencies7) {
KernelScope kernel_scope;
// Input IR:
// for (int k = 0; k < 100; k++) {
// B[k] = 20 * A[99-k];
// }
// for (int j = 0; j < 100; j++) {
// A[j] = 10 * j;
// }
BufHandle a_buf("A", {100}, kInt);
BufHandle b_buf("B", {100}, kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto forK = For::make(
k,
10,
100,
Store::make(
b_buf, {k}, Mul::make(20, Load::make(a_buf, {ExprHandle(99) - k}))));
auto forJ = For::make(j, 10, 100, Store::make(a_buf, {j}, Mul::make(10, j)));
auto par = Block::make({forK, forJ});
ASSERT_THROWS_WITH(
LoopNest::fuseLoops({forK, forJ}),
"not valid since it results in a loop carried dependence");
}
TEST(LoopNest, areLoopsPerfectlyNested) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 30; j++) {
// for (int k = 0; k < 40; k++) {
// A[i,j,k] = i * j * k;
// }
// }
// }
BufHandle a_buf("A", {20, 30, 40}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto store = Store::make(a_buf, {i, j, k}, Mul::make(Mul::make(i, j), k));
auto forK = For::make(k, 0, 40, store);
auto forJ = For::make(j, 0, 30, forK);
auto forI = For::make(i, 0, 20, forJ);
auto par = Block::make({forI});
ASSERT_TRUE(LoopNest::areLoopsPerfectlyNested({forI, forJ, forK}));
// Specifying the loops in any other order fails.
ASSERT_FALSE(LoopNest::areLoopsPerfectlyNested({forJ, forI, forK}));
ASSERT_FALSE(LoopNest::areLoopsPerfectlyNested({forI, forK, forJ}));
ASSERT_FALSE(LoopNest::areLoopsPerfectlyNested({forK, forJ, forI}));
// Adding a statment to forK body should be OK.
auto init = Store::make(a_buf, {i, j}, 0);
forK->body()->insert_stmt_before(init, store);
ASSERT_TRUE(LoopNest::areLoopsPerfectlyNested({forI, forJ, forK}));
// Adding a statement in forJ body should fail this test.
forK->body()->remove_stmt(init);
forJ->body()->insert_stmt_before(init, forK);
ASSERT_FALSE(LoopNest::areLoopsPerfectlyNested({forI, forJ, forK}));
// Similarly, adding a statement in forI body should fail this test.
forJ->body()->remove_stmt(init);
forI->body()->insert_stmt_before(init, forJ);
ASSERT_FALSE(LoopNest::areLoopsPerfectlyNested({forI, forJ, forK}));
}
TEST(LoopNest, reorderNestedLoops2D) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 30; j++) {
// A[i,j] = i * j;
// }
// }
BufHandle a_buf("A", {20, 30, 40}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
auto store = Store::make(a_buf, {i, j}, Mul::make(i, j));
auto forJ = For::make(j, 0, 30, store);
auto forI = For::make(i, 0, 20, forJ);
auto par = Block::make({forI});
auto reordered = LoopNest::reorder({forI, forJ}, {1, 0});
ASSERT_EQ(reordered[0], forJ);
ASSERT_EQ(reordered[1], forI);
ASSERT_TRUE(LoopNest::areLoopsPerfectlyNested({forJ, forI}));
ASSERT_EQ(forJ->get_parent(), par);
ASSERT_EQ(store->get_parent(), forI->body());
}
TEST(LoopNest, reorderNestedLoops3D) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 30; j++) {
// for (int k = 0; k < 40; k++) {
// A[i,j,k] = i * j * k;
// }
// }
// }
BufHandle a_buf("A", {20, 30, 40}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto store = Store::make(a_buf, {i, j, k}, Mul::make(Mul::make(i, j), k));
auto forK = For::make(k, 0, 40, store);
auto forJ = For::make(j, 0, 30, forK);
auto forI = For::make(i, 0, 20, forJ);
auto par = Block::make({forI});
auto reordered = LoopNest::reorder({forI, forJ, forK}, {2, 1, 0});
ASSERT_EQ(reordered[0], forK);
ASSERT_EQ(reordered[1], forJ);
ASSERT_EQ(reordered[2], forI);
ASSERT_TRUE(LoopNest::areLoopsPerfectlyNested({forK, forJ, forI}));
ASSERT_EQ(forK->get_parent(), par);
ASSERT_EQ(store->get_parent(), forI->body());
}
TEST(LoopNest, reorderNestedLoops4D) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 30; j++) {
// for (int k = 0; k < 40; k++) {
// for (int l = 0; l < 50; l++) {
// A[i,j,k,l] = i * j * k * l * 500;
// }
// }
// }
// }
BufHandle a_buf("A", {20, 30, 40, 50}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
