blob: b5d99dda166509a615adf2c412c494fb48cd0fb8 [file] [log] [blame]
# Owner(s): ["module: inductor"]
import json
import os
import unittest
from typing import Callable, List, Optional
import torch
from torch import multiprocessing as mp, nn
from torch._dynamo import reset
from torch._dynamo.exc import BackendCompilerFailed
from torch._dynamo.testing import rand_strided, reset_rng_state
from torch._inductor import config
from torch._inductor.autotune_process import (
BenchmarkRequest,
CUDA_VISIBLE_DEVICES,
TuningProcessPool,
)
from torch._inductor.graph import GraphLowering
from torch._inductor.ir import Buffer, ChoiceCaller, FixedLayout
from torch._inductor.kernel.mm_plus_mm import aten_mm_plus_mm
from torch._inductor.select_algorithm import (
AlgorithmSelectorCache,
TritonTemplateCaller,
)
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import fresh_inductor_cache, run_and_get_code
from torch._inductor.virtualized import V
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfRocm,
)
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
torch.set_float32_matmul_precision("high")
if HAS_CUDA:
torch.cuda.memory._set_allocator_settings("expandable_segments:False")
_CUTLASS_DIR = os.path.join(os.path.dirname(__file__), "../../third_party/cutlass/")
def _get_path_without_sccache() -> str:
"""
Get the PATH environment variable without sccache.
"""
path_envs = os.environ.get("PATH", "").split(":")
path_envs = [env for env in path_envs if "/opt/cache/bin" not in env]
return ":".join(path_envs)
def benchmark_choice(choice, args, out, expected_out, timings):
result = choice.benchmark(*args, out=out)
if expected_out is not None:
torch.testing.assert_close(out, expected_out)
timings.copy_(torch.tensor(result))
class FailChoiceCaller(ChoiceCaller):
def benchmark(self, *args, out):
raise RuntimeError("This choice caller will always throw")
@instantiate_parametrized_tests
class TestMaxAutotune(TestCase):
def _create_buffer(self, name, shape):
return Buffer(name, FixedLayout(torch.device("cuda:0"), torch.float32, shape))
def test_benchmark_choice_in_subproc(self):
gm = make_fx(
lambda: torch.zeros(2, 3)
)() # a dummy graph to construct the GraphLowering
graph = GraphLowering(gm)
# the graph handler is neede to create benchmark example value below
with V.set_graph_handler(graph):
buf1 = self._create_buffer("mat1", (2, 3))
buf2 = self._create_buffer("mat2", (3, 2))
buf3 = self._create_buffer("mat3", (2, 3))
buf4 = self._create_buffer("mat4", (3, 2))
layout = FixedLayout(torch.device("cuda:0"), torch.float32, (2, 2))
mat1 = AlgorithmSelectorCache.benchmark_example_value(buf1)
mat2 = AlgorithmSelectorCache.benchmark_example_value(buf2)
mat3 = AlgorithmSelectorCache.benchmark_example_value(buf3)
mat4 = AlgorithmSelectorCache.benchmark_example_value(buf4)
out = AlgorithmSelectorCache.benchmark_example_value(layout)
# expected_out = (mat1 @ mat2) + (mat3 @ mat4)
expected_out = None
choice = aten_mm_plus_mm.bind((buf1, buf2, buf3, buf4), layout)
# use a tensor since the mutation to a python list in a sub process
# is not synced back to the parent process
timings = torch.zeros(3, dtype=torch.float32)
ctx = mp.get_context("spawn")
child = ctx.Process(
target=benchmark_choice,
args=(choice, (mat1, mat2, mat3, mat4), out, expected_out, timings),
)
child.start()
child.join()
self.assertEqual(0, child.exitcode)
print(f"timings is {timings}, out {out}, expected_out {expected_out}")
def test_benchmark_choice_fail_in_subproc(self):
gm = make_fx(
lambda: torch.zeros(2, 3)
)() # a dummy graph to construct the GraphLowering
graph = GraphLowering(gm)
# the graph handler is neede to create benchmark example value below
with V.set_graph_handler(graph):
buf1 = self._create_buffer("mat1", (2, 3))
buf2 = self._create_buffer("mat2", (3, 2))
buf3 = self._create_buffer("mat3", (2, 3))
buf4 = self._create_buffer("mat4", (3, 2))
layout = FixedLayout(torch.device("cuda:0"), torch.float32, (2, 2))
mat1 = AlgorithmSelectorCache.benchmark_example_value(buf1)
mat2 = AlgorithmSelectorCache.benchmark_example_value(buf2)
mat3 = AlgorithmSelectorCache.benchmark_example_value(buf3)
mat4 = AlgorithmSelectorCache.benchmark_example_value(buf4)
out = AlgorithmSelectorCache.benchmark_example_value(layout)
expected_out = (mat1 @ mat2) + (mat3 @ mat4)
choice = FailChoiceCaller("fail_choice_caller", [], None)
# use a tensor since python list is not synced back
timings = torch.zeros(3, dtype=torch.float32)
ctx = mp.get_context("spawn")
child = ctx.Process(
target=benchmark_choice,
args=(choice, (mat1, mat2, mat3, mat4), out, expected_out, timings),
)
child.start()
child.join()
self.assertNotEqual(0, child.exitcode)
@parametrize("autotune_in_subproc", (True, False))
@parametrize("autotune_multi_device", (True, False))
def test_max_autotune_mm_plus_mm(self, autotune_in_subproc, autotune_multi_device):
"""
This crash previously due to a triton issue: https://github.com/openai/triton/issues/1298 .
