| import torch |
| import warnings |
| from torch.testing._internal.common_utils import TestCase, run_tests, load_tests, coalescedonoff |
| from torch.testing._internal.common_device_type import \ |
| (instantiate_device_type_tests, dtypes, onlyCPU) |
| |
| # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| class TestSparseCSR(TestCase): |
| |
| @onlyCPU |
| def test_csr_layout(self, _): |
| self.assertEqual(str(torch.sparse_csr), 'torch.sparse_csr') |
| self.assertEqual(type(torch.sparse_csr), torch.layout) |
| |
| @onlyCPU |
| @dtypes(torch.double) |
| def test_sparse_csr_constructor_shape_inference(self, device, dtype): |
| crow_indices = [0, 2, 4] |
| col_indices = [0, 1, 0, 1] |
| values = [1, 2, 3, 4] |
| sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64), |
| torch.tensor(col_indices, dtype=torch.int64), |
| torch.tensor(values), dtype=dtype, device=device) |
| self.assertEqual(torch.tensor(crow_indices, dtype=torch.int64), sparse.crow_indices()) |
| self.assertEqual((len(crow_indices) - 1, max(col_indices) + 1), sparse.shape) |
| self.assertEqual(dtype, sparse.dtype) |
| self.assertEqual(torch.device(device), sparse.device) |
| |
| @onlyCPU |
| @dtypes(*torch.testing.get_all_dtypes(include_bool=False, include_half=False, |
| include_bfloat16=False, include_complex=False)) |
| def test_sparse_csr_constructor(self, device, dtype): |
| crow_indices = [0, 2, 4] |
| col_indices = [0, 1, 0, 1] |
| values = [1, 2, 3, 4] |
| for index_dtype in [torch.int32, torch.int64]: |
| sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=index_dtype), |
| torch.tensor(col_indices, dtype=index_dtype), |
| torch.tensor(values), |
| size=(2, 10), |
| dtype=dtype, |
| device=device) |
| self.assertEqual((2, 10), sparse.shape) |
| self.assertEqual(torch.tensor(crow_indices, dtype=index_dtype), sparse.crow_indices()) |
| self.assertEqual(torch.tensor(col_indices, dtype=index_dtype), sparse.col_indices()) |
| self.assertEqual(torch.tensor(values, dtype=dtype), sparse.values()) |
| |
| @onlyCPU |
| @dtypes(torch.double) |
| def test_factory_size_check(self, device, dtype): |
| crow_indices = [0, 2, 4] |
| col_indices = [0, 1, 0, 1] |
| values = [1, 2, 3, 4] |
| size = (2, 10) |
| torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values), size, |
| dtype=dtype, device=device) |
| |
| with self.assertRaisesRegex(RuntimeError, |
| r"crow_indices\.numel\(\) must be size\(0\) \+ 1, but got: 3"): |
| torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values), (1, 1), |
| dtype=dtype, device=device) |
| |
| with self.assertRaisesRegex(RuntimeError, "0th value of crow_indices must be 0"): |
| torch.sparse_csr_tensor(torch.tensor([-1, -1, -1]), torch.tensor(col_indices), torch.tensor(values), size, |
| dtype=dtype, device=device) |
| |
| with self.assertRaisesRegex(RuntimeError, "last value of crow_indices should be less than length of col_indices."): |
| torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, 0, 0]), torch.tensor(values), size, |
| dtype=dtype, device=device) |
| |
| with self.assertRaisesRegex(RuntimeError, |
| r"col_indices and values must have equal sizes, " + |
| r"but got col_indices\.size\(0\): 4, values\.size\(0\): 5"): |
| torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor([0, 0, 0, 0, 0]), |
| size, dtype=dtype, device=device) |
| |
| @onlyCPU |
| def test_sparse_csr_print(self, device): |
| shape_nnz = [ |
| ((10, 10), 10), |
| ((100, 10), 10), |
| ((1000, 10), 10) |
| ] |
| printed = [] |
| for shape, nnz in shape_nnz: |
| values_shape = torch.Size((nnz,)) |
| col_indices_shape = torch.Size((nnz,)) |
| crow_indices_shape = torch.Size((shape[0] + 1,)) |
| printed.append("# shape: {}".format(torch.Size(shape))) |
| printed.append("# nnz: {}".format(nnz)) |
| printed.append("# crow_indices shape: {}".format(crow_indices_shape)) |
| printed.append("# col_indices shape: {}".format(col_indices_shape)) |
| printed.append("# values_shape: {}".format(values_shape)) |
| for index_dtype in [torch.int32, torch.int64]: |
| for dtype in torch.testing.floating_types(): |
| printed.append("########## {}/{} ##########".format(dtype, index_dtype)) |
| x = self.genSparseCSRTensor(shape, nnz, device=device, dtype=torch.float32, index_dtype=torch.int64) |
| printed.append("# sparse tensor") |
| printed.append(str(x)) |
| printed.append("# _crow_indices") |
| printed.append(str(x.crow_indices())) |
| printed.append("# _col_indices") |
| printed.append(str(x.col_indices())) |
| printed.append("# _values") |
| printed.append(str(x.values())) |
| printed.append('') |
| printed.append('') |
