blob: 1edd55720d81e8377c19a6aa00e2871e0e0deeea [file] [log] [blame]
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/engine.h"
#include "torch/csrc/autograd/functions/special.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/jit/ir.h"
#include <ATen/ATen.h>
#include <algorithm>
#include <cstdint>
#include <memory>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
#include <deque>
namespace torch { namespace autograd {
thread_local uint64_t Function::next_sequence_nr_ = 0;
auto Function::name() const -> std::string {
return at::demangle(typeid(*this).name());
}
// This function is analogous to make_trace which operates on PythonOp, but this
// function instead works for C++ implemented autograd Functions, which don't
// actually have any backing Python class. We still need to trace them!
variable_list Function::traced_apply(variable_list inputs) {
using namespace torch::jit;
// Traceable Functions are completely transparent to the JIT.
if (is_traceable()) {
return apply(inputs);
}
auto state = tracer::getTracingState(inputs);
auto state_lock = state->lock();
// Insert a CppOp in the trace.
auto& graph = state->graph;
auto* this_node = graph->createCppOp(get_shared_ptr());
jit::tracer::recordSourceLocation(this_node);
for (auto& input: inputs) {
this_node->addInput(tracer::getValueTrace(state, input));
}
graph->appendNode(this_node);
// Finally apply this Function.
state_lock.unlock();
variable_list outputs = apply(inputs);
state_lock.lock();
// Set up output traces.
int num_outputs = outputs.size();
for (int i = 0; i < num_outputs; ++i) {
auto& output = outputs[i];
auto sel = this_node->addOutput();
// TODO: At the moment, C++ does not track shared storage. It
// should. Update this when that happens.
if (output.defined()) {
sel->inferTypeFrom(output.data());
tracer::setValueTrace(state, output, sel);
}
}
if (!passes_state_transparently()) {
auto this_eval = dynamic_cast<Eval*>(this);
// Evals consume handle from a context edge of forward node
if (this_eval)
this_node->addInput(this_eval->forward_ctx_select);
// There's no point in wrapping functions in Eval, if we know they already are
// part of another Eval subgraph. This is both a small optimization, and
// it allows us to not implement saved_variables() in many functions.
const bool should_trace_backward = tracing_state_->in_eval_subgraph;
if (!should_trace_backward) {
auto saved_vars = saved_variables();
if (!saved_vars)
throw std::runtime_error("saved_variables() needed but not implemented in " + name());
variable_list bw_subgraph_inputs(inputs);
for (auto& saved_var : *saved_vars) {
bw_subgraph_inputs.emplace_back(saved_var.unpack(get_shared_ptr()));
}
tracer::nontraceableBackwardSubgraph(bw_subgraph_inputs, outputs);
}
bool has_backwards_eval = !should_trace_backward || this_eval;
if (has_backwards_eval)
set_up_context_edge(this_node, inputs, outputs);
}
return outputs;
}
void Function::set_up_context_edge(
jit::Node* this_node,
const variable_list& inputs,
const variable_list& outputs) {
auto ctx_select = this_node->addOutput();
ctx_select->setType(jit::HandleType::get());
auto backward_eval = Eval::getBackwardEval(inputs, outputs);
if (backward_eval)
backward_eval->forward_ctx_select = ctx_select;
}
AnomalyMetadata* Function::metadata() noexcept {
if (!anomaly_metadata_) {
anomaly_metadata_ = Engine::get_default_engine().make_anomaly_metadata();
}
return anomaly_metadata_.get();
}
/*
* Fix for #5534: prevent stack overflow on deletion of deep computation graph
*
* Sometimes one can end up with a very big computation graph of Functions
* and Edges. Each std::shared_ptr<Function> contains a list of Edge, and
* each Edge contains a std::shared_ptr<Function>. Deleting a
* std::shared_ptr<Function> can trigger the recursive deletion of other
* std::shared_ptr<Function>'s: this can stack overflow if the graph
* is deep enough. Here is an example of such a graph:
*
* shared_ptr<Function> -> Edge -> shared_ptr<Function> -> Edge -> ... -> shared_ptr<Function>
*
* The solution here is to use a custom deleter with each
* std::shared_ptr<Function>. The custom deleter keeps track of how many
* nested deleters it is in. When this number exceeds the maximum allowed
* depth, the Function* to be deleted are accumulated in a per-thread
* delete queue and handled by one of the deleters.
*
* Note that these custom deleters are NOT necessary for deleting PyFunction.
* This is because a THPFunction Python object owns a PyFunction that is in a
* computation graph. When Python objects get recursively destroyed, they
* are also queued into a delete list. This happens very early for them
* (at 50 deleters): https://github.com/python/cpython/blob/f320be77ffb73e3b9e7fc98c37b8df3975d84b40/Include/object.h#L1024-L1063
* so we don't need to worry about them.
*/
thread_local std::deque<Function*> deleteFunctionQueue;
thread_local size_t deleteFunctionRecursionDepth = 0;
/*
* If this number is set too high, a deep computation graph can still
* stack overflow. The procedure for setting this number was to
* 1) find the smallest value that would not guard against stack overflows
* on various machines
* 2) Take the minimum of all such values and subtract some leeway because
* the memory of these stack frames will probably grow as time passes.
* Testing on a few machines machines, the magic numbers were:
* - Mac OSX (Macbook Pro 15) : ~60000
* - A beefy Ubuntu 16.04 box : ~15000
* - Windows AWS instance (g3.4xlarge): variable. My two attempts at different
* times have gotten the following numbers: ~8300, 3669
*/
#ifdef _WIN32
constexpr size_t kDeleteFunctionMaxRecursionDepth = 3000;
#else
constexpr size_t kDeleteFunctionMaxRecursionDepth = 10000;
#endif
struct RecursionDepthCounter {
public:
explicit RecursionDepthCounter() {
++deleteFunctionRecursionDepth;
}
~RecursionDepthCounter() {
--deleteFunctionRecursionDepth;
}
size_t value() {
return deleteFunctionRecursionDepth;
}
};
/*
* Note that the custom deleter deletes in BFS style. Without using
* the custom deleter, the computation graph is deleted in a DFS style.
* The BFS deletion is valid (and safe) because if a shared_ptr<Function>
* 's reference count hits 0, nothing else will access it.
*/
void deleteFunction(Function* function) {
RecursionDepthCounter recursion_depth;
if (recursion_depth.value() > kDeleteFunctionMaxRecursionDepth) {
deleteFunctionQueue.push_back(function);
return;
}
delete function;
if (deleteFunctionQueue.size() == 0) {
return;
}
if (recursion_depth.value() != kDeleteFunctionMaxRecursionDepth) {
AT_ERROR("Only one deleter per thread should be able to process "
"the delete queue. Please open an issue.");
}
while (deleteFunctionQueue.size() > 0) {
auto queued_function = deleteFunctionQueue.front();
deleteFunctionQueue.pop_front();
delete queued_function;
}
}
}} // namespace torch::autograd