With autotuning in subprocess, we don't crash anymore.
"""
m, n, k = 2048, 1536, 64
def mm_plus_mm(a, b, c, d):
return a @ b + c @ d
a = torch.randn(m, k).cuda()
b = torch.randn(k, n).cuda()
c = torch.randn(m, k).cuda()
d = torch.randn(k, n).cuda()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": autotune_in_subproc,
"autotune_multi_device": autotune_multi_device,
}
):
torch.compile(mm_plus_mm)(a, b, c, d)
@parametrize("dynamic", (False, True))
def test_max_autotune_mm_plus_mm_zero_size_input(self, dynamic):
"""
Make sure autotuning mm_plus_mm with zero-size input works without crashes.
"""
m, n, k = 0, 1536, 64
def mm_plus_mm(a, b, c, d):
return a @ b + c @ d
a = torch.randn(m, k).cuda()
b = torch.randn(k, n).cuda()
c = torch.randn(m, k).cuda()
d = torch.randn(k, n).cuda()
with config.patch({"max_autotune": True}):
torch.compile(mm_plus_mm, dynamic=dynamic)(a, b, c, d)
@parametrize("dynamic", (False, True))
def test_max_autotune_regular_mm(self, dynamic: bool):
"""
Make sure autotuning mm in sub processes work without crashes.
"""
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True, "autotune_in_subproc": True}):
torch.compile(mm, dynamic=dynamic)(a, b)
@parametrize("dynamic", (False, True))
def test_max_autotune_regular_mm_zero_size_input(self, dynamic: bool):
"""
Make sure autotuning mm with zero-size input works without crashes.
"""
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(0, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True}):
torch.compile(mm, dynamic=dynamic)(a, b)
@skipIfRocm
@parametrize("dynamic", (False, True))
def test_max_autotune_remote_caching(self, dynamic: bool):
from unittest.mock import patch
def mm(a, b):
a = torch.sin(a)
return a @ b
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
def f(x, y):
return Model()(x, y)
x = torch.randn(100, 100).cuda()
y = torch.randn(100, 100).cuda()
cache = {}
num_get = 0
num_put = 0
class MyCache:
def __init__(self, key, is_autotune=False):
pass
def get(self, filename):
nonlocal cache
nonlocal num_get
if filename not in cache:
return None
ret = json.loads(cache[filename])
num_get += 1
return ret
def put(self, filename, data):
nonlocal cache
nonlocal num_put
cache[filename] = json.dumps(data)
num_put += 1
cache_module = (
"triton.fb.fb_memcache.FbMemcacheRemoteAutotuneCacheBackend"
if config.is_fbcode()
else "torch._inductor.remote_cache.RedisRemoteCacheBackend"
)
with config.patch(
{
"autotune_local_cache": False,
"autotune_remote_cache": True,
}
), patch.dict(os.environ), patch(cache_module, MyCache, create=True):
os.environ.pop("TRITON_CACHE_MANAGER", None)
with config.patch({"max_autotune": True}):
for _ in range(4):
with fresh_inductor_cache():
torch.compile(mm, dynamic=dynamic)(a, b)
reset()
self.assertEqual(num_get, 3)
self.assertEqual(num_put, 1)
num_get = 0
num_put = 0
for _ in range(4):
with fresh_inductor_cache():
torch.compile(f, dynamic=dynamic)(x, y)
reset()
self.assertEqual(num_get, 3)
self.assertEqual(num_put, 1)
@skipIfRocm
def test_precompilation_threads(self):
import threading
from typing import Any, Dict
from unittest.mock import Mock, patch
class FakeChoiceCaller(ChoiceCaller):
def __init__(self):
super().__init__("none", [], Mock())
self.thread_id = None
def precompile(self):
self.thread_id = threading.get_ident()
def call_name(self) -> str:
return None
def to_callable(self):
return None
def hash_key(self) -> str:
return None
def output_node(self) -> "TensorBox": # noqa: F821
return None
fake_choices = [FakeChoiceCaller() for i in range(10)]
fake_lookup_result = {choice: 0.123 for choice in fake_choices}