| self.assertExpected('\n'.join(printed)) |
| |
| @onlyCPU |
| def test_sparse_csr_from_dense(self, device): |
| dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices()) |
| self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices()) |
| self.assertEqual(torch.tensor([4, 5, 1]), sparse.values()) |
| |
| dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices()) |
| self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices()) |
| self.assertEqual(torch.tensor([1, 1]), sparse.values()) |
| |
| dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices()) |
| self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices()) |
| self.assertEqual(torch.tensor([2] * 9), sparse.values()) |
| |
| @onlyCPU |
| @dtypes(torch.double) |
| def test_dense_convert(self, device, dtype): |
| size = (5, 5) |
| dense = torch.randn(size, dtype=dtype, device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(sparse.to_dense(), dense) |
| |
| size = (4, 6) |
| dense = torch.randn(size, dtype=dtype, device=device) |
| sparse = dense.to_sparse_csr() |
| self.assertEqual(sparse.to_dense(), dense) |
| |
| crow_indices = torch.tensor([0, 3, 5]) |
| col_indices = torch.tensor([0, 1, 2, 0, 1]) |
| values = torch.tensor([1, 2, 1, 3, 4], dtype=dtype) |
| csr = torch.sparse_csr_tensor(crow_indices, col_indices, |
| values, dtype=dtype, device=device) |
| dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device) |
| self.assertEqual(csr.to_dense(), dense) |
| |
| @coalescedonoff |
| @onlyCPU |
| @dtypes(torch.double) |
| def test_coo_to_csr_convert(self, device, dtype, coalesced): |
| size = (5, 5) |
| sparse_dim = 2 |
| nnz = 10 |
| sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype) |
| sparse_csr = sparse_coo.to_sparse_csr() |
| |
| self.assertTrue(sparse_csr.is_sparse_csr) |
| self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense()) |
| |
| vec = torch.randn((5, 1), dtype=dtype, device=device) |
| coo_product = sparse_coo.matmul(vec) |
| csr_product = sparse_csr.matmul(vec) |
| |
| self.assertEqual(coo_product, csr_product) |
| |
| vec = torch.randn((100, 1), dtype=dtype, device=device) |
| index = torch.tensor([ |
| [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], |
| [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], |
| ], dtype=torch.int32) |
| values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device) |
| coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device) |
| csr = coo.to_sparse_csr() |
| |
| self.assertEqual(coo.matmul(vec), csr.matmul(vec)) |
| |
| @onlyCPU |
| @dtypes(torch.float, torch.double) |
| def test_mkl_matvec_warnings(self, device, dtype): |
| if torch.has_mkl: |
| for index_dtype in [torch.int32, torch.int64]: |
| sp = torch.sparse_csr_tensor(torch.tensor([0, 2, 4]), |
| torch.tensor([0, 1, 0, 1]), |
| torch.tensor([1, 2, 3, 4], dtype=dtype, device=device)) |
| vec = torch.randn((2, 1), dtype=dtype, device=device) |
| with warnings.catch_warnings(record=True) as w: |
| sp.matmul(vec) |
| self.assertEqual(len(w), 2) |
| self.assertIn("Pytorch is compiled with MKL LP64 and will convert crow_indices to int32", |
| str(w[0].message)) |
| self.assertIn("Pytorch is compiled with MKL LP64 and will convert col_indices to int32", |
| str(w[1].message)) |
| |
| @dtypes(torch.double) |
| def test_dense_convert_error(self, device, dtype): |
| size = (4, 2, 4) |
| dense = torch.randn(size, dtype=dtype, device=device) |
| |
| with self.assertRaisesRegex(RuntimeError, "Only 2D"): |
| sparse = dense.to_sparse_csr() |
| |
| @onlyCPU |
| @dtypes(torch.float, torch.double) |
| def test_csr_matvec(self, device, dtype): |
| side = 100 |
| for index_dtype in [torch.int32, torch.int64]: |
| csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype) |
| vec = torch.randn(side, dtype=dtype, device=device) |
| |
| res = csr.matmul(vec) |
| expected = csr.to_dense().matmul(vec) |
| |
| self.assertEqual(res, expected) |
| |
| bad_vec = torch.randn(side + 10, dtype=dtype, device=device) |
| with self.assertRaisesRegex(RuntimeError, "mv: expected"): |
| csr.matmul(bad_vec) |
| |
| @onlyCPU |
| @dtypes(*torch.testing.floating_types()) |
| def test_coo_csr_conversion(self, device, dtype): |
| size = (5, 5) |
| dense = torch.randn(size, dtype=dtype, device=device) |
| coo_sparse = dense.to_sparse() |
| csr_sparse = coo_sparse.to_sparse_csr() |
| |
| self.assertEqual(csr_sparse.to_dense(), dense) |
| |
| |
| # e.g., TestSparseCSRCPU and TestSparseCSRCUDA |
| instantiate_device_type_tests(TestSparseCSR, globals()) |
| |
| if __name__ == '__main__': |
| run_tests() |