VarHandle l("l", kInt);
auto store = Store::make(
a_buf,
{i, j, k, l},
Mul::make(Mul::make(Mul::make(Mul::make(i, j), k), l), 500));
auto forL = For::make(l, 0, 50, store);
auto forK = For::make(k, 0, 40, forL);
auto forJ = For::make(j, 0, 30, forK);
auto forI = For::make(i, 0, 20, forJ);
auto par = Block::make({forI});
auto reordered = LoopNest::reorder({forI, forJ, forK, forL}, {2, 3, 0, 1});
ASSERT_EQ(reordered[0], forK);
ASSERT_EQ(reordered[1], forL);
ASSERT_EQ(reordered[2], forI);
ASSERT_EQ(reordered[3], forJ);
ASSERT_TRUE(LoopNest::areLoopsPerfectlyNested({forK, forL, forI, forJ}));
ASSERT_EQ(forK->get_parent(), par);
ASSERT_EQ(store->get_parent(), forJ->body());
}
TEST(LoopNest, reorderTrivialPermutation) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 30; j++) {
// for (int k = 0; k < 40; k++) {
// A[i,j,k] = i * j * k;
// }
// }
// }
BufHandle a_buf("A", {20, 30, 40}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto store = Store::make(a_buf, {i, j, k}, Mul::make(Mul::make(i, j), k));
auto forK = For::make(k, 0, 40, store);
auto forJ = For::make(j, 0, 30, forK);
auto forI = For::make(i, 0, 20, forJ);
auto par = Block::make({forI});
auto reordered = LoopNest::reorder({forI, forJ, forK}, {0, 1, 2});
ASSERT_EQ(reordered[0], forI);
ASSERT_EQ(reordered[1], forJ);
ASSERT_EQ(reordered[2], forK);
ASSERT_TRUE(LoopNest::areLoopsPerfectlyNested({forI, forJ, forK}));
ASSERT_EQ(forI->get_parent(), par);
ASSERT_EQ(store->get_parent(), forK->body());
}
TEST(LoopNest, reorderInvalidPermutations) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 30; j++) {
// for (int k = 0; k < 40; k++) {
// A[i,j,k] = i * j * k;
// }
// }
// }
BufHandle a_buf("A", {20, 30, 40}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto store = Store::make(a_buf, {i, j, k}, Mul::make(Mul::make(i, j), k));
auto forK = For::make(k, 0, 40, store);
auto forJ = For::make(j, 0, 30, forK);
auto forI = For::make(i, 0, 20, forJ);
auto par = Block::make({forI});
ASSERT_THROWS_WITH(
LoopNest::reorder({forI, forJ, forK}, {0, 1, 2, 3}),
"invalid permutation size");
ASSERT_THROWS_WITH(
LoopNest::reorder({forI, forJ, forK}, {1, 2}),
"invalid permutation size");
ASSERT_THROWS_WITH(
LoopNest::reorder({forI, forJ, forK}, {2, 1, 3}),
"invalid permutation for reorder");
ASSERT_THROWS_WITH(
LoopNest::reorder({forI, forJ, forK}, {1, 1, 0}),
"invalid permutation for reorder");
ASSERT_THROWS_WITH(
LoopNest::reorder({forI, forJ, forK}, {0, 0, 0}),
"invalid permutation for reorder");
}
TEST(LoopNest, reorderInvalidLoopNest) {
KernelScope kernel_scope;
// Input IR:
// for (int i = 0; i < 20; i++) {
// for (int j = 0; j < 30; j++) {
// A[i,j] = 0
// for (int k = 0; k < 40; k++) {
// A[i,j,k] = i * j * k;
// }
// }
// }
BufHandle a_buf("A", {20, 30, 40}, kInt);
VarHandle i("i", kInt);
VarHandle j("j", kInt);
VarHandle k("k", kInt);
auto store = Store::make(a_buf, {i, j, k}, Mul::make(Mul::make(i, j), k));
auto forK = For::make(k, 0, 40, store);
auto forJ = For::make(j, 0, 30, forK);
auto forI = For::make(i, 0, 20, forJ);
auto par = Block::make({forI});
// Specifying the loops in incorrect order fails.
ASSERT_THROWS_WITH(
LoopNest::reorder({forK, forI, forJ}, {1, 0, 2}),
"reorder is only allowed on perfectly nested loops");
// Adding a statement to forJ loop fails.
auto init = Store::make(a_buf, {i}, 0);
forJ->body()->insert_stmt_before(init, forK);
ASSERT_THROWS_WITH(
LoopNest::reorder({forI, forJ, forK}, {1, 0, 2}),
"reorder is only allowed on perfectly nested loops");
// Moving that statement to forI loop also fails.
forJ->body()->remove_stmt(init);
forI->body()->insert_stmt_before(init, forJ);
ASSERT_THROWS_WITH(
LoopNest::reorder({forI, forJ, forK}, {1, 0, 2}),
"reorder is only allowed on perfectly nested loops");
}
} // namespace jit
} // namespace torch