def no_lookup(
choices: List[ChoiceCaller],
op: str,
inputs: str,
benchmark: Callable[[Any], Dict[ChoiceCaller, float]],
) -> Dict[ChoiceCaller, float]:
if benchmark is not None:
return benchmark(choices)
asc = AlgorithmSelectorCache()
def fake_benchmark_fn(*args, **kwargs):
return fake_lookup_result
main_thread_id = threading.get_ident()
mock_debug_handler = Mock()
old_debug_handler = V.debug
try:
V.set_debug_handler(mock_debug_handler)
with patch.object(asc, "lookup", new=no_lookup):
with patch.object(
asc, "make_benchmark_fn", return_value=fake_benchmark_fn
):
with config.patch(
{
"autotune_in_subproc": False,
"compile_threads": len(fake_choices),
}
):
asc("test_call", fake_choices, [], Mock())
for fake_choice in fake_choices:
assert (
fake_choice.thread_id is not None
), "Expected all ChoiceCaller's precompile method to have been called"
assert (
fake_choice.thread_id != main_thread_id
), "Expected all ChoiceCaller's precompile method to have been called on separate thread"
finally:
V.set_debug_handler(old_debug_handler)
@parametrize("dynamic", (False, True))
def test_max_autotune_addmm(self, dynamic=False):
"""
Make sure autotuning addmm in sub processes work without crashes.
"""
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
def addmm(x, a, b):
return torch.addmm(x, a, b)
x = torch.randn(100).cuda()
a = torch.randn(100, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True, "autotune_in_subproc": True}):
Y_compiled = torch.compile(addmm, dynamic=dynamic)(x, a, b)
Y = addmm(x, a, b)
torch.testing.assert_close(Y_compiled, Y, atol=1e-2, rtol=1e-2)
@parametrize("dynamic", (False, True))
def test_max_autotune_addmm_zero_size_input(self, dynamic):
"""
Make sure autotuning addmm with zero-size input works without crashes.
"""
def addmm(x, a, b):
return torch.addmm(x, a, b)
x = torch.randn(100).cuda()
a = torch.randn(0, 10).cuda()
b = torch.randn(10, 100).cuda()
with config.patch({"max_autotune": True}):
torch.compile(addmm, dynamic=dynamic)(x, a, b)
@skipIfRocm
def test_autotune_conv1x1(self):
# Assuming input has 3 channels and we want to produce 16 channels as output
conv1x1 = (
torch.nn.Conv2d(in_channels=3, out_channels=16, kernel_size=1)
.to(memory_format=torch.channels_last)
.cuda()
)
# Example input tensor: batch size = 4, channels = 3, height = 32, width = 32
# The memory format is set to `channels_last`
input_tensor = (
torch.randn(4, 3, 32, 32)
.contiguous(memory_format=torch.channels_last)
.cuda()
)
with config.patch(
{"max_autotune": True, "max_autotune_gemm_backends": "TRITON"}
):
@torch.compile()
def foo(mod, x):
return mod(x)
with torch.no_grad():
out, code = run_and_get_code(foo, conv1x1, input_tensor)
FileCheck().check_not("extern_kernels.convolution").run(code[0])
self.assertEqual(conv1x1(input_tensor), out, atol=1e-2, rtol=0)
@skipIfRocm
def test_filled_cache_precompile(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
from torch._dynamo.utils import counters
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
torch._dynamo.reset()
counters.clear()
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 0)
@skipIfRocm
@fresh_inductor_cache()
@config.patch(search_autotune_cache=True)
def test_search_autotune_cache(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile()(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
from torch._dynamo.utils import counters
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 0)
@skipIfRocm
@fresh_inductor_cache()
@config.patch(max_autotune=True, max_fusion_size=2)
def test_jit_fusion_matches_aot_fusion(self):
# In this example, AOTInductor's JIT-compile will fuse(buf1, buf2) due
# to proximity, we want to make sure AOT-compile pass does the same.
# AOT could do fuse(buf2, buf4) instead if buf3 was pushed to the end
# of the V.graph.buffers list because fuse(buf2, buf4) would have a
# better proximity score than fuse(buf1, buf2). This scenario is possible
# since finalizing MultiTemplateBuffers needs to replace buffers.
def fn(x, number):
buf0 = x + x
buf1 = number.item()
buf2 = x * x
buf3 = x @ x # MultiTemplateBuffer
buf4 = x**2
return buf0, buf1, buf2, buf3, buf4
inputs = (torch.rand([256, 256], device="cuda"), torch.tensor(3, device="cuda"))
torch._export.aot_compile(fn, args=inputs)
@config.patch(autotune_local_cache=False, autotune_remote_cache=False)
@skipIfRocm
def test_precompilations(self):
def fn(a, b, c):
a = (a @ b) @ c
a, b, c = (t.to(torch.float16) for t in [a, b, c])
return (a @ b) @ c
fn_c = torch.compile(mode="max-autotune-no-cudagraphs")(fn)
inputs = [torch.rand([256, 256], device="cuda") for _ in range(3)]
self.assertEqual(fn(*inputs), fn_c(*inputs), atol=1e-2, rtol=1e-2)
from torch._dynamo.utils import counters
self.assertEqual(counters["inductor"]["select_algorithm_precompile"], 2)
def test_cat_addmm(self):
def fn(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor):
return torch.cat(
[
torch.addmm(a, b, c),
torch.addmm(b, c, a),
],
1,
)
args = [
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
torch.randn(4, 4, device="cuda"),
]
with config.patch(
{
"max_autotune": True,
"max_autotune_gemm_backends": "Triton",
}
):
expected = fn(*args)
actual = torch.compile(fn)(*args)
torch.testing.assert_close(actual, expected, atol=1e-2, rtol=1e-2)
def test_triton_template_with_epilogues_and_dynamic_shape(self):
def fn(
x: torch.Tensor, w: torch.Tensor, bias: torch.Tensor, mul: torch.Tensor
) -> torch.Tensor:
return (
torch.nn.functional.relu(
torch.matmul(torch.transpose(x, 0, 1), torch.transpose(w, 0, 1))
+ bias
)
* mul
)
M0 = 5
M1 = 8
K = 4
N = 3
w = torch.rand(N, K).cuda().half()
b = torch.rand(N).cuda().half()
with config.patch(
{
"max_autotune": True,
"autotune_in_subproc": True,
"max_autotune_gemm_backends": "Triton",
}
):
compiled_fn = torch.compile(
fn, fullgraph=True, dynamic=True, mode="max-autotune-no-cudagraphs"
)
x0 = torch.rand(K, M0).cuda().half()
mul0 = torch.rand(M0, N).cuda().half()
y0 = compiled_fn(x0, w, b, mul0)
y0_expected = fn(x0, w, b, mul0)
torch.testing.assert_close(y0, y0_expected)
x1 = torch.rand(K, M1).cuda().half()
mul1 = torch.rand(M1, N).cuda().half()
y1 = compiled_fn(x1, w, b, mul1)
y1_expected = fn(x1, w, b, mul1)
torch.testing.assert_close(y1, y1_expected)
@config.patch(
benchmark_kernel=True,
fallback_random=True,
max_autotune_gemm=True,
)
@parametrize("device", ("cpu", "cuda"))
def test_matmul_dropout(self, device):
def fwd(a, b):
x = a @ b
x = torch.nn.functional.dropout(x, 0.1)
return x
def fn(a, b):
x = fwd(a, b).sum()
x.backward()
return a.grad
N = 128
a = torch.randn(N, N, device=device, requires_grad=True)
b = torch.randn(N, N, device=device)
opt_fn = torch.compile(fn)
reset_rng_state()
ref = fn(a, b)
reset_rng_state()
act = opt_fn(a, b)
if N <= 8:
print(f"ref\n{ref}\nact\n{act}")
torch.testing.assert_close(ref, act, atol=1e-1, rtol=1e-1)
@config.patch(
max_autotune_gemm=True,
)
@unittest.skipIf(
torch.cuda.device_count() < 2, "Need at least 2 devices for this test"
)
def test_autotune_device_guard(self):
x = torch.randn(1024, 1024, device="cuda:1")
y = torch.randn(1024, 1024, device="cuda:1")
def f(x, y):
return x @ y
with fresh_inductor_cache():
act = torch.compile(f)(x, y)
ref = f(x, y)
self.assertTrue(torch.allclose(act, ref, atol=4 * 1e-3, rtol=4 * 1e-3))
@config.patch(max_autotune=True)
def test_empty_conv_input(self, kernel_size=3):
x = torch.randn(0, 256, 14, 14, device="cuda")
weight = torch.randn(256, 256, kernel_size, kernel_size, device="cuda")
def f(x, weight):
return torch.convolution(
x,
weight,
bias=None,
stride=[1, 1],
padding=[0, 0],
dilation=[1, 1],
transposed=False,
output_padding=[0, 0],
groups=1,
)
opt_f = torch.compile(f)
ref = f(x, weight)
act = opt_f(x, weight)
self.assertTrue(torch.allclose(ref, act, atol=4 * 1e-3, rtol=4 * 1e-3))
@config.patch(max_autotune=True)
def test_empty_conv_input_with_1x1_kernel(self):
self.test_empty_conv_input(kernel_size=1)
@config.patch(max_autotune=True)
def test_conv1x1_with_free_symbols(self):
"""
Make sure there is no exception due to free symbols.
"""
conv = nn.Conv2d(
3, 64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False
).to(device="cuda")
@torch.compile
def f(x, y, z):
h = y.nonzero().size(0)
w = z.nonzero().size(0)
x = x[:, :, :h, :w]
x = conv(x)
return x
x = torch.randn(4, 3, 224, 224).to(
memory_format=torch.channels_last, device="cuda"
)
for _ in range(2):
y = torch.randint(0, 10, (224,)).to(device="cuda")
z = torch.randint(0, 10, (224,)).to(device="cuda")
f(x, y, z)
def test_non_contiguous_input_mm(self):
"""
Make sure the triton template can work with non-contiguous inputs without crash.
Check https://github.com/pytorch/pytorch/issues/125437 for more details.
"""
x = rand_strided(
(50257, 32768), (1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided((32768, 768), (768, 1), dtype=torch.bfloat16, device="cuda")
@torch.compile(mode="max-autotune")
def f(x, y):
return x @ y
ref = x @ y
act = f(x, y)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
def test_non_contiguous_input_addmm(self):
b = torch.randn((768), dtype=torch.bfloat16, device="cuda")
x = rand_strided(
(50257, 32768), (1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided((32768, 768), (768, 1), dtype=torch.bfloat16, device="cuda")
@torch.compile(mode="max-autotune")
def f(x, y):
return torch.addmm(b, x, y)
ref = torch.addmm(b, x, y)
act = f(x, y)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
def test_non_contiguous_input_bmm(self):
x = rand_strided(
(1, 50257, 32768), (0, 1, 50304), dtype=torch.bfloat16, device="cuda"
)
y = rand_strided(
(1, 32768, 768), (0, 768, 1), dtype=torch.bfloat16, device="cuda"
)
@torch.compile(mode="max-autotune")
def f(x, y):
return torch.bmm(x, y)
ref = torch.bmm(x, y)
act = f(x, y)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
def test_non_contiguous_input_mm_plus_mm(self):
x1 = rand_strided((50257, 32768), (1, 50304), device="cuda")
y1 = rand_strided((32768, 768), (768, 1), device="cuda")
x2 = rand_strided((50257, 32768), (1, 50304), device="cuda")
y2 = rand_strided((32768, 768), (768, 1), device="cuda")
@torch.compile(mode="max-autotune")
def f(x1, y1, x2, y2):
return x1 @ y1 + x2 @ y2
ref = x1 @ y1 + x2 @ y2
act = f(x1, y1, x2, y2)
self.assertTrue(torch.allclose(ref, act, atol=1e-2, rtol=1e-2))
@config.patch(
max_autotune=True,
max_autotune_gemm_backends="",
autotune_fallback_to_aten=False,
)
def test_no_valid_choices(self):
a = torch.zeros([2, 2], device="cuda")
b = torch.zeros([2, 2], device="cuda")
with self.assertRaises(BackendCompilerFailed) as context:
torch.compile(lambda a, b: a.matmul(b))(a, b)
self.assertIn("NoValidChoicesError", str(context.exception))
@parametrize("multi_template", (True, False))
@config.patch(
max_autotune=True,
max_autotune_gemm_backends="TRITON",
autotune_fallback_to_aten=False,
)
def test_inf_timing(self, multi_template):
from unittest.mock import patch
lookup = AlgorithmSelectorCache.lookup
def mock_lookup(self, *args, **kwargs):
timings = lookup(self, *args, **kwargs)
return {choice: float("inf") for choice in timings.keys()}
a = torch.zeros([16, 16], device="cuda")
b = torch.zeros([16, 16], device="cuda")
with patch.object(AlgorithmSelectorCache, "lookup", mock_lookup), config.patch(
benchmark_epilogue_fusion=multi_template
):
with self.assertRaises(BackendCompilerFailed) as context:
torch.compile(lambda a, b: a.matmul(b))(a, b)
self.assertIn("NoValidChoicesError", str(context.exception))
class TestBenchmarkRequest(BenchmarkRequest):
def __init__(
self, value: float, multi_device: bool, parent_visible_devices: Optional[str]
) -> None:
self.value = value
self.multi_device = multi_device
self.parent_visible_devices = parent_visible_devices
def benchmark(
self, *input_tensors: torch.Tensor, output_tensor: Optional[torch.Tensor] = None
) -> float:
# Verify that the visible devices env var is set correctly. If multi-device
# auto-tuning is disabled, the visible devices should be unmanipulated from
# the parent process. If multi-device auto-tuning is enabled, the visible
# devices should be a _single_ valid device number. Note that we can't perform
# this validation directly from the test body because benchmarks execute in a
# separate process. If the check fails, however, the test will detect the
# failure by virtue of not receiving the expected result back.
visible_devices = os.environ.get(CUDA_VISIBLE_DEVICES)
if not self.multi_device:
assert visible_devices == self.parent_visible_devices
else:
valid_devices = self.parent_visible_devices.split(",")
assert visible_devices in valid_devices
return self.value
class TestTritonTemplateCaller(TritonTemplateCaller):
def __init__(self, bmreq: TestBenchmarkRequest):
self.bmreq = bmreq
def __str__(self) -> str:
return "test"
class TestTuningProcess(TestCase):
def test_tuning_pool_crash(self):
# Use only one device/subprocess so we test the process restarts
# and is usable after a "crash".
with config.patch({"autotune_multi_device": False}):
tuning_pool = TuningProcessPool()
tuning_pool.initialize()
# First force the tuning process to "crash" by setting a bogus
# string for the expected visible devices.
bmreq = TestBenchmarkRequest(3.14, False, "invalid")
choice = TestTritonTemplateCaller(bmreq)
timings = tuning_pool.benchmark([choice])
self.assertTrue(choice in timings)
self.assertEqual(timings[choice], float("inf"))
# Then send another request and make sure the sub-process
# has restarted and is operational. 'valid_devices' expected
# to be None because autotune_multi_device is off.
choice.bmreq.parent_visible_devices = os.environ.get(CUDA_VISIBLE_DEVICES)
timings = tuning_pool.benchmark([choice])
self.assertTrue(choice in timings)
self.assertEqual(timings[choice], bmreq.value)
tuning_pool.terminate()
def test_tuning_pool_multiple_devices(self):
with config.patch({"autotune_multi_device": True}):
# Adapt the test to the available devices (and whether CUDA_VISIBLE_DEVICES
# is already set in the environment); use a subset of the available devices
# to ensure only the subset are visible to the sub-processes.
if CUDA_VISIBLE_DEVICES in os.environ:
visible_devices = os.environ[CUDA_VISIBLE_DEVICES].split(",")
else:
visible_devices = [str(d) for d in range(torch.cuda.device_count())]
parent_visible_devices = ",".join(visible_devices[-2:])
os.environ[CUDA_VISIBLE_DEVICES] = parent_visible_devices
tuning_pool = TuningProcessPool()
tuning_pool.initialize()
choice1 = TestTritonTemplateCaller(
TestBenchmarkRequest(3.14, True, parent_visible_devices),
)
choice2 = TestTritonTemplateCaller(
TestBenchmarkRequest(2.718, True, parent_visible_devices),
)
timings = tuning_pool.benchmark([choice1, choice2])
self.assertEqual(timings[choice1], choice1.bmreq.value)
self.assertEqual(timings[choice2], choice2.bmreq.value)
tuning_pool.terminate()
if __name__ == "__main__":
from torch._inductor.utils import is_big_gpu
# Set env to make it work in CI.
if HAS_CUDA and HAS_CPU and is_big_gpu(0):
run_tests()